MNU灌肠诱导大鼠结肠癌模型的构建及RNAi干扰CD133基因对结肠癌的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     通过MNU灌肠法诱导大鼠原位结肠癌模型,探讨MNU肿瘤诱导过程中对于肿瘤干细胞标记物CD44、CD133表达的影响,建立研究肿瘤发展过程肿瘤干细胞标记物变化趋势的模型,尝试通过肠镜下对该模型进行干预研究。通过应用RNAi干扰技术,沉默大肠癌细胞株HT-29的CD133表达,研究其对HT-29细胞增殖和侵袭力的影响,为抑制肿瘤细胞体内生长实验做进一步验证,选择通过裸鼠肿瘤模型的治疗对照研究,对靶向CD133抑制大肠癌细胞的体内效果做了进一步验证,探讨靶向基因治疗在大肠癌基因治疗中的可行性、效应及初步作用机制,为研究RNAi体内干扰对大肠癌临床效果作出初步探索。
     方法
     应用MNU灌肠方法诱导大鼠结肠癌模型,并且通过肠镜实时监测肿瘤的发生发展,尝试在肠镜下对肿瘤进行注射治疗,应用免疫组织化学染色法、RT—PCR(实时定量PCR)、Western Blotting分别检测模型中诱导成功的结肠癌与正常结肠组织中肿瘤干细胞标记物CD44、CD133的基因及蛋白表达对比情况,分析其表达与肿瘤发生的关系。体外实验中,应用siRNA干扰大肠癌细胞株HT-29的CD133的表达,以RT-PCR及Western Blotting分析并优化转染的效率及效果,以MTT法检测细胞的增殖活性,以Transwell小孔实验方法检测转染对肿瘤细胞侵袭力的影响。体内试验中,通过建立裸鼠结肠癌模型,分组对照进行瘤体内多点注射,探讨CD133siRNA体内治疗的方法及效果,探讨siRNA在大肠癌临床治疗的可行性,并且进一步在MNU诱导大鼠结肠模型中进行原位肿瘤的干扰治疗打下基础。
     结果
     通过MNU灌肠成功诱导出大鼠结肠癌模型,病理分析证明该模型中肿瘤生长为腺瘤—不典型增生—腺癌的渐进过程,通过肠镜下检查成功做到了对该模型的实时监测,并成功尝试了对该模型中原位肿瘤治疗的干预。CD133siRNA成功转染了HT-29细胞,通过RT-PCR及Western Blotting检测,分析并优化了siRNA转染的浓度及时间,证明了转染过程伴有时间及浓度依存关系,MTT法检测证实,转染后细胞的增殖活性被抑制,Transwell实验表明转染后肿瘤细胞的侵袭力有所下降。动物体内实验表明,瘤内注射CD133siRNA能有效抑制裸鼠移植瘤生长,免疫组化分析了各组裸鼠肿瘤中CD133蛋白的表达,实验组与对照组有统计学意义(P<0.05),提示该基因治疗在临床应用上有良好的前景。
     结论
     MNU灌肠可以成功诱导大鼠原位结肠癌,可以通过肠镜下实时监测及实验干预此过程,是研究大肠癌发生、发展过程及临床治疗的良好模型,利于大肠隐窝干细胞在肿瘤发展过程中的变化研究,利于研究肿瘤干细胞在肿瘤发展过程中所扮演的角色及作用,CD133siRNA可以有效的抑制CD133基因在肿瘤细胞HT—29中的表达,可以有效抑制肿瘤细胞的增殖及侵袭力。裸鼠肿瘤模型中,该基因治疗能够有效的抑制移植瘤的生长,诱导肿瘤细胞的凋亡,今后可以进一步尝试通过肠镜直接对原位结肠肿瘤进行干预治疗,CD133与大肠癌密切相关,可能是靶向基因治疗潜在的分子标靶,可以尝试将CD133siRNA进一步应用于成功建立的大鼠结肠癌模型,为大肠癌的基因干扰治疗探索新的方法。
Objective
     To establish an orthotopic colon tumor and metastasis model by the coloclysis with MNU in SD Rat, observe the carcinogenesis development and the metastasis process. To investigate the expression of CD44 and CD 133 proteins in this colon carcinoma model, analysis the relationship of the cancer pathology stage and the expression of CD44、CD133, to apply for immunocytochemical staining, real-time-PCR,Western Blotting assay CD44、CD133 gene expression of protein distribution in colon carcinoma respectively.For Targeting CD 133 inhibition in vivo effect of colon carcinoma cells to do a further test, in order to explore the targeting of gene therapy in colon gene treatment of the feasibility and preliminary effects in vivo. For clinical new methods of the treatment, to explore the apoptosis and invasion of HT-29 cells induced by siRNA-mediated CD 133 silencing. To construct an expression plasmid of siRNA against CD133 gene and to investigate its biological behavioral effect on human colon carcinoma cell line HT-29.
