肝癌癌蛋白p28~(GANK)增强细胞氧化应激耐受的作用与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分p28~(GANK)增强肝癌细胞氧化应激耐受的作用与机制研究
     研究背景和目的
     肝细胞癌(Hepatocellular Carcinoma,HCC)是肝癌中最常见的类型,占所有原位肝癌病例的90%以上。HCC的发生发展是由体内多基因参与、多步骤协同的复杂过程,在其中氧化应激具有非常重要的作用。有综述总结了各种HCC动物模型的致癌机制:所有的HCC动物模型有唯一一个共同的特点,即肝细胞内活性氧自由基(reactive oxygen species, ROS)水平升高。细胞内ROS的水平决定于ROS的生成及清除能力,当ROS生成增多或者(和)细胞ROS清除能力减弱时,便会出现ROS水平升高。ROS化学性质活泼且具有氧化性质,能够导致DNA损伤、脂质氧化以及一些蛋白生物学功能的改变,造成细胞损伤,使细胞处于氧化应激状态。肝癌细胞的快速增殖导致大量ROS生成使细胞面临氧化应激,但是,已有研究证实相对于正常肝细胞,肝癌细胞具有更强的抗氧化酶体系和抗氧化能力,致使其在肝脏的过氧化环境中取得生存优势,这是各种因素导致肝癌发生的机制之一。另外,在肝癌的化疗过程中,大部分化疗药是通过直接或者间接诱导细胞中ROS水平升高诱导肝癌细胞死亡而发挥治疗作用的,但肝癌细胞强大的抗氧化系统能够保护肝癌细胞对抗这种死亡,而使肝癌的化疗效果不明显。综合已有研究成果,纵观肝癌的发生发展、转移、复发到肝癌的化疗耐受都与肝癌细胞对氧化应激的耐受有关。因此,寻找影响肝癌细胞氧化应激耐受力的关键分子具有重要意义。
     gankyrin基因是2000年Fujita等人应用消减杂交法从人肝细胞肝癌组织中筛选出的一条新基因。它编码的Gankyrin蛋白在大部分肝癌组织(~70%)中呈高丰度表达,而且在肝癌生成的早期即已高表达,而在正常肝组织没有表达。本实验室和其他研究小组的研究已揭示p28~(GANK)蛋白的生物学功能是多样的:它既可以通过促进p53与其泛素连接酶MDM2结合而促进p53蛋白的泛素化及降解发挥抗凋亡作用,又能够作为穿梭蛋白将RelA转位到胞浆而抑制NF-κB转录活性,还可以增强Akt蛋白磷酸化而转导细胞生长信号。而p53蛋白、NF-κB转录因子和PI3K/AKT信号通路都在细胞的氧化应答中具有重要作用。我们实验室的研究结果还显示,利用腺病毒介导的方法在肝癌细胞系中干扰p28~(GANK)的表达能使细胞中ROS累积增多,导致自发性的细胞死亡;ROS清除剂NAC可以逆转这种细胞死亡的发生。这提示p28~(GANK)能够影响细胞的ROS累积,从而增强肝癌细胞对氧化应激的耐受力。
     本研究拟利用H_2O_2这种经典的氧化应激诱导剂在肝癌细胞中诱导氧化应激,一方面观察氧化应激对肝细胞中p28~(GANK)表达水平的影响;另一方面观察改变肝癌细胞的p28~(GANK)蛋白表达水平后,细胞对氧化应激的耐受力的变化;并进一步探讨p28~(GANK)调控肝癌细胞氧化应激耐受的具体分子机制。
     实验方法:
     1.用不同浓度H_2O_2刺激细胞,利用real-time PCR、western blot等方法观察肝细胞(肝癌细胞)中p28~(GANK)基因转录以及翻译表达水平的变化;并用ROS清除剂NAC处理细胞,然后western blot检测细胞p28~(GANK)表达水平的变化;
     2.利用GSH检测专用试剂盒分析DEN诱导SD大鼠肝癌模型过程中大鼠血浆GSH水平并通过real-time PCR的方法检测相应肝组织样本中p28~(GANK)基因表达变化情况;
     3.通过质粒稳定转染、瞬时转染以及腺病毒感染的方法改变肝癌细胞中p28~(GANK)蛋白表达,然后通过观察显微镜下细胞形态变化、细胞PI染色阳性率以及PARP蛋白的剪切体等,观察p28~(GANK)高低表达对氧化应激诱导的细胞死亡的影响;
     4.用ROS特异的荧光探针对H_2O_2刺激下的细胞或者转染了癌基因ras表达质粒的细胞进行染色,然后进行荧光显微镜镜下观察以及流式细胞仪检测,观察细胞内p28~(GANK)表达水平的变化对氧化应激下细胞内ROS累积的影响;
     5.应用real-time PCR方法检测p28~(GANK)高低表达对氧化应激下抗氧化酶系统的诱导表达的影响以及肝细胞癌组织样本中p28~(GANK)表达与抗氧化酶系统表达水平的相关性;
     6.用细胞总抗氧化能力试剂盒检测p28~(GANK)高低表达的稳定细胞系其抗氧化能力,观察这些细胞系总抗氧化能力是否不同;
     7.电镜观察稳定细胞系HCCLM3H/CCLM3-sip的细胞内线粒体密度,并通过real-time PCR的方法检测两种细胞中线粒体生成相关基因的表达水平;
     8.应用western blot方法检测p28~(GANK)高低表达对氧化应答关键信号通路:MAPK信号通路及PI3K/AKT信号通路的影响;并应用相应通路抑制剂观察以上通路在p28~(GANK)抗氧化功能中的重要性。
     结果:
     1.适度浓度的H_2O_2刺激能够增加肝癌细胞中p28~(GANK)转录及蛋白水平的表达,持续增加H_2O_2浓度则会使p28~(GANK)表达减少,视细胞类型不同具体刺激浓度亦不同;NAC处理能够降低SMMC7721细胞中p28~(GANK)表达水平;
     2. DEN诱导大鼠肝癌过程中,大鼠血浆中GSH浓度变化与其肝组织中mRNA表达水平呈现负相关性;
     3.增加(或者降低)细胞中p28~(GANK)蛋白的表达能够相应减少(或者增加)H_2O_2刺激诱导的细胞死亡,其中p53蛋白不发挥主要作用;
     4. p28~(GANK)能够抑制H_2O_2刺激导致的ROS水平升高,并且能够降低ras表达质粒转染引起的细胞内ROS累积;
     5. p28~(GANK)能够增强氧化应激下抗氧化酶的转录激活;
     6. p28~(GANK)正向调节细胞的总抗氧化能力;
     7.稳定干扰HCCLM3细胞内p28~(GANK)表达会降低细胞内线粒体密度,并且抑制线粒体生成相关基因的表达;
     8. p28~(GANK)显著增强氧化应激导致的Akt的磷酸化,而且应用PI3K/AKT信号通路抑制剂可以减弱氧化应激下p28~(GANK)对细胞的保护作用。
     结论:
     本研究利用H_2O_2诱导氧化应激的模型研究了p28~(GANK)表达与细胞氧化应激耐受性间的关系。发现p28~(GANK)蛋白能够正向调节肝癌细胞对氧化应激的耐受力,而且一定浓度内的H_2O_2刺激能够上调肝癌细胞中p28~(GANK)的表达。氧化应激下p28~(GANK)能够增加肝癌细胞中抗氧化酶的表达,增强细胞的总抗氧化能力,减少细胞内ROS的累积,抑制氧化应激引起的细胞死亡。此外,氧化应激下p28~(GANK)还可以通过增强Akt蛋白磷酸化而保护肝癌细胞对抗氧化应激诱导的细胞死亡。
     第二部分p28~(GANK)正反馈调节β-catenin信号通路的作用与机制研究
     研究背景和目的
     肝癌是世界第六大常发肿瘤,更因为其化疗敏感性低、高复发、预后差等原因被称为“癌中之王”。随着分子生物学的迅猛发展,以癌基因为靶点的生物学治疗被认为是未来治疗肝癌的有效手段。近年来一系列研究显示,肝癌癌蛋白p28~(GANK)有望成为肝细胞癌治疗的一个有效靶标。一方面,p28~(GANK)几乎表达于所有的肝细胞癌组织中,癌高于癌旁的几率约为百分之七十,但在正常肝组织中没有表达;另一方面p28~(GANK)能够促进细胞增殖,将正常细胞转化为癌性细胞。目前研究已经得知p28~(GANK)加快细胞周期进程,促进细胞增殖是通过增强抑癌蛋白Rb的磷酸化,加速Rb蛋白降解,促进转录因子E2F的释放而完成的。然而大部分肝癌细胞中都存在Rb的缺失或者突变,那么除Rb蛋白外,p28~(GANK)还能够通过哪些途径促进肝癌细胞的增殖呢?这个问题目前还没有研究涉及。
