针对Hh信号通路的人恶性胶质瘤靶向治疗的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景]
     胶质瘤是颅内最常见恶性肿瘤,其中病理分级为WHOⅢ-Ⅳ级的恶性胶质瘤,病情进展迅速,复发快,预后差。目前手术结合放、化疗的综合治疗是经典的治疗方法,但对于恶性胶质瘤患者的总体预后改善有限,主要原因在于难以避免的肿瘤复发。恶性胶质瘤的化疗是重要的辅助治疗手段,然而由于传统化疗药物的非特异性、细胞毒性和肿瘤本身的耐药性使得该类药物的总体疗效欠佳。近年来发现许多肿瘤的发生发展与特定信号通路的异常激活密切相关,因此以细胞特定受体、关键基因和调控分子为靶点的辅助治疗具有良好的应用前景。
     肿瘤干细胞假说认为在肿瘤细胞中仅有一小部分细胞具有自我更新、无限增殖、多向分化潜能的干细胞样特性,它们是肿瘤发生,转移和复发的根源。已经发现胶质瘤中也存在着这样一类以CD133阳性作为标记的脑肿瘤干细胞(BTSCs),并且证明其具有高度的耐药性、抗凋亡能力以及侵袭能力。这些肿瘤干细胞应该是今后恶性胶质瘤靶向治疗的主要研究方向。目前认为脑肿瘤干细胞可能起源于发生基因突变的正常神经干细胞,因而一些负责调控神经干细胞自我更新、分化、增殖的关键信号通路,如Hh、Wnt、Notch信号通路等,可能在脑肿瘤干细胞中起着重要的作用。其中Hh通路是目前肿瘤干细胞相关研究领域的热点之一。已有的研究表明:Hh通路既对内源性干细胞的增殖起调节作用,也可能对肿瘤干细胞起调节作用,其异常激活能导致多种肿瘤生成,如基底细胞癌、髓母细胞瘤、胶质瘤、胰腺癌等;目前体内外实验中对该通路的特异性阻断对这些肿瘤的治疗均取得了一定的效果,但其中的具体作用机制还没有完全阐明。因此对该信号通路的继续探索也成为了目前相关肿瘤基础研究领域的前沿。
     目前针对Hh通路应用较多的一类阻滞剂为环杷明(cyclopamine),其能够结合Smo受体从而抑制Hh信号通路活性。已有的体内外实验表明cyclopamine对包括部分胶质瘤在内的多种Hh通路相关性肿瘤有效。然而cyclopamine类抑制剂只能对由Hh信号通路上游基因变化导致异常活化的肿瘤有作用-而对由Smo级联反应以下的参与Hh信号通路调控的分子变化,如sufu基因突变所导致的肿瘤没有治疗效果。因此,进一步寻找Hh通路下游阻滞剂,如Gli转录因子阻滞剂,对于Hh通路相关性胶质瘤的干预治疗具有重要意义。
     [方法]
     第一部分:通过rt-PCR和免疫荧光技术检测Hh通路的主要基因Gli1在不同的原代细胞及胶质母细胞瘤细胞系中的表达;分别利用real-time PCR. western blot验证GANT61对Hh通路异常激活的胶质瘤Gli1 mRNA和Ptch1蛋白的调控作用;利用MTS试验,验证GANT61对不同株胶质瘤细胞活性的影响,并根据此项试验结果得出的时间-剂量-活性相关曲线确定该药物的有效浓度;进而借助于PI染色法检测GANT61对细胞周期的影响,并以Annexin V/PI双染色法检测细胞凋亡
     第二部分:利用免疫磁珠分选技术(MACS)在U87细胞系中分选得到CD133阳性的脑肿瘤干细胞,并通过单克隆形成试验、免疫荧光标记和裸鼠致瘤试验鉴定其干细胞样生物学特性;然后予以GANT61体外作用相应时间后再次检测脑肿瘤干细胞自我更新能力、干细胞特异性标记的维持以及裸鼠致瘤能力的变化。
     第三部分:通过裸鼠皮下接种法构建胶质瘤的种植瘤模型,按疗程瘤周注射GANT61后定期测量肿瘤体积变化;收集处理组与对照组新鲜肿瘤组织以PCR和免疫组化技术分别检测Ptchl mRNA和蛋白水平的变化;以TUNEL法标记凋亡细胞,以BRDU染色法检测肿瘤细胞的增殖。另取GANT61干预后的肿瘤组织体外再培养并检测其自我更新能力和体内致瘤能力。
     [结果]
     1.在7例恶性胶质瘤样本中3例为WHOⅢ级,4例为WHOⅣ级。其中2/5原代肿瘤细胞和1/2肿瘤细胞系的Gli1高表达。但Gli1的表达情况与病理分级没有明确的相关性。
     2.5μM浓度的GANT61能够在体外实验中时间依赖的阻断Gli1转录活性,3个样本作用48h后Gli1 mRNA均得到明显下调,作为Gli1下游靶基因之一的Ptch1的蛋白表达也较对照组下降,说明GANT61能通过抑制Gli1转录活性来阻断其下游的信号传导。
     3.GANT61对于Gli1表达异常增高的恶性胶质瘤具有时间和剂量依赖的细胞活性抑制作用,作用48h可以达到最大抑制效果,其IC50为10μM。
     4.10μM的GANT61作用48h可以明显增加G1亚峰和G0/G1期的细胞比例,这提示GANT61主要通过诱导G1/S期的周期阻滞和增加细胞死亡来减慢胶质瘤细胞增殖。
     5.10μM的GANT61作用48h可以通过降低Gli1转录活性而增加早期凋亡细胞比例。
     6.通过MACS技术从U87细胞系中分选出CD133阳性的细胞亚群。经验证分选所得的CD133阳性细胞具有自我更新、多向分化潜能和体内致瘤能力,具有脑肿瘤干细胞样细胞(BTSCs)的典型特征。
     7.CD133阳性组胶质瘤细胞Gli1 mRNA水平较阴性组明显增高。10μMGANT61作用48h后能明显抑制BTSCs Gli1转录活性。
     8.10μM GANT61共培养2天或20μM GANT61共培养7天都不能明显增加BTSCs早期凋亡,这提示在BTSCs中Hh通路可能并不是唯一调控其抗凋亡能力的信号通路。
     9.CD133阳性细胞与10μM GANT61共培养7天后,其肿瘤球样克隆形成能力明显减弱,CD133阳性率明显下降,将其接种至裸鼠皮下后未能致瘤。这提示GANT61对BTSCs的体外作用能降低其自我更新能力。
     10.用浓度5mg/ml、剂量20mg/kg的GANT61对皮下荷瘤裸鼠作隔天瘤周注射,2周后处理组种植瘤体积较对照组明显小
     11.对照组瘤体中Ptch1呈高表达,而在治疗组经过2周GANT61局部皮下注射后瘤体的Ptch1在mRNA和蛋白水平均明显下降。
     12.在体内环境下GANT61能提高肿瘤的TUNEL阳性率并降低BRDU标记的的阳性率,提示其能增加肿瘤细胞凋亡、抑制增殖。
     13.处理组种植瘤消化后经体外培养发现仍能形成肿瘤球样克隆,并具有裸鼠致瘤能力。这提示在体内实验中单独使用GANT61不能完全消灭肿瘤干细胞
     [结论]
     1.在恶性胶质瘤中存在Hh通路活性异常增高的亚型,以Gli1 mRNA的高表达为主要表现。但Gli1的表达情况与病理分级没有明确的相关性。
     2.在体外实验中GANT61能通过抑制Gli1转录来降低胶质瘤细胞活性,这种作用主要通过G1/S周期阻滞和增加细胞凋亡来实现。
     3.体外分选得到的CD133阳性的BTSCs呈Gli1高表达,其能被GANT61所抑制,同时该药物还能抑制BTSCs自我更新能力,但对其抗凋亡能力无明显影响。
     4.体内实验中GANT61能通过抑制Gli1转录活性来抑制肿瘤细胞增殖、增加其凋亡,从而抑制肿瘤体积的增大。但该药物在体内未能完全根除BTSCs。
[Background]