     Methods
     SD Rats were given the MNU clyster, check the clinical symptom of the Rats, observe tumor growth, metastasis and the clinical symptom.To respectively sacrifice 10 SD Rats every time at 8,12,16 weeks later, observe the tumor in situ and the metastasis. Evaluate the effect of this colon cancer model through pathological methods. Immunohistochemical technique was used to detect the expression of the CD44 and CD133 gene protein in 6 cases of the colon carcinoma model with paraffin embedded tissue samples, we inhibited the CD 133 expression using the siRNA method. Expression levels of CD 133 mRNA and protein from HT—29 after transfection were examined by RT-PCR and Western blot respectively. Changes of the cell growth activity in response to transfected plasmid were evaluated by MTT assay.The migration ability of transfected HT-29 cells were measured quantitatively by Transwell migration assays. Intratumoral gene therapy with a LipofectamineTM 2000/siRNA CD 133 plasmid DNA complex resulted in tumor growth suppression in nude mice. After siRNA CD 133 intratumoral gene therapy, Immunohistochemical technique was used to detect the expression of the CD 133 expression in the tumors compared to the control vector group.
     Results
     None of the SD Rats died,8-12 weeks later, clinical symptom show hematochezia and lymphadenectasis,16 weeks later,90% Rat formed colon neoplasma and many lymphadenectasis, pathological examination confirm the colon adencarcinoma with lymph node metastasis. Using immunohistochemistry, we confirmed elevated expression of CD44 and CD133 on the colon tumors. After CD133 siRNA transfeetion into HT-29 cells, compared with that in control groups, the level mRNA of CD133 in cancer cells transfected with CD133 siRNA was inhibited in a concentration and time dependent manner and the CD133 protein concentration decreased significandy. The growth of HT-29 cells was significantly inhibited than those in control groups(P<0.05). CD133 siRNA significandy inhibited invasion of HT—29 cells to matrigel (P<0.05). Intratumoral gene therapy with siRNA CD 133 into the xenografted of nude mice generated tumors with a reduced tumor volume and wet weight, as compared to control group.
     Conclusion
     The successful establishment of orthotopic colon tumor model by the coloclysis of MNU in SD Rats. The induction process is convenience and utility, model the colon carcinoma autogenesis development successfully. The orthotopic tumor and metastasis model provide useful tools for the study of mechanism of metastasis and its treatment of colon cancer. The expression level of CD44 and CD 133 is closely related to the occurrence and development of colon carcinoma. CD133 positive rate increases with the colon carcinoma. Silencing CD133 gene by the siRNA technology can actively suppress the expression of CD133 gene, and then inhibit the growth and invasion of HT-29 cell. Based on the mouse xenograft model, siRNA targeting a discrete sequence of CD133 may provide a potential therapeutic option for colon cancer.
引文
[1]Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics,2007. CA Cancer J Clin,2007,57(1):43-46.
    [2]Bentrem DJ, Dematteo RP, Blumgart LH. Surgical therapy for metastatic disease to the liver. Annu Rev Med,2005,56:139-156.
    [3]O'Connell JB, Maggard MA, Ko CY. Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J Natl Cancer Inst 2004, 96:1420-1425.
    [4]Potten CS, Owen G, Hewitt D, et al. Stimulation and inhibition of proliferation in the small intestinal crypts of the mouse after vivo admiifistration of growth factors. Gut.1995, 36(6):864-873
    [5]Pinto D, Clevers H. Wnt, stem cells and cancer in the intestine. Biol Cell,2005,97(3): 185-196
    [6]Radtke F,CIeversH. Serf-renewal and cancer of the gut:two sides of a coin. Science, 2005,307(5717):1904-1909
    [7]Radtke F,Clevers H. Riccil O. From gut homeostasis to cancer. Curr Mol Med, 2006,6(3):275-289
    [8]Waiters Julian R F. Cell and molecular biology of the small intestine:new insights into diferentiation, growth and repair.Gastroenterol.2004,20(2):70-76
    [9]Potten C S, Booth C, Pritchard D M. The intestinal epithelial stem cell:the mucosal governor. Int J Path,1997,78(4):219-243
    [10]Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer and cancer stem cells [J]. Nature,2001,414(2):105-111.