     β-连环蛋白(β-catenin)是一种重要的肿瘤相关基因,除了在细胞粘附中有重要作用外,还是Wnt信号通路的重要功能分子。Wnt/β-catenin信号通路是众多组织中调控细胞增殖、凋亡和分化的重要通路。近来研究发现,在肝癌发生早期存在β-catenin蛋白的异常聚集,并且这种聚集能够促进肝癌的发生以及早期肝癌细胞的快速生长。探讨β-catenin在肝癌发生发展中的作用具有重要临床价值。
     已有研究表明提高野生型p53水平可以明显下调β-catenin蛋白水平。而p28~(GANK)能与p53蛋白的泛素连接酶MDM2相互作用,促进p53蛋白的泛素化及其蛋白酶体途径依赖的蛋白降解,我们推测在肝细胞癌的发生发展中癌蛋白p28~(GANK)与β-catenin间可能存在相互联系。
     本研究将利用一些经典的分子生物学实验方法研究:在各种细胞生长信号的刺激下p28~(GANK)表达水平的改变;改变p28~(GANK)蛋白表达对β-catenin信号的影响;介导生长因子刺激信号的关键蛋白Akt对p28~(GANK)表达的影响;Wnt/β-catenin信号通路激活对细胞中p28~(GANK)的调节作用并初步探讨以上调节作用和影响的分子机制。
     实验方法:
     1.运用双荧光素酶报告基因系统以及western blot等方法检测生长因子刺激或者瞬时转染Ras对p28~(GANK)基因表达水平的影响;
     2.应用报告基因系统结合ERK与PI3K信号通路抑制剂确定生长因子与Ras对p28~(GANK)表达的调节通路;
     3.利用报告基因系统、real-time PCR以及western blot等方法观察瞬时转染Akt表达质粒对p28~(GANK)基因表达的影响;
     4.多种肝癌细胞系中高表达p28~(GANK),观察p28~(GANK)对p-Akt的影响;
     5.通过Luciferase报告基因质粒pGL-OT(含有β-catenin/TCF4复合物特异结合区)及对照报告基因质粒pGL-OF与不同剂量p28~(GANK)质粒细胞共转染实验,确定p28~(GANK)对β-catenin/TCF4转录活性的影响;
     6.运用western blot及核浆分离技术,检测HEK293细胞瞬转p28~(GANK)后,β-catenin在胞核胞浆中的分布变化;应用腺病毒介导的RNA干扰技术下调肝癌细胞系中p28~(GANK)的表达水平,探讨其对β-catenin转录活性的影响;
     7.应用western blot和免疫组织化学方法检测临床肝癌组织标本中β-catenin、c-Myc、cyclinD1表达水平与p28~(GANK)蛋白表达水平之间的关系;
     8.利用双荧光素酶报告基因系统研究差异表达p28~(GANK)对其自身报告基因转录活性的影响;运用western blot检测外源性p28~(GANK)表达增加对内源性p28~(GANK)表达的影响。
     结果:
     1.肝细胞生长因子、表皮生长因子刺激和Ras表达质粒瞬时转染都能够明显上调饥饿处理后的HEK293和HepG2细胞中p28~(GANK)的表达水平;
     2. PI3K/AKT通路介导上述刺激对p28~(GANK)的上调作用,而且瞬时转染Akt表达质粒能够上调p28~(GANK)转录及蛋白水平的表达;而且HCC组织样品中p-Akt水平与p28~(GANK)的表达存在正相关性;
     3. Huh7、L02及HepG2细胞中瞬时转染p28~(GANK)质粒均可显著增强AKT蛋白磷酸化水平;
     4. HEK293细胞中瞬时转染p28~(GANK)表达质粒可提高β-catenin入核蛋白水平,并在一定程度上稳定细胞中β-catenin总蛋白水平,增强β-catenin/TCF4转录活性;
     5.报告基因、RT-PCR或western blot实验证明瞬时转染表达β-catenin和c-Myc都能够在转录和蛋白水平上调p28~(GANK)表达;
     6. Western blot和免疫组化实验分析表明p28~(GANK)的蛋白水平在肝癌组织样品中与β-catenin、c-Myc和cyclinD1呈同向性表达;
     7.在HEK293和Hep3B中p28~(GANK)正向调节自身表达。
     结论:
     本研究发现生长因子刺激或Ras激活可以上调肝癌癌蛋白p28~(GANK)的表达,其中PI3K/AKT信号通路具有重要作用。Akt、β-catenin和c-Myc的上调表达都能够促进p28~(GANK)的表达。进一步实验表明上调的p28~(GANK)可以反过来进一步促进β-catenin蛋白的稳定及其核内定位从而上调β-catenin/TCF4转录活性,而且p28~(GANK)过表达能够增强AKT蛋白磷酸化水平。上述结果支持我们提出的p28~(GANK)以正反馈方式调节β-catenin信号通路的科学推测,为深入理解p28~(GANK)影响肝癌发生发展的信号调控机制提供了依据。
Part I p28~(GANK) Enhances Oxidative Stress Tolerance of HCC cell lines by Promoting Detoxifying Enzymes Expression
     Tolerance to oxidative stress of cancer cells determines their survival advantage with active proliferation during the pathogenesis and development of hepatocelluar carcinoma (HCC), and also cancer cells' drug resistance in chemotherapy. So finding out critical molecular targets that regulate the oxidative stress tolerance of HCC cells is significant for HCC therapy. p28~(GANK) is one onco-protein highly expressed in HCC. Our previous study revealed that interfering p28~(GANK) expression in HCC cell lines induces apoptosis via elevating intracellular ROS level. In the present study, we investigated the expression of p28~(GANK) under oxidative stress conditions and examined its protential role in modulating HCC cells' tolerance to oxidative stress. Our results confirmed that p28~(GANK) expression is upregulated both in H_2O_2-induced moderate oxidative stress in HCC cell lines and in DEN-induced oxidative stress in rat HCC model. Furthermore, we demonstrated that p28~(GANK) protects HCC cells from oxidative stress-induced cell death probably through enhancing ROS-detoxifying enzymes expression, resulting in reduction of intracellular ROS accumulation. In addition, p28~(GANK) may pomotes cell survival via activating PI3K/AKT pathway under oxidative stress.