     Glioma is the most common malignancy in brain. Malignant glioma,which stands for WHO gradeⅢ-Ⅳ, is always associated with rapid progression, quick recurrence and poor prognosis. Currently radiotherapy and chemotherapy combined with surgical resection is the classic therapeutic strategy. However, due to inevitable relapse, the overall prognosis of patients with malignant glioma remains poor. Up to now,the effect of adjuvant chemotherapy is so limited, mainly because of the non-specificity, cytotoxicity of the chemical agents and the drug resistance of the tumor cells. Constitutive activation of some signal pathways has recently been implicated in the growth of a number of human malignancies. As a result, therapies which are targeting on such signal pathways, key genes and regulatory elements may have a good prospect. The cancer stem cell hypothesis implies that a small fraction of cells, called cancer stem cells (CSCs), present the stem cell ability such as indefinite proliferation, extensive self-renewal, and multi-linkage differentiation. They are the sources of tumor initiation, metastasis and relapse. The CD133 positive cells have been identified as brain tumor stem cells (BTSCs) in glioma. They display strong capability of drug resistance, anti-apoptosis, highly invasive thus represent novel targets for therapeutics. As BTSCs may originate from the transformation of normal neural stem cells (NSCs). similar signalling pathways, such as Hedrehog (Hh), Wnt and Notch pathways, may regulate self-renewal, proliferation and differenation in NSCs as well as in BTSCs. It has become clear that constitutive Hh signalling is an etiologic factor in many malignancies and application of specific Hh-pathway inhibitors has proven effective in preventing growth of many of these tumours in vitro and in vivo. However, the mechanism is not completely known. A detailed understanding of the role of Hh in the control of BTSCs behavior is critical for future therapeutic strategies.
     Current strategies focus on the use of small molecule inhibitors of Smo, such as cyclopamine et al. However, the approach is limited because only tumors where pathway activation has occurred at the level of Smo or upstream can be treated. Tumors with inactivating mutations in SuFu or other downstream components will not respond to these antagonists. In that case, downstream Hh pathway blocker is needed and antagonists against GLI transcription factors would be a better choice.
     [Method]
     Part 1:To identify whether Hh signaling pathway is active in glioma cell line or primary glioma cells. Rt-PCR and cytoimmunofluorescence were used to detect the Gli1 level in all of the samples. Real-time PCR and western blot were used to determine the influence of a GLI transcription antagonist GANT61 on Glil mRNA and Ptchl protein respectively. Then in order to determine whether GANT61 could inhibit glioma cell viability in a Gli1 level dependent way. MTS trials were performed in all 7 samples. Finally, cell cycle test and Annexin V/PI double staining were used to explore the mechanism leading to cell viability inhibition.
     Part 2:CD133 positive cells were isolated through MACS. These cells were verified as BTSCs using Single-cell clonal culture, cytoimmunofluorescence staining and xenograft tumor formation in nude mice. The Glil mRNA level was evaluated in both CD133 positive and CD133 negative subgroup using real-time PCR. After being cultured with GANT61 the Gli1 mRNA level. CD133 positive rate, the capacity of self-renewal and in vivo tumorigenecity were re-determinated to find out whether BTSCs can be depleted in vitro.