    [11]Andoh A,Fujino S,Okuno T,et al.Intestinal subepithelial myofibroblasts in inflammatory bowel disease.J Gastroenterol,2002,37(suppl 14):33-37
    [12]Ricci—Vitiani L, Lombardi DG, Pilozzi E, et al. Identication and expansion of human colon-cancer-initiating cells. Nature 2007:445(7123):111-115
    [13]O'Brien CA. Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007:445(7123):106-110
    [14]Wohlbold L, Van der Kuip H, Miething C, Vornlocher HP, Knabbe C, Duyster J, Aulitzky WE. Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate(ST1571). Blood 2003; 102:2236-2239
    [15]Bernstein E, Candy A A, Hammond S M, et al. Role for a bidentate ribonuelease in the initiation step of RNA interference. Nature,2001,409(6818):363—366
    [16]Agami R. RNAi and related mechanisms and their potential use for therapy. Curr Opin Chem Biol,2002,6:829—834
    [17]Miao GY, Lu QM, Zhang XL Downregulation of survivin by RNAi inhibits growth of human gastric carcinoma cells. World J Gastroenterol 2007; 13:1170—1174
    [18]Karagiannis TC, El-Osta A. RNA interference and potential therapeutic applications of short interfering RNAs. Cancer Gene Ther 2005; 12:787-795
    [19]Karam JA. Lotan Y Ashfaq R, Sagalowsky AI, Shariat SF. Survivin expression in patients with non-muscle-invasive urothelial cell carcinoma of the bladder. Urology 2007; 70:482-486
    [20]Marshall E. The Trouble w]ith vectors.Science,1995,269:1052-1053.
    [21]Kohn D B, Sadelain M, Glorioso J C, et al. Occurrence of leukaemia following gene therapy of X-linked SCID.Nat Rev Cancer,2003,3(7):477-488.
    [22]Marshall E. Second child in French trial is found to have leukemia[J].Science,2003, 299(5605):320.
    [23]Ready T. Gene therapy in recovery phase[J]. Nat Med,2002,8(5):429-430.
    [24]Sadelain M.Insertional oncogenesis in gene therapy:how much of a risk? Gene Ther, 2004,11(7):569-573.
    [25]Check E. Gene-therapy trials to restart following cancer risk review[J]. Nature,2005, 434(7030):127.
    [1]Fidler IJ. The pathogenesis of cancer metastasis:The seed and soil hypothesis revisite[J]. Nat Rev Cancer,2003,3:453
    [2]Flatmark K,Maelandsmo GM,Martinsen M, et al. Twelve colorectal cancer cell lines exhibit highly variable growth and metastatic capacities in an orthotopic model in nude mice[J].Eur J Cancer,2004,40(10):1593.
    [3]Ogata Y, Hara Y, Akagi Y, et al. Metastatic model of human colon cancer constructed using orthotopic implantation in nude mice[J]. Kurume Med J,1998,45(1): 121-5.
    [4]FX Sun, AR Sasson, P Jiang, et al. An ultra-metastatic model of human colon cancer in nude mice[J]. Clin&Exp Metastasis.1999.17:41-48.
    [5]许勤,吴文溪,马利民,等.小鼠结肠腺癌肝转移模型的建立[J].实用癌症杂志,2000,15(5):456-457.
    [6]Rashidi B, Gamagami R, Sasson A, et al. An orthotopic mouse model of remetastasis of human colon cancer liver metastasis[J]. Clin Cancer Res,2000 Jun; 6(6): 2556-61.
    [7]Mabrouk GM, Moselhy SS. Zohny SF, et al. Inhibition of methylnitrosourea (MNU) induced oxidative stress and earcinogenesis by orally administered bee honey and Nigella grains in Sprague Dawely rats[J]. J Exp Clin Cancer Res,2002,21(3):341—346.
    [8]钱立新,刘训良,丁鸿,等,N-甲基亚硝基脲诱导大鼠膀胱肿瘤作用的动态观察[J].中华实验外科杂志,2004,21(5):263—264.
    [9]唐伟军,吴志勇,喻德洪.结直肠癌的实验模型[J].中华实验外科杂志,2000,17(4):380—381.