     Part II The oncoprotein p28~(GANK) establishes a positive feedback loop inβ-catenin signaling
     GANKYRIN (also known as PSMD10 or p28~(GANK)) is a novel oncoprotein highly expressed in hepatocellular carcinoma (HCC) and interacts with multiple proteins leading to degradation of tumor suppressor proteins, Rb and p53. p53 was reported to downregulateβ-catenin, but whether p28~(GANK) is involved in regulation ofβ-catenin is elusive. Herein we report that both growth factors and Ras upregulated p28~(GANK) expression thrsough the activation of the PI3K-AKT pathway. The induced p28~(GANK) expression subsequently enhanced the transcription activity ofβ-catenin, and this effect was observed in p53-deficient cells, suggesting a p53-independent mechanism for p28~(GANK) regulation ofβ-catenin activation. p28~(GANK) overexpression also increased release of freeβ-catenin into cytoplasm. Interestingly, exogenous expression of p28~(GANK) resulted in elevated expression of the endogenous protein. The present study also suggested that bothβ-catenin and c-Myc were transcriptional activators of p28~(GANK) and p28~(GANK) overexpression correlated with c-Myc, cyclin D1 andβ-catenin was detected in primary human HCC. In aggregate, these results suggest a positive feedback loop for p28~(GANK) expression, which may play a critical role in tumorigenesis and progression of HCC.
引文
1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005,55: 74-108.
    2. Finkel, T. Oxygen radicals and signaling. Curr Opin Cell Biol 1998;10:248-253.
    3. Droge, W. Free radicals in the physiological control of cell function. Physiol Rev 2002;82: 47-95.
    4. Chandra J, Samali A, Orrenius S. Triggering and modulation of apoptosis by oxidative stress. Free Rad Med Biol 2000;29: 323-333.
    5. Floyd RA. Role of oxygen free radicals in carcinogenesis andbrain ischemia. FASEB J 1990;4: 2587-2597.
    6. Harman, D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956;11: 298-300.
    7. Jenner P. Oxidative damage in neurodegenerative diseases. Lancet 1994;344: 796-798.
    8. Luchoomun, J., Sinibaldi, D., & Chen, X. L. Antioxidant therapy for chronic inflammatory diseases. In H. V. Panglossi (Ed.), Leading Edge Antioxidants Research 2006;1: 145-177.
    9. Madamanchi, N. R., Vendrov, A., & Runge, M. S. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005; 25: 29-38.
    10. Pervaiz S, Clement MV. Tumor intracellular redox status and drug resistance- serendipity or a causal relationship? Curr Pharm Des 2004; 10:1969-1977.
    11. Janssen-Heininger, Y. M., Poynter, M. E., & Baeuerle, P. A. Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic Biol Med 2000;28: 1317-1327.
    12. Kops, G. J., Dansen, T. B., Polderman, P. E., Saarloos, I., Wirtz, K. W., Coffer, P. J., et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 2002;419: 316-321.
    13. Kobayashi, A., Ohta, T., & Yamamoto, M. Unique function of the Nrf2-Keap1 pathway in the inducible expression of antioxidant and detoxifying enzymes. Methods Enzymol 2004;378: 273-286.
    14. M. Tien Kuo and Niramol Savaraj.Roles of Reactive Oxygen Species in Hepatocarcinogenesis and Drug Resistance. Mol Carcinog. 2006;45: 701-709.
    15. Toshiharu Sakurai, Guobin He, Atsushi Matsuzawa, Guann-Yi Yu, ShinMaeda,Gary Hardiman,and Michael Karin.Hepatocyte Necrosis Induced by Oxidative Stress and IL-1a Release Mediate Carcinogen-Induced Compensatory Proliferation and Liver Tumorigenesis. Cancer Cell 2008;14: 156-165.
    16. Higashitsuji H, Itoh K, Nagao T, Dawson S, Nonoguchi K, Kido T, et al. Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nat Med 2000;6: 96-99.
    17. Atsushi Umemura, Yoshito Itoh, Katsuhiko Itoh, Kanji Yamaguchi, Tomoki Nakajima,Hiroaki Higashitsuji,et al.Association of Gankyrin Protein Expression with Early Clinical Stages and Insulin-Like Growth Factor-Binding Protein 5 Expression in Human Hepatocellular Carcinoma. Hepatology 2008;472: 493-502.
    18. Fu XY, Wang HY, Tan L, Liu SQ, Cao HF, Wu MC. Overexpression of p28/gankyrin in human hepatocellular carcinoma and its clinical significance World J Gastroenterol 2002;8: 638-643.
    19. Jing Fu, Yao Chen, Jie Cao, et al. p28~(GANK) Overexpression Accelerates Hepatocelluar Carcinoma Invasiveness and Metastasis via PI3K/AKT/HIF-1αPathways. Hepatology 2011;53: 181-192.
    20. Dawson S, Apcher S, Mee M, Higashitsuji H, Baker R, Uhle S, Dubiel W, Fujita J, Mayer RJ. Gankyrin Is an Ankyrin-repeat Oncoprotein That Interacts with CDK4 Kinase and the S6 ATPase of the 26 S Proteasome. J Biol Chem 2002:277: 10893-10902.
    21. Higashitsuji H, Higashitsuji H, Itoh K, Sakurai T, Nagao T, Sumitomo Y,et al. The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell 2005;8: 75-87.
    22. Yao Chen, Hong-Hai Li, Jing Fu1, Xue-Feng Wang, Yi-Bin Ren, Li-Wei Dong, Shan-Hua Tang, Shu-Qing Liu, Meng-Chao Wu, Hong-Yang Wang. Oncoprotein p28~(GANK) binds to RelA and retains NF-κB in the cytoplasm thrsough nuclear export. Cell Research 2007; 17: 1020-1029.
    23. Li HH, Fu XY, Chen Y, et al. Use of adenovirus-delivered siRNA to target oncoprotein p28~(GANK) in hepatocellular carcinoma. Gastroenterology 2005;128: 2029-2041.
    24. Xuefeng wang, Honghai li, Yao chen, Jing fu, et al. p28~(GANK) knockdown-derived reactive oxygen species induces apoptosis thrsough mitochondrial dysfunction mediated by p38 in HepG2 cells. Int J Oncol 2008;33: 743-750.
    25. M.C. Kew, Epidemiology of hepatocellular carcinoma, Toxicology 2002;181-182: 35-38.
    26. Klaunig, J. E., & Kamendulis, L. M. The role of oxidative stress in carcinogenesis.Annu Rev Pharmacol Toxicol 2004;44: 239-267.
    27. Hori T, Kato S, Saeki M, et al. cDNA cloning and functional analysis of p28(Nas6p) and p40.5(Nas7p), two novel regulatory subunits of the 26S proteasome. Gene 1998;216:113-122.
    28. Jiang-Hong Man, Bing Liang, Yue-Xi, et al. Gankyrin plays an essential role in Ras-induced tumorigenesis through regulation of the RhoA/ROCK pathway in mammalian cells. J Clin Invest 2010;120: 2829-2842.
    29. Li-wei Dong, Guang-zhen Yang, Yu-fei Pan, et al. The oncoprotein p28~(GANK) establishes a positive feedback loop inβ-catenin signaling. Cell Research 2011; in publish.
    30. Kandel, E. S., & Hay, N. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res 1999;253; 210-229.
    31. Kops, G. J., Dansen, T. B., Polderman, P. E., Saarloos, I., Wirtz, K. W., Coffer, P. J., et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 2002;419: 316-321.
    1. Yuen, M. F., Wu, P. C., Lai, V. C., Lau, J. Y. & Lai, C. L. Expression of c-Myc, c-Fos, and c-jun in hepatocellular carcinoma. Cancer 2001;91:106-112.
    2. Chung, Y. H. et al. Expression of transforming growth factor-alpha mRNA in livers of patients with chrsonic viral hepatitis and hepatocellular carcinoma. Cancer 2000;89: 977-982.
    3. Kawate, S., Fukusato, T., Ohwada, S., Watanuki, A. & Morishita, Y. Amplification of c-myc in hepatocellular carcinoma: correlation with clinicopathologic features, proliferative activity and p53 overexpression. Oncology 1999;57: 157-163.