     Part 3:in order to evaluate the effect of GANT61 against glioma in vivo the drug was injected subcutaneously every other day for 2 weeks after establishment of xenograft tumors. Tumor volumes were calculated and BRDU as well as TUNEL staining were performed on the tissue section after remove of tumor. Finally, secondary tumorsphere formation ability and in vivo tumorigenecity were determined to evaluate whether all of the BTSCs have been depleded after treatment in vivo.
     [Results:]
     Seven samples were included in the experiment with 3 belonging to WHO gradeⅢand 4 belonging to WHO gradeⅣ. The Gli1 level was highly expressed in 2 of the primary glioma cells and 1 of the glioma cell lines. However. Gli1 level was not correlated with tumor grade.
     The Glil mRNA level and Ptchl protein level of the glioma cells were significantly decreased 48h after 5μM GANT61 administration. It suggested that Gli-mediated transcription in glioma cells was inhibited by GANT61 in vitro.
     Treatment of GANT61 inhibited glioma cell viability in a time and dose dependent way. The IC50 was about 10μM and the maxmal effect exhibited 48h after administration. The proportion of cells in sub-G1 and G0/G1 phase both increased significantly 48 h after 10μM GANT61 administration. It implied the agent suppressed glioma cell proliferation by means of cell-cycle arrest as well as increasing cell death.
     The proportion of early stage apoptosis increased significantly 48 h after 10μM GANT61 administration.
     CD133 positive cells were isolated through MACS. These cells were characterized as BTSCs because they hold the capacity of self-renewal. multi-linkage differentiation and in vivo tumorigenecity.
     The Gli1 mRNA level of the CD133 positive group was significantly higher than that of the CD133 negtive group. Treatment of 10μM GANT61 for 48h can significantly suppress the Gli1 mRNA.
     Neither 10μM GANT61 for 2 days nor 20μM GANT61 for 7 days could increase the proportion of early stage apoptosis in CD133 positive cells. It implies that inhibit Hh pathway only may not be enough to deprive the high capacity of anti-apoptosis in BTSCs.
     After blocking of Hh signaling for 7 days in vitro the CD133 positive rate as well as capacity of Single-cell tumorsphere formation and in vivo tumorigenecity of BTSCs dropped dramaticly. It implied that the self-renewal capacity of BTSCs may have been depleted by inhibition of Gli1 transcription in vitro.
     Treatment with GANT61 resulted in the inhibition of xenograft tumor growth and limited the increase in tumor size.
     The Ptchl mRNA level and protein level of the xenograft tumor were significantly suppressed after GANT61 administration. It suggested that Gli1-mediated transcription in glioma cells was inhibited by GANT61 in vivo.
     The TUNEL staining positive rate in GANT61-treated samples were significantly higher than that of the control while the BRDU positive rate was much lower. This result might indicate that GLI transcription inhibition favors induction of apoptosis and suppress tumor proliferation in vivo.
     Secondary tumorspheres originating from xenograft tumor of the treatment group can be found in culture favoring stem cell. It implies that despite the tumor shrinking some BTSCs can still survive after GANT61 administration in vivo.
     Conclusion
     1. Hh pathway was activated in a subset of malignant glioma including primary glioma samples and glioma cell lines. However,Gli1 level was not correlated with tumor grade. 2. Treatment of GANT61 inhibited glioma cell viability in a time and dose dependent way. This agent suppressed glioma cell proliferation by means of G1/S cell-cycle arrest as well as increasing cell apoptosis in vitro.
     3. Hh pathway activity was much higher in BTSCs than in CD133 negtive glioma cells. The self-renewal capacity and in vivo tumorigenecity but not anti-apoptosis capacity could be abolished by treatment of GANT61 in vitro.
     4. Subcutaneously administration of GANT61 could decrease glioma cell proliferation and increase apoptosis of xenograft tumor in nude mice. However, some BTSCs can still survive after treatment.
引文
[1]Bar EE, Chaudhry A, Lin A. Fan X, Schreck K, Matsui W, et al: Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25:2524-2533,2007
    [2]Becher OJ, Hambardzumyan D, Fomchenko El, Momota H, Mainwaring L, Bleau AM, et al:Gli activity correlates with tumor grade in platelet-derived growth factor-induced gliomas. Cancer Res 68:2241-2249,2008
    [3]Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN, et al:Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297:1559-1561,2002
    [4]Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K, et al:Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425:846-851,2003
    [5]Bonnet D, Dick JE:Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730-737,1997
    [6]Clarke J, Butowski N, Chang S:Recent advances in therapy for glioblastoma. Arch Neurol 67:279-283
    [7]Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A: HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165-172,2007
    [8]Dirks PB:Cancer:stem cells and brain tumours. Nature 444:687-688,2006
    [9]Ehtesham M, Sarangi A, Valadez JG, Chanthaphaychith S, Becher MW, Abel TW, et al:Ligand-dependent activation of the hedgehog pathway in glioma progenitor cells. Oncogene 26:5752-5761,2007