    [10]Zhou S, Wang G, Chen B, et al. Effect of dietary fatty acids on tumorigenesis of colon cancer induced by methyl nitrosourea in rats[J]. J Environ Pathol Toxicol Oncol, 2000,19(1-2):81—86.
    [11]C. Haughn, M. Uchal, Y. Raftopoulos, S. Rossi, T. Santucci, et al. Development of a total colonoscopy rat model with endoscopic submucosal injection of the cecal wall. [J] Surg-Endosc.2006 Feb; 20(2):270-3
    [12]Kim KM. Shibata D. Tracing ancestry with methylation patterns:most crypts appear distantly related in normal adult human colon. BMC Gastroenteml,2004,4(1): 8.
    [1]Ricci-Vtiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells[J]. Nature,2007,445(7123):111-115.
    [2]Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human colorectal cancer stem cells[J]. Proc Natl Acad Sci USA,2007,104(24): 10158-10163.
    [3]Barker N, Van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5[J]. Nature.2007,49(7165): 1103-1107.
    [4]Kim KM. Shibata D. Tracing ancestry with methylation patterns:most crypts appear distantly related in normal adult human colon. BMC Gastroenteml,2004, 4 (1):8.
    [5]钱立新,刘训良,丁鸿,等,N-甲基亚硝基脲诱导大鼠膀胱肿瘤作用的动态观察[J].中华实验外科杂志,2004,21(5):263—264.
    [6]Chanmugam P, Feng L, Liou S, et al. Radicicol, a protein tyrosine kinase inhibitor, suppresses the expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide and in experimental glomerul-onephritis. J Biol Chem,1995;270(10):5418-26.
    [7]Ishida T. Immunohistochemical expression of the CD44 variant 6 in colorectal adenocarcinoma. Surg Today 2000; 30:28—32
    [8]Kopper L, Hajdu M. Tumor stem cells. Pathol Oncol Res,2004,10(2):69-73
    [9]Pearson H Surviving a knockout blow. Nature,2002,415(6867):8-9.
    [10]Calabrese P, Tavare S, Shibata Dv. Pretumor progression:clonal evolution of human stem cell populations. Am J Pathol,2004,164(4):1337-1346.
    [11]Gao AC, Lou W, Dong JT, Isaacs JT. CD44 is a metastasis suppressor gene for prostatic cancer located on human chromosome 11p13. Cancer Res 1997; 57:846-849
    [12]Bartunek J, Vanderheyden M, Vandekerckhove B, et al. Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction:feasibility and safety[J]. Circulation,2005,112(9):1178-1183.
    [13]Barfield RC, Hale GA, Burnette K, et al. Autologous transplantation of CD133 selected hematopoietic progenitor cells for treatment of relapsed acute lymphoblastic leukemia[J]. Pediatr Blood Cancer,2005,111(21):1-5.
    [14]Matilde Todaro, Mileidys Perez Alea, Anna B. Di Stefano, Patrizia Cammareri, et al. Colon Cancer Stem Cells Dictate Tumor Growth and Resist Cell Death by Production of Interleukin-4, Cell Stem Cell 1,389-402, October 2007.
    [15]G. Liu, X. Yuan, Z. Zeng, P. Tunici, H. Ng, I. R. Abdulkadir, L. Lu, D. Irvin, K. L. Black, J. S. Yu, Analysis of gene expression and chemoresistance of CD133+cancer stem cells in glioblastoma, Mol. Cancer 5 (2006) 67.
    [16]Renata Zobalova, Laura McDermott, Marina Stantic, Katerina Prokopova, CD133-positive cells are resistant to TRAIL due to up-regulation of FLIP; Biochemical and Biophysical Research Communications 373 (2008) 567-571.
    [17]纪冬,辛绍杰等,实时荧光定量PCR的发展和数据分析[J].生物技术通讯,200920(4)
    [18]Kim KM, Calabrese P, Tavare S, et al Enhanced stem cell survival in familial adenomatous polyposis. Am J Pathol,2004,164(4):1369-1377.
    [19]Oving IM. Clevers HC. Molecular causes of colon cancer. Eur J Clin Invest, 2002,32(6):448-457.
    [20]Kielmam MF, Rindapaa M, Gaspar C, et al, Ape modulates embryonic stem-cell diferentiation by controlling the dosage of beta-catenin signaling. Nat Genet, 2002,2(4):594-605.
    [21]Lamprecht SA, Lipkin M. Migrating colonic crypt epithelial cells:primary targets for transformation. Carcinogenesis,2002,23(11):1777-1780.