    4. Genda, T. et al. Cell motility mediated by rho and Rho-associated protein kinase plays a critical role in intrahepatic metastasis of human hepatocellular carcinoma. Hepatology 1999;30: 1027-1036.
    5. Ogata, N., Kamimura, T. & Asakura, H. Point mutation, allelic loss and increased methylation of c-Ha-ras gene in human hepatocellular carcinoma. Hepatology 1991;13: 31-37.
    6. Higashitsuji, H. et al. Reduced stability of retinoblastoma protein by p28~(GANK), an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nat Med 2000; 6: 96-99.
    7. Michaely, P. & Bennett, V. The ANK repeat: a ubiquitous motif involved in macromolecular recognition. Trends Cell Biol 1992;2: 127-129.
    8. Hori, T. et al. cDNA cloning and functional analysis of p28 (Nas6p) and p40.5 (Nas7p), two novel regulatory subunits of the 26S proteasome. Gene 1998;216: 113-122.
    9. Fu, X. Y. et al. Overexpression of p28/p28~(GANK) in human hepatocellular carcinoma and its clinical significance. World J Gastroenterol 2002;8: 638-643.
    10. Nagao, T. et al. MAGE-A4 interacts with the liver oncoprotein p28~(GANK) and suppresses its tumorigenic activity. J Biol Chem 2003;278: 10668-10674.
    11. Higashitsuji, H. et al. The oncoprotein p28~(GANK) binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell 2005;8: 75-87.
    12. Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004; 20: 781-810.
    13. Cheon, S. S., Nadesan, P., Poon, R. & Alman, B. A. Growth factors regulate beta-catenin-mediated TCF-dependent transcriptional activation in fibroblastsduring the proliferative phase of wound healing. Exp Cell Res 2004;293: 267-274.
    14. Tetsu, O. & McCormick, F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999;398: 422-426.
    15. Adhikary, S. & Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 2005;6: 635-645.
    16. Kondo, Y. et al. Beta-catenin accumulation and mutation of exon 3 of the beta-catenin gene in hepatocellular carcinoma. Jpn J Cancer Res 1999;90: 1301-1309.
    17. de La, C. A. et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A 1998;95: 8847-8851.
    18. Suzuki, T., Yano, H., Nakashima, Y., Nakashima, O. & Kojiro, M. Beta-catenin expression in hepatocellular carcinoma: a possible participation of beta-catenin in the dedifferentiation process. J Gastroenterol Hepatol 2002;17: 994-1000.
    19. Wong, C. M., Fan, S. T. & Ng, I. O. beta-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer 2001;92: 136-145.
    20. Levina, E., Oren, M. & Ben-Ze'ev, A. Downregulation of beta-catenin by p53 involves changes in the rate of beta-catenin phosphorylation and Axin dynamics. Oncogene 2004;23: 4444-4453.
    21. Sadot, E., Geiger, B., Oren, M. & Ben-Ze'ev, A. Down-regulation of beta-catenin by activated p53. Mol Cell Biol 2001;21: 6768-6781.
    22. Li, H. et al. Use of adenovirus-delivered siRNA to target oncoprotein p28~(GANK) in hepatocellular carcinoma. Gastroenterology 2005;128: 2029-2041.
    23. Spencer, V. A., Sun, J. M., Li, L. & Davie, J. R. Chrsomatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. Methods 2003;31: 67-75.
    24. Roberts, P. J. & Der, C. J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007;26: 3291-3310.
    25. McCormick, F. Signalling networks that cause cancer. Trends Cell Biol 1999;9: M53-M56.
    26. Bader, A. G., Kang, S., Zhao, L. & Vogt, P. K. Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer 2005;5: 921-929.
    27. Hughes-Fulford, M., Li, C. F., Boonyaratanakornkit, J. & Sayyah, S. Arachidonicacid activates phosphatidylinositol 3-kinase signaling and induces gene expression in prostate cancer. Cancer Res 2006;66: 1427-1433.
    28. Skolnik, E. Y. et al. Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 1991;65: 83-90.
    29. Frame, S. & Cohen, P. GSK3 takes centre stage more than 20 years after its discovery. Biochem J 2001; 359: 1-16.
    30. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 2005;434: 843-850.
    31. Polakis, P. The oncogenic activation of beta-catenin. Curr Opin Genet Dev 1999;9: 15-21.
    32. Zucman-Rossi, J. et al. Differential effects of inactivated Axin1 and activated beta-catenin mutations in human hepatocellular carcinomas. Oncogene 2007;26: 774-780.
    33. Giles, R. H., van Es, J. H. & Clevers, H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 2003;1653: 1-24.
    34. Taipale, J. & Beachy, P. A. The Hedgehog and Wnt signalling pathways in cancer. Nature 2001;411: 349-354.
    35. Taniguchi, K. et al. Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene 2002;21: 4863-4871.
    36. Satoh, S. et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet 2000;24: 245-250.
    37. Higashitsuji, H., Liu, Y., Mayer, R. J. & Fujita, J. The oncoprotein p28~(GANK) negatively regulates both p53 and RB by enhancing proteasomal degradation. Cell Cycle 2005;4: 1335-1337.
    38. Kolligs, F. T., Hu, G., Dang, C. V. & Fearon, E. R. Neoplastic transformation of RK3E by mutant beta-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. Mol Cell Biol 1999;19: 5696-5706.
    39. Holnthoner, W. et al. Fibroblast growth factor-2 induces Lef/Tcf-dependent transcription in human endothelial cells. J Biol Chem 2002;277: 45847-45853.
    40. sbois-Mouthon, C. et al. Insulin and IGF-1 stimulate the beta-catenin pathway thrsough two signalling cascades involving GSK-3beta inhibition and Ras activation. Oncogene 2001;20: 252-259.
    41. Lozano, G. & Zambetti, G. P. p28~(GANK): an intriguing name for a novel regulator of p53 and RB. Cancer Cell 2005;8: 3-4.
    42. Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997;91: 231-241.
    43. Eastman, Q. & Grosschedl, R. Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr Opin Cell Biol 1999;11: 233-240.
    44. Buendia, M. A. Genetics of hepatocellular carcinoma. Semin Cancer Biol 2000;10: 185-200.
    45. Inagawa, S. et al. Expression and prognostic roles of beta-catenin in hepatocellular carcinoma: correlation with tumor progression and postoperative survival. Clin Cancer Res 2002;8: 450-456.
    1. Berner, R. A., Vandenbrooks, J. M., & Ward, P. D. Evolution. Oxygen and evolution. Science 2007;316(5824): 557-558.
    2. Falkowski, P. G., Katz, M. E., Milligan, A. J., Fennel, K., Cramer, B. S., Aubry, M. P., et al. The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 2005;309(5744): 2202-2204.
    3. Raymond, J., & Segre, D. The effect of oxygen on biochemical networks and the evolution of complex life. Science 2006;311(5768: 1764-1767.
    4. Goldfine, H. The evolution of oxygen as a biosynthetic reagent. J Gen Physiol 1965; 49 (Suppl. 1): 253-274.
    5. Harman, D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956;11(3): 298-300.
    6. Balaban, R. S., Nemoto, S., & Finkel, T. Mitochondria, oxidants, and aging. Cell 2005;120(4): 483-495.
    7. Thannickal, V. J. Oxygen in the evolution of complex life and the price we pay. Am J Respir Cell Mol Biol 2009;40(5): 507-510.
    8. Bedard, K., & Krause, K. H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007;87(1): 245-313.
    9. Finkel, T. Oxygen radicals and signaling. Curr Opin Cell Biol 1998;10(2): 248-253.
    10. Ma, Q. Xenobiotic-activated receptors: from transcription to drug metabolism to disease. Chem Res Toxicol 2008;21(9): 1651-1671.