    [10]Erpolat OP, Akmansu M, Goksel F, Bora H, Yaman E, Buyukberber S:Outcome of newly diagnosed glioblastoma patients treated by radiotherapy plus concomitant and adjuvant temozolomide:a long-term analysis. Tumori 95:191-197,2009
    [11]Fukushima T, Takeshima H, Kataoka H:Anti-glioma therapy with temozolomide and status of the DNA-repair gene MGMT. Anticancer Res 29:4845-4854,2009
    [12]Germano I, Swiss V, Casaccia P:Primary brain tumors, neural stem cell, and brain tumor cancer cells:where is the link? Neuropharmacology 58:903-910
    [13]Kasper M, Regl G, Frischauf AM, Aberger F:GLI transcription factors: mediators of oncogenic Hedgehog signalling. Eur J Cancer 42:437-445,2006
    [14]Kondo T:Brain cancer stem-like cells. Eur J Cancer 42:1237-1242,2006
    [15]Lauth M, Bergstrom A, Shimokawa T, Toftgard R:Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci U S A 104:8455-8460,2007
    [16]Minniti G, De Sanctis V, Muni R, Filippone F, Bozzao A, Valeriani M, et al: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma in elderly patients. J Neurooncol 88:97-103,2008
    [17]Minniti G, Muni R, Lanzetta G, Marchetti P, Enrici RM:Chemotherapy for glioblastoma:current treatment and future perspectives for cytotoxic and targeted agents. Anticancer Res 29:5171-5184,2009
    [18]Nusslein-Volhard C, Wieschaus E:Mutations affecting segment number and polarity in Drosophila. Nature 287:795-801,1980
    [19]Reardon DA, Wen PY:Therapeutic advances in the treatment of glioblastoma: rationale and potential role of targeted agents. Oncologist 11:152-164,2006
    [20]Robbins DJ, Hebrok M:Hedgehogs:la dolce vita. Workshop on Hedgehog-Gli Signaling in Cancer and Stem Cells. EMBO Rep 8:451-455,2007
    [21]Ruiz i Altaba A, Stecca B, Sanchez P:Hedgehog-Gli signaling in brain tumors: stem cells and paradevelopmental programs in cancer. Cancer Lett 204:145-157,
    [22]Sanchez P, Hernandez AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A, et al: Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci U S A 101:12561-12566, 2004
    [23]Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al: Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821-5828,2003
    [24]Stockhausen MT, Kristoffersen K, Poulsen HS:The functional role of Notch signaling in human gliomas. Neuro Oncol 12:199-211
    [25]Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987-996,2005
    [26]Vestergaard J, Pedersen MW, Pedersen N, Ensinger C, Turner Z, Tommerup N, et al:Hedgehog signaling in small-cell lung cancer:frequent in vivo but a rare event in vitro. Lung Cancer 52:281-290,2006
    [27]Wang K, Pan L, Che X, Cui D, Li C:Gli1 inhibition induces cell-cycle arrest and enhanced apoptosis in brain glioma cell lines. J Neurooncol,2009
    [1]Bar EE, Chaudhry A, Farah MH, Eberhart CG:Hedgehog signaling promotes medulloblastoma survival via Bc/Ⅱ. Am J Pathol 170:347-355,2007
    [2]Bar EE, Chaudhry A. Lin A, Fan X, Schreck K, Matsui W, et al: Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25:2524-2533,2007
    [3]Becher OJ, Hambardzumyan D, Fomchenko EI, Momota H, Mainwaring L, Bleau AM, et al:Gli activity correlates with tumor grade in platelet-derived growth factor-induced gliomas. Cancer Res 68:2241-2249,2008
    [4]Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN, et al:Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297:1559-1561,2002
    [5]Bigelow RL, Chari NS, Unden AB, Spurgers KB, Lee S, Roop DR, et al: Transcriptional regulation of bcl-2 mediated by the sonic hedgehog signaling pathway through gli-1. J Biol Chem 279:1197-1205,2004
    [6]Clarke J, Butowski N, Chang S:Recent advances in therapy for glioblastoma. Arch Neurol 67:279-283
    [7]Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A: HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165-172,2007
    [8]Ehtesham M, Sarangi A, Valadez JG, Chanthaphaychith S, Becher MW, Abel TW, et al:Ligand-dependent activation of the hedgehog pathway in glioma progenitor cells. Oncogene 26:5752-5761,2007
    [9]Erpolat OP, Akmansu M, Goksel F, Bora H, Yaman E, Buyukberber S:Outcome of newly diagnosed glioblastoma patients treated by radiotherapy plus concomitant and adjuvant temozolomide:a long-term analysis. Tumori 95:191-197,2009
    [10]Fukushima T, Takeshima H, Kataoka H:Anti-glioma therapy with temozolomide and status of the DNA-repair gene MGMT. Anticancer Res 29:4845-4854,2009
    [11]Hutchin ME, Kariapper MS, Grachtchouk M, Wang A, Wei L, Cummings D, et al: Sustained Hedgehog signaling is required for basal cell carcinoma proliferation and survival:conditional skin tumorigenesis recapitulates the hair growth cycle. Genes Dev 19:214-223,2005
    [12]Kasper M, Regl G, Frischauf AM, Aberger F:GLI transcription factors:mediators of oncogenic Hedgehog signalling. Eur J Cancer 42:437-445,2006
    [13]Katayam M, Yoshida K, Ishimori H, Katayama M, Kawase T, Motoyama J, et al: Patched and smoothened mRNA expression in human astrocytic tumors inversely correlates with histological malignancy. J Neurooncol 59:107-115,2002
    [14]Kenney AM, Rowitch DH:Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol 20:9055-9067,2000
    [15]Kubo M, Nakamura M, Tasaki A, Yamanaka N, Nakashima H, Nomura M, et al: Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 64:6071-6074,2004
    [16]Lauth M, Bergstrom A, Shimokawa T, Toftgard R:Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc. Natl Acad Sci U S A 104:8455-8460,2007