    [I]Barfield RC, Hale GA, Burnette K, et al. Autologous transplantation of CD 133 selected hematopoietic progenitor cells for treatment of relapsed acute lymephoblastic leukemia[J]. Pediatr Blood Cancer,2005,111(21):1-5.
    [2]Caplen NJ. RNAi as a gene therapy approach. Expert Opin Biol.Ther,2003, 3(4):575-86.
    [3]Braasch DA, Corey DR. Novel antisense and peptide nucleic acid strategies for controlling gene expression. Biochemistry.2002 Apr 9;41(14):4503-10.
    [4]. Venkateswaran S, Isabella R V,Suppression of human colon cancer tumors in nude mice by siRNA CD44 gene therapy. Exp and Mol Pathology 83 (2007) 332-340
    [5]Cogoni C,Macino G.Post-transcriptional gene silencing across kingdoms.Curr Opin Genet Dev.2000,10(6):638-643.
    [6]. Gura T.A silence that speaks volumes.Nature.2000,404(6780):804-808.
    [7]Worby CA;Simonson-Leff N;Dixon JE.RNA interference of gene expression (RNAi)in cultured Drosophila cells.Sci-STKE,2001,2001(95):PL1. Grunweller A,Hartmann RK.RNA interference as a gene-specific approach for molecular
    [8]Grunweller A,Hartmann RK.RNA interference as a gene-specific approach for molecular medicine.Curr Med Chem,2005,12(26):3143-3161.
    [9]Miralem T,Hu Z,Torno MD,et al.Small interference RNA-mediated gene silencing of human biliverdin reductase,but not that of heme oxygenase-1,attenuates arsenite-mediated induction of the oxygenase and increases apoptosis in 293 A kidney cells.J Biol Chem,2005,280(17):17084-17092.
    [10]Moriguchi R,Kogure K,Iwasa A,et al.Non-linear pharmacodynamics in a non-viral gene delivery system:Positive non-linear relationship between dose and transfection efficiency. J Control Release,2006,110(3):605-609.
    [11]Bernstein E, Candy A A, Hammond S M, et al. Role for a bidentate ribonuelease in the initiation step of RNA interference. Nature,2001,409(6818):363—366
    [12]Liotta LA.Tumor invasion and metastases-role of the extracellular matrix [J]. Cancer Res,1986,46(1):1-7.
    [1]Matilde Todaro, Mileidys Perez Alea, Anna B. Di Stefano, Patrizia Cammareri, et al. Colon Cancer Stem Cells Dictate Tumor Growth and Resist Cell Death by Production of Interleukin-4, Cell Stem Cell 1,389-402, October 2007.
    [2]G. Liu, X. Yuan, Z. Zeng, P. Tunici, H. Ng, I.R. Abdulkadir, L. Lu, D. Irvin, K.L.Black, J.S. Yu, Analysis of gene expression and chemoresistance of CD133+cancer stem cells in glioblastoma, Mol. Cancer 5 (2006) 67.
    [3]Renata Zobalova,Laura McDermott,Marina Stantic, Katerina Prokopova, CD133-positive cells are resistant to TRAIL due to up-regulation of FLIP; Biochemical and Biophysical Research Communications 373 (2008) 567-571.
    [4]Sun Y, Liu M, Yang B,et al.Inhibition of laryngeal cancer cell invasion and growth with lentiviral-vector delivered short hairpin RNA targeting human MMP-9 gene.Cancer Invest.2008;26(10):984-9.
    [5]Putral LN, Gu W, et al. RNA interference for the treatment of cancer. Drug News perspect,2006;19(6):317-324.
    [6]Friedrich I, Shir A, Klein S, Levitzki A. RNA molecules as anti-cancer agents, Semin Cancer Biol,2004;14(4):223-230.
    [7]Keppel S, Matthess Y, Zimmer B, et al. Tumor inhibition by genomically integrated inducible RNAi-cassettes. Nucleic Acids Res,2006;34(16):4527-4536.
    [8]Shi Z,Liang YJ,Chen ZS,et al.Reversal of MDRl/P-glycoprotein-Mediated Multidrug Resistance by Vector-Based RNA Interference In Vitro and In Vivo.Cancer Biol Ther, 2006,5(1):39-47.
    [9]Howard BA,Furumai R,Campa MJ,et al. Stable RNA interference-mediated suppression of cyclophilin A diminishes non-small-cell lung tumor growth in vivo. Cancer Res,2005, 65(19):8853-8860.