    11. Nemoto, S., Takeda, K., Yu, Z. X., Ferrans, V. J., & Finkel, T. Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol 2000; 20(19): 7311-7318.
    12. Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404(6779): 787-790.
    13. Droge, W. Free radicals in the physiological control of cell function. Physiol Rev 2002;82(1): 47-95.
    14. Boveris, A., & Chance, B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 1973;134(3): 707-716.
    15. St-Pierre, J., Buckingham, J. A., Roebuck, S. J., & Brand, M. D. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 2002;277(47): 44784-44790.
    16. Staniek, K., & Nohl, H. Are mitochondria a permanent source of reactive oxygenspecies? Biochim Biophys Acta 2000;1460(2–3): 268-275.
    17. Turrens, J. F. Superoxide production by the mitochondrial respiratory chain. Biosci Rep 1997;17(1): 3-8.
    18. Enster, L. Oxygen as an environmental poison. Chem Scr 1986;26:525-534.
    19. O'Brien, P. J. Molecular mechanisms of quinone cytotoxicity. Chem Biol Interact 1991;80(1): 1-41.
    20. Kasprzak, K. S. Oxidative DNA and protein damage in metal-induced toxicity and carcinogenesis. Free Radic Biol Med 2002;32(10): 958-967.
    21. Skulachev, V. P. Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 1996; 29(2): 169-202.
    22. Vidal-Puig, A. J., Grujic, D., Zhang, C. Y., Hagen, T., Boss, O., Ido, Y., et al. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem 2000;275(21): 16258-16266.
    23. Chae, H. Z., Kang, S. W., & Rhee, S. G. Isoforms of mammalian peroxiredoxin that reduce peroxides in presence of thioredoxin. Methods Enzymol 1999; 300: 219-226.
    24. Palmiter, R. D. The elusive function of metallothioneins. Proc Natl Acad Sci U S A 1998;95(15): 8428-8430.
    25. He, X., Lin, G. X., Chen, M. G., Zhang, J. X., & Ma, Q. Protection against chromium (VI)-induced oxidative stress and apoptosis by Nrf2. Recruiting Nrf2 into the nucleus and disrupting the nuclear Nrf2/Keap1 association. Toxicol Sci 2007;98(1): 298-309.
    26. He, X., Chen, M. G., & Ma, Q. Activation of Nrf2 in defense against cadmiuminduced oxidative stress. Chem Res Toxicol 2008;21(7): 1375-1383.
    27. Valko, M., Morris, H., & Cronin, M. T. Metals, toxicity and oxidative stress. Curr Med Chem 2005;12(10): 1161-1208.
    28. Stadtman, E. R. Protein oxidation and aging. Science 1992;257(5074): 1220- 1224.
    29. Chang, L., & Karin, M. Mammalian MAP kinase signalling cascades. Nature 2001;410 (6824): 37-40.
    30. Chen, W., M artindale, J. L., Holbrook, N. J., & Liu, Y. Tumor promoter arsenite activates extracellular signal-regulated kinase through a signaling pathway mediated by epidermal growth factor receptor and Shc. Mol Cell Biol1998;18(9):5178-5188.
    31. Burdon, R. H. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med 1995;18(4): 775-794.
    32. Adler, V., Yin, Z., Tew, K. D., & Ronai, Z. Role of redox potential and reactive oxygen species in stress signaling. Oncogene 1999;18(45): 6104-6111.
    33. Saitoh, M., Nishitoh, H., Fujii, M., Takeda, K., Tobiume, K., Sawada, Y., et al.Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 1998;17(9): 2596-2606.
    34. Tournier, C., Hess, P., Yang, D. D., Xu, J., Turner, T. K., Nimnual, A., et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000;288(5467): 870-874.
    35. Tobiume, K., Matsuzawa, A., Takahashi, T., Nishitoh, H., Morita, K., Takeda, K., et al. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2001;2(3): 222-228.
    36. Zhuang, S., Demirs, J. T., & Kochevar, I. E. p38 mitogen-activated protein kinase mediates bid cleavage, mitochondrial dysfunction, and caspase-3 activation during apoptosis induced by singlet oxygen but not by hydrogen peroxide. J Biol Chem 2000;275 (34): 25939-25948.
    37. Kurata, S. Selective activation of p38 MAPK cascade and mitotic arrest caused by low level oxidative stress. J Biol Chem 2000;275(31): 23413-23416.
    38. Bossy-Wetzel, E., Schwarzenbacher, R., & Lipton, S. A. Molecular pathways toneurodegeneration. Nat Med 2004;10(Suppl): S2-S9.
    39. Bulavin, D. V., Saito, S., Hollander, M. C., Sakaguchi, K., Anderson, C. W., Appella, E., et al. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 1999;18(23): 6845-6854.
    40. Fuchs, S. Y., Adler, V., Pincus, M. R., & Ronai, Z. MEKK1/JNK signaling stabilizes and activates p53. Proc Natl Acad Sci U S A 1998;95(18): 10541-10546.
    41. Kandel, E. S., & Hay, N. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res 1999;253(1): 210-229.
    42. Toker, A., & Cantley, L. C. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 1997;387(6634): 673-676.
    43. Klotz, L. O., Schieke, S. M., Sies, H., & Holbrook, N. J. Peroxynitrite activatesthe phosphoinositide 3-kinase/Akt pathway in human skin primary fibroblasts. Biochem J 2000;352(Pt 1): 219-225.
    44. Wang, X., McCullough, K. D., Franke, T. F., & Holbrook, N. J. Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. J Biol Chem 2000;275(19): 14624-14631.
    45. Kim, A. H., Khursigara, G., Sun, X., Franke, T. F., & Chao, M. V. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol 2001;21(3): 893-901.
    46. Nishizuka, Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992;258(5082): 607-614.
    47. Gopalakrishna, R., & Jaken, S. Protein kinase C signaling and oxidative stress. Free Radic Biol Med 2000;28(9): 1349-1361.
    48. Gopalakrishna, R., Chen, Z. H., & Gundimeda, U. Selenocompounds induce a redox modulation of protein kinase C in the cell, compartmentally independent from cytosolic glutathione: its role in inhibition of tumor promotion. Arch Biochem Biophys 1997;348(1): 37-48.
    49. Burns, T. F., & El-Deiry, W. S. The p53 pathway and apoptosis. J Cell Physiol 1999;181(2): 231-239.
    50. Sionov, R. V., & Haupt, Y. The cellular response to p53: the decision between life and death. Oncogene 1999;18(45):6145-6157.
    51. Colman, M. S., Afshari, C. A., & Barrett, J. C. Regulation of p53 stability and activity in response to genotoxic stress. Mutat Res 2000;462(2–3): 179-188.
    52. Meplan, C., Richard, M. J., & Hainaut, P. Redox signalling and transition metals in the control of the p53 pathway. Biochem Pharmacol 2000;59(1): 25-33.
    53. Buschmann, T., Potapova, O., Bar-Shira, A., Ivanov, V. N., Fuchs, S. Y., Henderson, S., et al. Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol Cell Biol 2001;21 (8): 2743-2754.
    54. Dumont, A., Hehner, S. P., Hofmann, T. G., Ueffing, M., Droge, W., & Schmitz, M. L. Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-kappaB. Oncogene 1999;18(3):747-757.
    55. Asher, G., Lotem, J., Cohen, B., Sachs, L., & Shaul, Y. Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase 1. Proc NatlAcad Sci U S A 2001;98(3): 1188-1193.
    56. Chen, Q. M., Liu, J., & Merrett, J. B. Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H_2O_2 response of normal human fibroblasts. Biochem J 2000;347(Pt 2): 543-551.