    [17]Lefranc F, Rynkowski M, DeWitte O, Kiss R:Present and potential future adjuvant issues in high-grade astrocytic glioma treatment. Adv Tech Stand Neurosurg 34:3-35,2009
    [18]Minniti G, Muni R, Lanzetta G, Marchetti P, Enrici RM:Chemotherapy for glioblastoma:current treatment and future perspectives for cytotoxic and targeted agents. Anticancer Res 29:5171-5184,2009
    [19]Parvez T:Present trend in the primary treatment of aggressive malignant glioma: glioblastoma multiforme. Technol Cancer Res Treat 7:241-248,2008
    [20]Reardon DA, Wen PY:Therapeutic advances in the treatment of glioblastoma:
    rationale and potential role of targeted agents. Oncologist 11:152-164,2006
    [21]Ruiz i Altaba A, Stecca B, Sanchez P:Hedgehog--Gli signaling in brain tumors: stem cells and paradevelopmental programs in cancer. Cancer Lett 204:145-157, 2004
    [22]Salgaller M, Pearl D, Stephens R:In situ hybridization with single-stranded RNA probes to demonstrate infrequently elevated gli mRNA and no increased ras mRNA levels in meningiomas and astrocytomas. Cancer Lett 57:243-253,1991
    [23]Sanchez P, Hernandez AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A, et al: Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci U S A 101:12561-12566,2004
    [24]Tian JP, Friedman A, Wang J, Chiocca EA:Modeling the effects of resection, radiation and chemotherapy in glioblastoma. J Neurooncol 91:287-293,2009
    [25]Vestergaard J, Lind-Thomsen A, Pedersen MW, Jarmer HO, Bak M, Hasholt L, et al: GLI1 is involved in cell cycle regulation and proliferation of NT2 embryonal carcinoma stem cells. DNA Cell Biol 27:251-256,2008
    [26]Vestergaard J, Pedersen MW, Pedersen N, Ensinger C, Turner Z, Tommerup N, et al: Hedgehog signaling in small-cell lung cancer:frequent in vivo but a rare event in vitro. Lung Cancer 52:281-290,2006
    [27]Wang K, Pan L, Che X, Cui D, Li C:Glil inhibition induces cell-cycle arrest and enhanced apoptosis in brain glioma cell lines. J Neurooncol,2009
    [28]Watkins DN, Berman DM, Baylin SB:Hedgehog signaling:progenitor phenotype in small-cell lung cancer. Cell Cycle 2:196-198,2003
    [29]Xiao H, Goldthwait DA, Mapstone T:A search for gli expression in tumors of the central nervous system. Pediatr Neurosurg 20:178-182,1994
    [30]Yuan Z, Goetz JA, Singh S, Ogden SK, Petty WJ,'Black CC, et al:Frequent requirement of hedgehog signaling in non-small cell lung carcinoma. Oncogene 26:1046-1055.2007
    [1]Al-Hajj M, Clarke MF:Self-renewal and solid tumor stem cells. Oncogene 23:7274-7282,2004
    [2]Bar EE, Chaudhry A, Lin A, Fan X. Schreck K, Matsui W, et al:Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25:2524-2533,2007
    [3]Brehar FM, Bleotu C, Stefan LM, Buzgariu W, Chivu M, Utoiu E, et al:Isolation and partial characterization of a new human glioblastoma cell line. Chirurgia (Bucur) 104:453-461,2009
    [4]Clarke J, Butowski N, Chang S:Recent advances in therapy for glioblastoma. Arch Neurol 67:279-283
    [5]Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A: HEDGEHOG-GLI1 signaling regulates human gliorna growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165-172,2007
    [6]Ehtesham M, Sarangi A, Valadez JG, Chanthaphaychith S, Becher MW, Abel TW, et al:Ligand-dependent activation of the hedgehog pathway in glioma progenitor cells. Oncogene 26:5752-5761,2007
    [7]Galvin KE, Ye H, Erstad DJ, Feddersen R, Wetmore C:Gli1 induces G2/M arrest and apoptosis in hippocampal but not tumor-derived neural stem cells. Stem Cells 26:1027-1036,2008
    [8]Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al:Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100:15178-15183,2003
    [9]Herrid M, Davey RJ, Hutton K, Colditz IG, Hill JR:A comparison of methods for preparing enriched populations of bovine spermatogonia. Reprod Fertil Dev
    21:393-399,2009
    [10]Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA: Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39:193-206,2002
    [11]Jasmin C:Tumor stem cells and the curability of early human breast cancer. Recent Results Cancer Res 127:7-12,1993
    [12]Kasper S:Identification, characterization, and biological relevance of prostate cancer stem cells from clinical specimens. Urol Oncol 27:301-303,2009
    [13]Kondo T, Setoguchi T, Taga T:Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci U S A 101:781-786, 2004
    [14]Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al:A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645-648,1994
    [15]Lee TK, Castilho A, Ma S, Ng IO:Liver cancer stem cells:implications for a new therapeutic target. Liver Int 29:955-965,2009
    [16]Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X, et al:Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci U S A 100:15853-15858,2003
    [17]Libura J. Drukala J, Majka M, Tomescu O, Navenot JM, Kucia M, et al: CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood 100:2597-2606,2002
    [18]Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, et al:Analysis of gene expression and chemoresistance of CD 133+ cancer stem cells in glioblastoma. Mol Cancer 5:67,2006
    [19]Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, et al:Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063-6071,2006
    [20]Marx J:Cancer research. Mutant stem cells may seed cancer. Science 301:1308-1310,2003
    [21]Moraes RC, Zhang X, Harrington N, Fung JY, Wu MF, Hilsenbeck SG, et al: Constitutive activation of smoothened (SMO) in mammary glands of transgenic mice leads to increased proliferation, altered differentiation and ductal dysplasia. Development 134:1231-1242,2007