    [10]Wyatt CA,Geoghegan JC,Brinckerhoff CE.Short hairpin RNA-mediated inhibition of matrix metalloproteinase-1 in MDA-231 cells:effects on matrix destruction and tumor growth.Cancer Res,2005,65(23):11101-11108.
    [1]Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells[J]. Nature,2001,414(6859):105-111.
    [2]Singh SK,Hawkins C, Clarke ID. et al. Identification of human brain tumour initiating cells Nature 2004:432(7015):396-401
    [3]Prince M E, Sivanandan R. Kaczorowski A. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 2007; 104(3):973—978
    [4]Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res 2007 67(3):1030-1037
    [5]Potten CS, Loeffler M,Stem cells:attributes cycles spirals pitfalls and uncertainties. Lessons for and from the crypt. Development 1990:110(4):1001.1020
    [6]Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche Nature 2001: 4.14(6859):98-104
    [7]Kim KM, Shibata D. Methylation reveals a niche:stem cell succession in human coloncrypts. Oncogene,2002,21(35):5441-5449.
    [8]Booth C, Potten CS. Gut instincts:thoughts on intestinal epithelial stem cells. J Clin Invest,2000,105(11):1493-1499.
    [9]Marshman E, Both C, Potten CS. The intestinal epithelial stem cell. Bioessays,2002, 24(1):91-98.
    [10]Yatabe Y, Tavare S, Shibata D. Investigating stem cells in human colon by using methylation patterns. Proc Natl Acad Sci USA,2001,98(19):10839-10844.
    [11]Bach SP, Renehan AG, Potten CS. Stem cells:the intestinal stem cell as a paradigm. Carcinogenesis,2000,21(3):469-476.
    [12]Houchen CW, George RJ, Sturmoski MA, et al. FGF-2 enhances intestinal stem cell survival and its expression is induced after radiation injury. Am J Physiol,1999,276: G249-258.
    [13]Watt FM, Hogan BL Out of Eden:stem eels and their niches. Science,2000, 287(5457):1427-1430.
    [14]Ricci—Vitiani L, Lombardi DG, Pilozzi E, et al. Identication and expansion of human colon-cancer-initiating cells. Nature 2007:445(7123):111-115
    [15]Dalerba P, Dylla SJ, PARK IK, et al. Phenotypic characterization of human colorectal cancer stem cells[J]. Proc Natl Acad Sci,2007,104(24):10158-10613.
    [16]Goodell M A, Brose K, Paradis G, et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo[J]. J Exp Med,1996,183(4): 1797-1806.
    [17]Haraguchi N, Utsunomiya T, Inoue H, et al. Characterization of a side po pulation of cancer cells from human gastrointestinal system[J]. Stem Cells,2006,24(3):506-513 4833.
    [18]Lin KK, Goodell MA. Purification of hema topoietic stem cells using the side population[J]. Methods Enzymol,2006,420:255-264.
    [19]Chen W, Wang GM, Liu Y J. Apoptosis resistance can be used in screening the markers of cancer stem cells[J]. MedHypotheses,2006,67(6):1381-1383.
    [20]Taipale J, Beachy P A. The Hedgehog and Wnt signaling pathways in cancer[J]. Nature,2001,411(6835):349-354.
    [21]Van SA, Van Der Pol M A, Kok A, et al. Difierences between the CD34+and CD34_blast compartments in apoptosis resistance in acute myeloid leukemia[J]. Haematologica, 2003,88(5):497-508.
    [22]Lu Hz, Yi TB, Wu ZY. Suspension culture combined with anticancer regimens for screening breast caner stem cells[J]. Med Hypothses,2007,68(5):988-990.
    [23]O'Brien CA. Pollett A. Gallinger S, et al A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature2007:445(7)123:106-110
    [24]Weichert W. Knisel T. Bellach J. et al ALCAM, CD166 is Overexpressed in colorectal carcinoma and correlates with shortened patient survival. J Clin Pathol 2004; 57(11): 1160-1164
    [25]Willis ND, Przyborski SA, Hutchison CJ, Wilson RG. Colonic and colorectal cancer stem cells:progress in the search for putative biomarkers. J Anat 2008;213:59-65
    [26]Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM. Cancer stem cells-perspectives on current status and future directions; AACR Workshop on cancer stem cells. Cancer Res 2006;66:9339-9344
    [27]Kelly PN. Dakic A, Adams JM. et al. Tumor growth need not be driven by rare cancer stem cells. Science 2007:317(5836):337