    57. Martindale, J. L., & Holbrook, N. J. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 2002;192(1): 1-15.
    58. Johnson, T. M., Yu, Z. X., Ferrans, V. J., Lowenstein, R. A., & Finkel, T. Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci U S A 1996;93(21): 11848-11852.
    59. Drane, P., Bravard, A., Bouvard, V., & May, E. Reciprocal down-regulation of p53 and SOD2 gene expression-implication in p53 mediated apoptosis. Oncogene 2001;20(4): 430-439.
    60. Tan, M., Li, S., Swaroop, M., Guan, K., Oberley, L. W., & Sun, Y. Transcriptional activation of the human glutathione peroxidase promoter by p53. J Biol Chem 1999;274 (17): 12061-12066.
    61. Pahl, H. L. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999;18(49): 6853-6866.
    62. Perkins, N. D. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 2007;8(1): 49-62.
    63. Li, N., & Karin, M. Is NF-kappaB the sensor of oxidative stress? FASEB J 1999;13(10):1137-1143.
    64. Gilmore, T. D. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 2006;25(51): 6680-6684.
    65. Zhang, J., Johnston, G., Stebler, B., & Keller, E. T. Hydrogen peroxide activates NFkappaB and the interleukin-6 promoter through NFkappaB-inducing kinase. Antioxid Redox Signal 2001;3(3):493-504.
    66. Schoonbroodt, S., Ferreira, V., Best-Belpomme, M., Boelaert, J. R., Legrand-Poels, S., Korner, M., et al. Crucial role of the amino-terminal tyrosine residue 42 and the carboxyl-terminal PEST domain of I kappa B alpha in NF-kappa B activation by an oxidative stress. J Immunol 2000;164(8): 4292-4300.
    67. Janssen-Heininger, Y. M., Poynter, M. E., & Baeuerle, P. A. Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic Biol Med 2000;28(9): 1317-1327.
    68. Hirota, K., Murata, M., Sachi, Y., Nakamura, H., Takeuchi, J., Mori, K., et al. Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB. J Biol Chem 1999;274 (39):27891-27897.
    69. Ma,Q., & Kinneer, K. Chemoprotection by phenolic antioxidants. Inhibition of tumor necrosis factor alpha induction in macrophages. J Biol Chem 2002;277(4): 2477-2484.
    70. Kang, S. W., Chae, H. Z., Seo, M. S., Kim, K., Baines, I. C., & Rhee, S. G. Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J Biol Chem 1998; 273(11): 6297-6302.
    71. Manna, S. K., Zhang,H. J., Yan, T.,Oberley, L.W.,& Aggarwal, B. B. Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappaB and activated protein-1. J Biol Chem 1998;273(21): 13245-13254.
    72. Schenk, H., Klein, M., Erdbrugger, W., Droge, W., & Schulze-Osthoff, K. Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-kappa B and AP-1. Proc Natl Acad Sci U S A 1994;91(5): 1672-1676.
    73. Hess, J., Angel, P., & Schorpp-Kistner, M. AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 2004;117(Pt 25): 5965-5973.
    74. Okuno, H., Akahori, A., Sato, H., Xanthoudakis, S., Curran, T., & Iba, H. Escape from redox regulation enhances the transforming activity of Fos. Oncogene 1993; 8(3): 695-701.
    75. Xanthoudakis, S., Miao, G., Wang, F., Pan, Y. C., & Curran, T. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J 1992;11(9): 3323-3335.
    76. Xanthoudakis, S., Miao, G. G., & Curran, T. The redox and DNA-repair activities of Ref-1 are encoded by nonoverlapping domains. Proc Natl Acad Sci U S A 1994; 91(1): 23-27.
    77. Fritz, G., Grosch, S., Tomicic, M., & Kaina, B. APE/Ref-1 and the mammalian response to genotoxic stress. Toxicology 2003;193(1–2):67-78.
    78. Hirota, K., Matsui, M., Iwata, S., Nishiyama, A., Mori, K., & Yodoi, J. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci U S A 1997;94(8): 3633-3638.
    79. Tell, G., Damante, G., Caldwell, D., & Kelley, M. R. The intracellular localization of APE1/Ref-1:more than a passive phenomenon? Antioxid Redox Signal 2005; 7(3–4): 367-384.
    80. Kensler, T. W., Wakabayashi, N., & Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 2007;47: 89-116.
    81. Kobayashi, A., Ohta, T., & Yamamoto, M. Unique function of the Nrf2-Keap1 pathway in the inducible expression of antioxidant and detoxifying enzymes. Methods Enzymol 2004b;378: 273-286.
    82. Talalay, P. A fascination with enzymes: the journey not the arrival matters. J Biol Chem 2005;280(32): 28829-28847.
    83. Hubbs,A. F., Benkovic, S.A., Miller, D. B.,O'Callaghan, J. P., Battelli, L., Schwegler-Berry,D., et al. Vacuolar leukoencephalopathy with widespread astrogliosis in mice lacking transcription factor Nrf2. Am J Pathol 2007;170(6): 2068-2076.
    84. Ramos-Gomez, M., Kwak, M. K., Dolan, P. M., Itoh, K., Yamamoto, M., Talalay, P., et al. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci U S A 2001;98(6): 3410-3415.
    85. Dinkova-Kostova, A.T., Jenkins, S.N., Fahey, J.W.,Ye, L.,Wehage, S. L., Liby, K. T., et al. Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts. Cancer Lett 2006;240(2):243-252.
    86. Fahey, J. W., Haristoy, X., Dolan, P. M., Kensler, T. W., Scholtus, I., Stephenson, K. K., et al. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc Natl Acad Sci U S A 2002;99(11): 7610-7615.
    87. Moi, P., Chan, K., Asunis, I., Cao, A., & Kan, Y. W. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A 1994; 91(21): 9926-9930.
    88. He, X., Chen, M. G., Lin, G. X., & Ma, Q. Arsenic induces NAD(P)H-quinone oxidoreductase I by disrupting the Nrf2-Keap1-Cul3 complex and recruitingNrf2·Maf to the antioxidant response element enhancer. J Biol Chem 2006; 281(33):23620-23631.
    89. Cullinan, S. B., Gordan, J. D., Jin, J., Harper, J. W., & Diehl, J. A. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 2004;24(19): 8477-8486.
    90. Hong, F., Sekhar, K. R., Freeman, M. L., & Liebler, D. C. Specific patterns of electrophile adduction trigger Keap1 ubiquitination and Nrf2 activation. J Biol Chem 2005;280(36): 31768-31775.
    91. Kobayashi, A., Kang, M. I., Okawa, H., Ohtsuji, M., Zenke, Y., Chiba, T., et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 2004a;24(16): 7130-7139.
    92. Ma, Q., Kinneer, K., Bi, Y., Chan, J. Y., & Kan, Y. W. Induction of murine NAD(P)H: quinone oxidoreductase by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin requires the CNC (cap‘n’collar) basic leucine zipper transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2): cross-interaction between AhR (aryl hydrocarbon receptor) and Nrf2 signal transduction. Biochem J 2004;377(Pt 1): 205-213.
    93. Zhang, D. D., Lo, S. C., Cross, J. V., Templeton, D. J., & Hannink, M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 2004;24(24): 10941-10953.
    94. Kang, M. I., Kobayashi, A., Wakabayashi, N., Kim, S. G., & Yamamoto, M. Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc Natl Acad Sci U S A 2004; 101(7):2046-2051.
    95. Apopa, P. L.,He, X., & Ma, Q. Phosphorylation ofNrf2 in the transcription activation domain by casein kinase 2 (CK2) is critical for the nuclear translocation and transcription activation function of Nrf2 in IMR-32 neuroblastoma cells. J Biochem Mol Toxicol 2008;22(1): 63-76.