    [22]Orfao A, Ruiz-Arguelles A:General concepts about cell sorting techniques. Clin Biochem 29:5-9,1996
    [23]Reardon DA, Wen PY:Therapeutic advances in the treatment of glioblastoma: rationale and potential role of targeted agents. Oncologist 11:152-164,2006
    [24]Reya T, Morrison SJ, Clarke MF, Weissman IL:Stem cells, cancer, and cancer stem cells. Nature 414:105-111,2001
    [25]Sarkar FH, Li Y, Wang Z, Kong D:Pancreatic cancer stem cells and EMT in drug resistance and metastasis. Minerva Chir 64:489-500,2009
    [26]Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al: Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821-5828,2003
    [27]Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, et al: Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-lalpha. Oncogene 28:3949-3959,2009
    [28]Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987-996,2005
    [29]Thelu J, Rossio P, Favier B:Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatol 2:7,2002
    [30]Tian JP, Friedman A, Wang J, Chiocca EA:Modeling the effects of resection, radiation and chemotherapy in glioblastoma. J Neurooncol 91:287-293.2009
    [31]Yao J, Zhang T, Ren J, Yu M, Wu G:Effect of CD133/prorninin-l antisense oligodeoxynucleotide on in vitro growth characteristics of Huh-7 human hepatocarcinoma cells and U251 human glioma cells. Oncol Rep 22:781-787,2009
    [32]Yu SC, Ping YF, Yi L, Zhou ZH, Chen JH, Yao XH, et al:Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Lett 265:124-134,2008
    [33]Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, et al: Isolation of cancer stem cells from adult glioblastoma multiforme.Oncogene 23:9392-9400,2004
    [34]Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, et al:The ABC transporter Bcrpl/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028-1034, 2001
    [1]Antunes L, Angioi-Duprez KS, Bracard SR, Klein-Monhoven NA, Le Faou AE, Duprez AM, et al:Analysis of tissue chimerism in nude mouse brain and abdominal xenograft models of human glioblastoma multiforme:what does it tell us about the models and about glioblastoma biology and therapy? J Histochem Cytochem 48:847-858,2000
    [2]Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W, et al:Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25:2524-2533,2007
    [3]Bhattacharya R, Kwon J, Ali B, Wang E, Patra S, Shridhar V, et al:Role of hedgehog signaling in ovarian cancer. Clin Cancer Res 14:7659-7666,2008
    [4]Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, et al:A perivascular niche for brain tumor stem cells. Cancer Cell 11:69-82,2007
    [5]Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A: HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigeriicity. Curr Biol 17:165-172,2007
    [6]De Toni F, Racaud-Sultan C, Chicanne G, Mas VM, Cariven C, Mesange F, et al:A crosstalk between the Wnt and the adhesion-dependent signaling pathways governs the chemosensitivity of acute myeloid leukemia. Oncogene 25:3113-3122,2006
    [7]Dick JE, Lapidot T:Biology of normal and acute myeloid leukemia stem cells. Int J Hematol 82:389-396,2005
    [8]Fuchs E, Tumbar T, Guasch G:Socializing with the neighbors:stem cells and their niche. Cell 116:769-778,2004
    [9]Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, et al:Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300:1155-1159,2003
    [10]Grizzi F, Weber C, Di Ieva A:Antiangiogenic strategies in medulloblastoma:reality or mystery. Pedia.tr Res 63:584-590,2008
    [11]Ko AH, Venook AP, Bergsland EK, Kelley RK, Korn WM, Dito E, et.al:A phase Ⅱ study of bevacizumab plus erlotinib for gemcitabine-refractory metastatic pancreatic cancer. Cancer Chemother Pharmacol
    [12]Lauth M, Bergstrom A, Shimokawa T, Toftgard R:Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci U S A 104:8455-8460,2007
    [13]Miura FK, Alves MJ, Rocha MC, da Silva R, Oba-Shinjo SM, Marie SK:Xenograft transplantation of human malignant astrocytoma cells into immunodeficient rats:an experimental model of glioblastoma. Clinics (Sao Paulo) 65:305-309
    [14]Moore KA, Lemischka IR:Stem cells and their niches. Science 311:1880-1885, 2006
    [15]Mueller MT, Hermann PC, Witthauer J, Rubio-Viqueira B, Leicht SF, Huber S, et al: Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology 137:1102-1113,2009
    [16]Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, et al:Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293:293-297,2001
    [17]Perry MC, Demeule M, Regina A, Moumdjian R, Beliveau R:Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts. Mol Nutr Food Res
    [18]Scott BJ, Quant EC, McNamara MB, Ryg PA, Batchelor TT, Wen PY:Bevacizumab salvage therapy following progression in high-grade glioma patients treated with VEGF receptor tyrosine kinase inhibitors. Neuro Oncol
    [19]Vestergaard J, Pedersen MW, Pedersen N, Ensinger C, Turner Z, Tommerup N, et al: Hedgehog signaling in small-cell lung cancer:frequent in vivo but a rare event in vitro. Lung Cancer 52:281-290,2006
    [20]陈骅,黄强:胶质瘤干细胞研究的新观点.中国神经肿瘤杂志6:1-4,2008
    [1]Athar M, Li C. Tang X, Chi S, Zhang X. Kim AL, et al:Inhibition of smoothened signaling prevents ultraviolet B-induced basal cell carcinomas through regulation of Fas expression and apoptosis. Cancer Res 64:7545-7552,2004
    [2]Aza-Blanc P, Ramirez-Weber FA, Laget MP, Schwartz C, Kornberg TB:Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus arid converts it to a repressor. Cell 89:1043-1053,1997
    [3]Bai CB, Stephen D, Joyner AL:All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev Cell 6:103-115,2004
    [4]Bale AE, Yu KP:The hedgehog pathway and basal cell carcinomas. Hum Mol Genet 10:757-762,2001
    [5]Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W, et al: Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25:2524-2533,2007
    [6]Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K, et al:Widespread requirement for Hedgehog ligand stimulation in growth of
    digestive tract tumours. Nature 425:846-851,2003
    [7]Bigelow RL, Chari NS, Unden AB, Spurgers KB, Lee S, Roop DR, et al: Transcriptional regulation of bcl-2 mediated by the sonic hedgehog signaling pathway through gli-1. J Biol Chem 279:1197-1205,2004
    [8]Binns W, James LF, Shupe JL, Everett G:A Congenital Cyclopian-Type Malformation in Lambs Induced by Maternal Ingestion of a Range Plant, Veratrum Californicum. Am J Vet Res 24:1164-1175,1963
    [9]Bogler O, Sawaya R:Biomarkers and cancer stem cells in primary brain tumors. Foreword. Curr Probl Cancer 32:95-96,2008
    [10]Buttitta L, Mo R, Hui CC, Fan CM:Interplays of Gli2 and Gli3 and their requirement in mediating Shh-dependent sclerotome induction. Development 130:6233-6243,2003
    [11]Chen CH, von Kessler DP, Park W, Wang B, Ma Y, Beachy PA:Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression. Cell 98:305-316,1999
    [12]Chen JK, Taipale J, Cooper MK, Beachy PA:Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16:2743-2748,2002
    [13]Chrisman K, Kenney R, Comin J, Thal T, Suchocki L, Yueh YG, et al:Gestational ethanol exposure disrupts the expression of FGF8 and Sonic hedgehog during limb patterning. Birth Defects Res A Clin Mol Teratol 70:163-171,2004
    [14]Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A: HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165-172,2007
    [15]Dai P, Akimaru H, Tanaka Y, Maekawa T, Nakafuku M, Ishii S:Sonic Hedgehog-induced activation of the Glil promoter is mediated by GLI3. J Biol Chem 274:8143-8152,1999
    [16]Ding Q, Motoyama J, Gasca S, Mo R, Sasaki H. Rossant J, et al:Diminished Sonic
    hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development 125:2533-2543,1998
    [17]Ding S, Schultz PG:A role for chemistry in stem cell biology. Nat Biotechnol 22:833-840,2004
    [18]Flores DG, Ledur PF, Abujamra AL. Brunetto AL, Schwartsmann G, Lenz G, et al: Cancer stem cells and the biology of brain tumors. Curr Stem Cell Res Ther 4:306-313,2009
    [19]Frank-Kamenetsky M, Zhang XM, Bottega S, Guicherit O, Wichterle H, Dudek H, et al:Small-molecule modulators of Hedgehog signaling:identification and characterization of Smoothened agonists and antagonists. J Biol 1:10,2002
    [20]Goodrich LV, Scott MP:Hedgehog and patched in neural development and disease. Neuron 21:1243-1257,1998
    [21]Gorlin RJ:Nevoid basal cell carcinoma syndrome. Dermatol Clin 13:113-125,1995'
    [22]Grachtchouk M, Mo R, Yu S, Zhang X, Sasaki H, Hui CC, et al:Basal cell carcinomas in mice overexpressing Gli2 in skin. Nat Genet 24:216-217,2000
    [23]Hahn H, Wojnowski L, Miller G, Zimmer A:The patched signaling pathway in tumorigenesis and development:lessons from animal models. J Mol Med 77:459-468,1999
    [24]Han JS, Crowe DL:Tumor initiating cancer stem cells from human breast cancer cell lines. Int J Oncol 34:1449-1453,2009
    [25]Hooper JE, Scott MP:Communicating with Hedgehogs. Nat Rev Mol Cell Biol 6:306-317,2005
    [26]Hosoya T, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M:Naturally occurring small-molecule inhibitors of hedgehog/GLI-mediated transcription. Chembiochem 9:1082-1092,2008
    [27]Huangfu D, Anderson KV:Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci U S A 102:11325-11330,2005
    [28]Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV: Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426:83-87,2003
    [29]Ingham PW, McMahon AP:Hedgehog signaling in animal development:paradigms and principles. Genes Dev 15:3059-3087,2001
    [30]Jeong J, Mao J, Tenzen T, Kottmann AH, McMahon AP:Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia. Genes Dev 18:937-951,2004
    [31]Jia J, Amanai K, Wang G, Tang J, Wang B, Jiang J:Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature 416:548-552,2002
    [32]Jiang J, Struhl G:Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391:493-496,1998
    [33]Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A, et al: Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431:707-712,2004
    [34]Keeler RF, Binns W:Teratogenic compounds of Veratrum californicum (Durand). V. Comparison of cyclopian effects of steroidal alkaloids from the plant and structurally related compounds from other sources. Teratology 1:5-10,1968
    [35]Kenney AM, Rowitch DH:Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol 20:9055-9067,2000
    [36]Kimura H, Stephen D, Joyner A, Curran T:Gli1 is important for medulloblastoma formation in Ptc1+/-mice. Oncogene 24:4026-4036,2005
    [37]Kinzler KW, Vogelstein B:The GLI gene encodes a nuclear protein which binds specific sequences in the human genome, Mol Cell Biol 10:634-642,1990
    [38]Kogerman P, Grimm T, Kogerman L, Krause D, Unden AB, Sandstedt B, et al: Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1.