    96. Eggler, A. L., Liu, G., Pezzuto, J. M., van Breemen, R. B., & Mesecar, A. D. Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2. Proc Natl Acad Sci U S A 2005;102(29): 10070-10075.
    97. Yamamoto, T., Suzuki, T., Kobayashi, A., Wakabayashi, J., Maher, J., Motohashi, H., et al. Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol Cell Biol 2008;28(8):2758-2770.
    98. He X, Ma Q. Critical cysteine residues of Kelch-like ECH-associated protein 1 in arsenic sensing and suppression of nuclear factor erythroid 2-related factor 2. J Pharmacol Exp Ther 2010;332(1): 66-75.
    99. He, X., & Ma, Q. Nrf2 cysteine residues are critical for oxidant/electrophilesensing, Kelch-like ECHassociated protein-1-dependent ubiquitination-proteasomal degradation, and transcription activation. Mol Pharmaco 2009;l76(6): 1265-1278.
    100.Blander, G., & Guarente, L. The Sir2 family of protein deacetylases. Annu Rev Biochem 2004;73: 417-435.
    101.Brunet, A., Sweeney, L. B., Sturgill, J. F., Chua, K. F., Greer, P. L., Lin, Y., et al. Stressdependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004;303(5666): 2011-2015.
    102.Chinnadurai, G. CtBP family proteins: more than transcriptional corepressors. Bioessays 2003;25(1): 9-12.
    103.Zhang, Q., Piston, D. W., & Goodman, R. H. Regulation of corepressor function by nuclear NADH. Science 2002;295(5561): 1895-1897.
    104.Rutter, J., Reick, M., Wu, L. C., & McKnight, S. L. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 2001; 293(5529): 510-514.
    105.Rutter, J., Reick, M., & McKnight, S. L. Metabolism and the control of circadian rhythms. Annu Rev Biochem 2002;71: 307-331.
    106.Carter,M. E., & Brunet, A. FOXO transcription factors. Curr Biol 2007;17(4): R113-R114.
    107.Accili, D., & Arden, K. C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 2004;117(4): 421-426.
    108.Greer, E. L., & Brunet, A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005;24(50): 7410-7425.
    109.Kops, G. J., Dansen, T. B., Polderman, P. E., Saarloos, I., Wirtz, K. W., Coffer, P. J., et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 2002 419(6904): 316-321.
    110.Furukawa-Hibi, Y., Kobayashi, Y., Chen, C., & Motoyama, N. FOXOtranscription factors in cell-cycle regulation and the response to oxidative stress. Antioxid Redox Signal 2005;7(5–6): 752-760.
    111.Maxwell, P. H. Hypoxia-inducible factor as a physiological regulator. Exp Physio 2005;190(6):791-797.
    112.Wang, G. L., Jiang, B. H., Rue, E. A., & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix–loop–helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 1995;92(12): 5510-5514.
    113.Li, H., Ko, H. P., & Whitlock, J. P. Induction of phosphoglycerate kinase 1 gene expression by hypoxia. Roles of Arnt and HIF1alpha. J Biol Chem 1996;271(35): 21262-21267.
    114.Schofield, C. J., & Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 2004;5(5):343-354.
    115.Pugh, C. W., Gleadle, J., & Maxwell, P. H. Hypoxia and oxidative stress in breast cancer. Hypoxia signalling pathways. Breast Cancer Res 2001;3(5): 313-317.
    116.Liu, J., Narasimhan, P., Yu, F., & Chan, P. H. Neuroprotection by hypoxic preconditioning involves oxidative stress-mediated expression of hypoxia- inducible factor and erythropoietin. Stroke 2005;36(6): 1264-1269.
    117.Ziel, K. A., Grishko, V., Campbell, C. C., Breit, J. F., Wilson, G. L., & Gillespie, M. N. Oxidants in signal transduction: impact on DNA integrity and gene expression. FASEB J 2005;19(3): 387-394.
    118.Palmiter, R. D. Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, MTF-1. Proc Natl Acad Sci U S A 1994;91(4): 1219-1223.
    119.Radtke, F., Heuchel, R., Georgiev, O., Hergersberg, M., Gariglio, M., Dembic, Z., et al. Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter. EMBO J 1993;12(4): 1355-1362.
    120.Balamurugan, K., Egli, D., Selvaraj, A., Zhang, B., Georgiev, O., & Schaffner,W. Metalresponsive transcription factor (MTF-1) and heavymetal stress response in Drosophila and mammalian cells: a functional comparison. J Biol Chem 2004; 385(7): 597-603.
    121.Andrews, G. K. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol 2000;59(1): 95-104.
    122.Giedroc, D. P., Chen, X., & Apuy, J. L. Metal response element (MRE)-binding transcription factor-1 (MTF-1): structure, function, and regulation. AntioxidRedox Signal 2001;3(4):577-596.
    123.Wimmer, U., Wang, Y., Georgiev, O., & Schaffner, W. Two major branches of anti-cadmium defense in themouse: MTF-1/metallothioneins and glutathione. Nucleic Acids Res 2005;33(18): 5715-5727.
    124.Zhang, B., Georgiev, O., Hagmann, M., Gunes, C., Cramer, M., Faller, P., et al. Activity of metal-responsive transcription factor 1 by toxic heavy metals and H_2O_2 in vitro is modulated by metallothionein. Mol Cell Biol 2003;23(23): 8471-8485.
    125.Bi, Y., Palmiter, R. D., Wood, K. M., & Ma, Q. Induction of metallothionein I by phenolic antioxidants requires metal-activated transcription factor 1 (MTF-1) and zinc. Biochem J 2004;380(Pt 3): 695-703.
    126.Dalton, T. P., Li, Q., Bittel, D., Liang, L., & Andrews, G. K. Oxidative stress activates metal-responsive transcription factor-1 binding activity. Occupancy in vivo of metal response elements in the metallothionein-I gene promoter. J Biol Chem 1996;271 (42): 26233-26241.
    127.Pirkkala, L., Nykanen, P., & Sistonen, L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 2001; 15(7):1118-1131.
    128.Jolly, C., & Morimoto, R. I. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 2000;92(19): 1564-1572.
    129.Gorman, A. M., Heavey, B., Creagh, E., Cotter, T. G., & Samali, A. Antioxidantmediated inhibition of the heat shock response leads to apoptosis. FEBS Lett 1999;445(1): 98-102.
    130.Baek, S. H., Min, J. N., Park, E. M., Han, M. Y., Lee, Y. S., Lee, Y. J., et al. Role of small heat shock protein HSP25 in radioresistance and glutathione-redox cycle. J Cell Physiol 2000;183(1): 100-107.
    131.Wong, H. R., Menendez, I. Y., Ryan, M. A., Denenberg, A. G., & Wispe, J. R. Increased expression of heat shock protein-70 protects A549 cells against hyperoxia. Am J Physiol 1998;275(4 Pt 1): L836-841.
    132.Shigenaga, M. K., Hagen, T. M., & Ames, B. N. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A 1994;91(23): 10771-10778.
    133.Richter, C., Park, J. W., & Ames, B. N. Normal oxidative damage tomitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A 1988; 85(17): 6465-6467.
    134.Nemoto, S., & Finkel, T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 2002;295(5564): 2450-2452.
    135.Orsini, F., Migliaccio, E., Moroni, M., Contursi, C., Raker, V. A., Piccini, D., et al. The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential. J Biol Chem 2004;279(24): 25689-25695.
    136.Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J. N., Rovio, A. T., Bruder, C. E., et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004;429(6990): 417-423.
    137.Speakman, J. R., Talbot, D. A., Selman, C., Snart, S., McLaren, J. S., Redman, P., et al. Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell 2004;3(3): 87-95.