    Nat Cell Biol 1:312-319,1999
    [39]Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al:A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645-648,1994
    [40]Lasky JL,3rd, Choe M, Nakano I:Cancer stem cells in pediatric brain tumors. Curr Stem Cell Res Ther 4:298-305,2009
    [41]Lauth M, Bergstrom A, Shimokawa T, Toftgard R:Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci U S A 104:8455-8460,2007
    [42]Lee da Y, Gutmann DH:Cancer stem cells and brain tumors:uprooting the bad seeds. Expert Rev Anticancer Ther 7:1581-1590,2007
    [43]Li Y, Zhang H, Choi SC, Litingtung Y, Chiang C:Sonic hedgehog signaling regulates Gli3 processing, mesenchymal proliferation, and differentiation during mouse lung organogenesis. Dev Biol 270:214-231,2004
    [44]Liu A, Wang B, Niswander LA:Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 132:3103-3111,2005
    [45]Long F, Zhang XM, Karp S, Yang Y, McMahon AP:Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development 128:5099-5108,2001
    [46]Lum L, Beachy PA:The Hedgehog response network:sensors, switches, and routers. Science 304:1755-1759,2004
    [47]Lum L. Zhang C, Oh S, Mann RK, von Kessler DP, Taipale J, et al:Hedgehog signal transduction via Smoothened association with a cytoplasmic complex scaffolded by the atypical kinesin, Costal-2. Mol Cell 12:1261-1274,2003
    [48]Motoyama J, Milenkovic L, Iwama M, Shikata Y, Scott MP, Hui CC:Differential requirement for Gli2 and Gli3 in ventral neural cell fate specification. Dev Biol
    259:150-161,2003
    [49]Nguyen V, Chokas AL, Stecca B, Ruiz i Altaba A:Cooperative requirement of the Gli proteins in neurogenesis. Development 132:3267-3279,2005
    [50]Pavletich NP, Pabo CO:Crystal structure of a five-finger GLI-DNA complex:new perspectives on zinc fingers. Science 261:1701-1707,1993
    [51]Price MA, Kalderon D:Proteolysis of cubitus interruptus in Drosophila requires phosphorylation by protein kinase A. Development 126:4331-4339,1999
    [52]Reg] G, Kasper M, Schnidar H, Eichberger T, Neill GW, Ikram MS, et al:The zinc-finger transcription factor GLI2 antagonizes contact inhibition and differentiation of human epidermal cells. Oncogene 23:1263-1274,2004
    [53]Regl G, Kasper M, Schnidar H, Eichberger T, Neill GW, Philpott MP, et al: Activation of the BCL2 promoter in response to Hedgehog/GLI signal transduction is predominantly mediated by GLI2. Cancer Res 64:7724-7731,2004
    [54]Reya T, Morrison SJ, Clarke MF, Weissman IL:Stem cells, cancer, and cancer stem cells. Nature 414:105-111,2001
    [55]Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, et al: Spontaneous human adult stem cell transformation. Cancer Res 65:3035-3039,2005
    [56]Ruiz i Altaba A:Gli proteins encode context-dependent positive and negative functions:implications for development and disease. Development 126:3205-3216, 1999
    [57]Ruiz i Altaba A, Sanchez P, Dahmane N:Gli and hedgehog in cancer:tumours, embryos and stem cells. Nat Rev Cancer 2:361-372,2002
    [58]Sacedon R, Diez B, Nunez V, Hernandez-Lopez C, Gutierrez-Frias C, Cejalvo T, et al:Sonic hedgehog is produced by follicular dendritic cells and protects germinal center B cells from apoptosis. J Immunol 174:1456-1461,2005
    [59]Sakariassen PO, Immervoll H, Chekenya M:Cancer stem cells as mediators of treatment resistance in brain tumors:status and controversies. Neoplasia 9:882-892,
    2007
    [60]Sanchez MG, Sanchez AM, Collado B, Malagarie-Cazenave S, Olea N, Carmena MJ, et al:Expression of the transient receptor potential vanilloid 1 (TRPV1) in LNCaP and PC-3 prostate cancer cells and in human prostate tissue. Eur J Pharmacol 515:20-27,2005
    [61]Sanchez P, Clement V, Ruiz i Altaba A:Therapeutic targeting of the Hedgehog-GLI pathway in prostate cancer. Cancer Res 65:2990-2992,2005
    [62]Sanchez P, Hernandez AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A, et al: Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci U S A 101:12561-12566,2004
    [63]Sasaki H, Hui C, Nakafuku M, Kondoh H:A binding site for Gli proteins is essential for-HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 124:1313-1322,1997
    [64]Sasaki H, Nishizaki Y, Hui C, Nakafuku M, Kondoh H:Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain:implication of Gli2 and Gli3 as primary mediators of Shh signaling. Development 126:3915-3924,1999
    [65]Sheng T, Li C, Zhang X, Chi S, He N, Chen K, et al:Activation of the hedgehog pathway in advanced prostate cancer. Mol Cancer 3:29,2004
    [66]Shin SH, Kogerman P, Lindstrom E, Toftgard R, Biesecker LG:GLI3 mutations in human disorders mimic Drosophila cubitus interruptus protein functions and localization. Proc Natl Acad Sci U S A 96:2880-2884,1999
    [67]Shiras A, Chettiar ST, Shepal V, Rajendran G, Prasad GR, Shastry P:Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma. Stem Cells 25:1478-1489,2007
    [68]Sims-Mourtada J, Izzo JG, Ajani J, Chao KS:Sonic Hedgehog promotes multiple drug resistance by regulation of drug transport. Oncogene 26:5674-5679,2007
    [69]Sims-Mourtada J, Izzo JG, Apisarnthanarax S, Wu TT, Malhotra U, Luthra R, et al: Hedgehog:an attribute to tumor regrowth after chemoradiotherapy and a target to improve radiation response, Clin Cancer Res 12:6565-6572,2006
    [70]Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L, et al:Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406:1005-1009,2000
    [71]Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY, et al: Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425:851-856,2003
    [72]Walsh PC:Hedgehog signalling in prostate regeneration, neoplasia and metastasis. J Urol 173:1169,2005
    [73]Wang B, Fallon JF, Beachy PA:Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100:423-434,2000
    [74]Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB: Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422:313-317,2003
    [75]Yoon JW, Kita Y, Frank DJ, Majewski RR, Konicek BA, Nobrega MA, et al:Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation. J Biol Chem 277:5548-5555,2002