    138.Packer, L., & Fuehr, K. Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 1977;267(5610): 423-425.
    139.Blander, G., de Oliveira, R. M., Conboy, C.M., Haigis, M., & Guarente, L. Superoxide dismutase 1 knock-down induces senescence in human fibroblasts. J Biol Chem 2003;278 (40): 38966-38969.
    140.Serra, V., von Zglinicki, T., Lorenz, M., & Saretzki, G. Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening. J Biol Chem 2003;278(9): 6824-6830.
    141.Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997;88(5): 593-602.
    142.Finkel, T. Radical medicine: treating ageing to cure disease. Nat Rev Mol Cell Biol 2005;6(12): 971-976.
    143.Klaunig, J. E., & Kamendulis, L. M. The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 2004;44: 239-267.
    144.Neumann, C. A., Krause, D. S., Carman, C. V., Das, S., Dubey, D. P., Abraham, J. L., et al. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 2003;424(6948): 561-565.
    145.Van Remmen,H., Ikeno, Y., Hamilton,M., Pahlavani,M.,Wolf, N., Thorpe, S. R., et al. Life-long reduction in MnSOD activity results in increased DNA damageand higher incidence of cancer but does not accelerate aging. Physiol Genomics 2003;16(1): 29-37.
    146.Szatrowski, T. P., & Nathan, C. F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 1991;51(3): 794-798.
    147.Storz, P. Reactive oxygen species in tumor progression. Front Biosci 2005;10:1881-1896.
    148.Vafa, O., Wade,M., Kern, S., Beeche,M., Pandita, T. K., Hampton, G.M., et al. c-Myc can induceDNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 2002;9(5):1031-1044.
    149.Vafa, O., Wade,M., Kern, S., Beeche,M., Pandita, T. K., Hampton, G.M., et al. c-Myc can induceDNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 2002;9(5):1031-1044.
    150.Irani, K., Xia, Y., Zweier, J. L., Sollott, S. J., Der, C. J., Fearon, E. R., et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 1997;275(5306): 1649-1652.
    151.Wu, C., Miloslavskaya, I., Demontis, S., Maestro, R., & Galaktionov, K. Regulation of cellular response to oncogenic and oxidative stress by Seladin-1. Nature 2004; 432 (7017): 640-645.
    152.Gerald, D., Berra, E., Frapart, Y. M., Chan, D. A., Giaccia, A. J., Mansuy, D., et al. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 2004;118 (6): 781-794.
    153.Arbiser, J. L., Petros, J., Klafter, R., Govindajaran, B., McLaughlin, E. R., Brown, L. F., et al. Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc Natl Acad Sci U S A 2002;99(2): 715-720.
    154.Nelson, K. K., & Melendez, J. A. Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 2004;37(6): 768-784.
    155.Ohta, T., Iijima, K., Miyamoto, M., Nakahara, I., Tanaka, H., Ohtsuji, M., et al. Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 2008;68(5): 1303-1309.
    156.Behl, C., Davis, J. B., Lesley, R., & Schubert, D. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 1994;77(6): 817-827.
    157.Lustbader, J. W., Cirilli, M., Lin, C., Xu, H. W., Takuma, K., Wang, N., et al.(2004). ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease. Science 2004;304 (5669): 448-452.
    158.Aleman, B. M., Raemaekers, J. M., Tirelli, U., Bortolus, R., van 't Veer, M. B., Lybeert, M. L., et al. Involved-field radiotherapy for advanced Hodgkin's lymphoma. N Engl J Med 2003;348 (24): 2396-2406.
    159.Nystrom, T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J 2005;24(7): 1311-1317.
    160.Grune, T., Jung, T., Merker, K., & Davies, K. J. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and‘aggresomes’during oxidative stress, aging, and disease. Int J Biochem Cell Biol 2004;36(12): 2519-2530.
    161.Dawson, T. M., & Dawson, V. L. Molecular pathways of neurodegeneration in Parkinson's disease. Science 2003;302(5646): 819-822.
    162.Hsu, L. J., Sagara, Y., Arroyo, A., Rockenstein, E., Sisk, A., Mallory, M., et al. alphasynuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 2000;157(2): 401-410.
    163.Martinat, C., Shendelman, S., Jonason, A., Leete, T., Beal, M. F., Yang, L., et al. Sensitivity to oxidative stress in DJ-1-deficient dopamine neurons: an ES-derived cell model of primary Parkinsonism. PLoS Biol 2004;2(11): e327.
    164.Palacino, J. J., Sagi, D., Goldberg, M. S., Krauss, S., Motz, C., Wacker, M., et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 2004;279(18): 18614-18622.
    165.Valente, E. M., Abou-Sleiman, P. M., Caputo, V., Muqit, M. M., Harvey, K., Gispert, S., et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 2004;304(5674): 1158-1160.
    166.Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993;362(6415): 59-62.
    167.Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414(6865): 813-820.
    168.Madamanchi, N. R., Vendrov, A., & Runge, M. S. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005;25(1): 29-38.
    169.Hsich, E., Segal, B. H., Pagano, P. J., Rey, F. E., Paigen, B., Deleonardis, J., et al. Vascular effects following homozygous disruption of p47(phox): an essentialcomponent of NADPH oxidase. Circulation 2000;101(11):1234-1236.
    170.Barry-Lane, P. A., Patterson, C., van der Merwe, M., Hu, Z., Holland, S. M., Yeh, E. T., et al. p47phox is required for atherosclerotic lesion progression in ApoE(?/?) mice. J Clin Invest 2001;108(10): 1513-1522.
    171.Ballinger, S.W., Patterson, C., Knight-Lozano, C. A., Burow, D. L., Conklin, C. A., Hu, Z., et al. Mitochondrial integrity and function in atherogenesis. Circulation 2002;106(5): 544-549.
    172.He, X., Kan, H., Cai, L., & Ma, Q. Nrf2 is critical in defense against high glucoseinduced oxidative damage in cardiomyocytes. J Mol Cell Cardiol 2009; 46(1): 47-58.
    173.Rahman, I. Oxidative stress in pathogenesis of chronic obstructive pulmonary disease: cellular and molecular mechanisms. Cell Biochem Biophys 2005;43(1): 167-188.
    174.Kirkham, P., & Rahman, I. Oxidative stress in asthma and COPD: antioxidants as a therapeutic strategy. Pharmacol Ther 2006;111(2): 476-494.
    175.Luchoomun, J., Sinibaldi, D., & Chen, X. L. Antioxidant therapy for chronic inflammatory diseases. In H. V. Panglossi (Ed.), Leading Edge Antioxidants Research 2006; pp: 145-177.
    176.Luster, M. I., Simeonova, P. P., Gallucci, R., & Matheson, J. Tumor necrosis factor alpha and toxicology. Crit Rev Toxicol 1999;29(5): 491-511.
    177.Hayden, M. S., West, A. P., & Ghosh, S. NF-kappaB and the immune response. Oncogene 2006;25(51): 6758-6780.
    178.Ma, Q., Battelli, L., & Hubbs, A. F. Multiorgan autoimmune inflammation, enhanced lymphoproliferation, and impaired homeostasis of reactive oxygen species in mice lacking the antioxidant-activated transcription factor Nrf2. Am J Pathol 2006;168(6): 1960-1974.
    179.Chan, K., & Kan, Y. W. Nrf2 is essential for protection against acute pulmonary injury in mice. Proc Natl Acad Sci U S A 1999;96(22): 12731-12736.
    180.Cho, H. Y., Jedlicka, A. E., Reddy, S. P., Zhang, L. Y., Kensler, T. W., & Kleeberger, S. R. Linkage analysis of susceptibility to hyperoxia. Nrf2 is a candidate gene. Am J Respir Cell Mol Biol 2002;26(1): 42-51.