新城疫病毒血凝素—神经氨酸酶基因作为分子佐剂的抗肿瘤作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管许多肿瘤的基因治疗策略旨在以消灭肿瘤细胞为最终目标,抑制肿瘤生长,并赋予较长生存时间,增强抗肿瘤免疫反应并诱导长期免疫监视同样重要。先天免疫应答不仅在适应性免疫应答的诱导中起着重要的作用,且具有抗癌活性。因此,通过激发先天免疫系统的新的治疗策略,在提高抗肿瘤活性方面或许具有一定的积极作用。
     分子佐剂是一种可以协同刺激适应性和先天免疫反应的分子。此外,这些佐剂不仅可以激活NK细胞,而且可以刺激先天免疫系统产生细胞因子。因此,关于这些分子的研究主要集中在疫苗开发方面。虽然目前只有两种佐剂批准应用于临床,而其他分子佐剂,包括细胞因子,细菌产物,热休克蛋白,病毒样颗粒,免疫刺激复合物均已进行了广泛的研究。然而,许多分子佐剂因其副作用而不能应用于临床。本研究中,我们致力于使用一种完全无毒的佐剂,即NDVHN作为分子免疫佐剂。
     在早期研究中,我们获得了一种基于肿瘤细胞选择性诱导凋亡基因的溶瘤腺病毒Ad-Apoptin。Ad-Apoptin可以产生较强的抗肿瘤和体外诱导细胞凋亡作用,而且对体内实体肿瘤具有显著的抗癌活性。此外,Ad-Apoptin具有抑制肿瘤转移的能力。近来发现,通过系统给药Ad-Apoptin可以直接抑制肿瘤生长。基于Ad-Apoptin的治疗特性,我们致力于评价使用重组腺病毒作为抗肿瘤基因治疗的候选策略。然而,重组体缺少免疫刺激能力,这使得它不能获得长时间的抗肿瘤活性。
     新城疫病毒属于副粘病毒属,负股单链RNA病毒,通常导致大量家禽呼吸道和胃肠道的炎症。HN是一个74kDa的多功能膜II类糖蛋白,是NDV的主要结构蛋白之一。该蛋白不仅介导唾液酸包含受体的识别,而且具有NA,可以将唾液酸从这些受体上分离。研究表明,HN可以刺激外周血单个核细胞(PBMC)中干扰素-α应答。HN蛋白能促使T细胞产生共刺激功能并诱导先天免疫活性,且HN也具有I型干扰素的诱导能力。此外,NDV HN通过触发NKp44和NKp46的受体直接激活人体NK细胞。
     抗肿瘤免疫可以是先天的或是适应的。虽然适应性抗肿瘤免疫活性可以诱导对特定抗原的反应,诱导产生持久免疫记忆,并对正常组织的毒性低,但先天免疫方法也可能是有益的。事实上,一般认为最有效的免疫抗瘤反应是先天的免疫方法。NK细胞是先天免疫系统的重要组成部分,其特点是快速应答并有极强的杀伤活性,而无需预先致敏及主要组织相容性分子的参与。NK不仅能够通过NK细胞表面表达的TNF相关的凋亡诱导配体(TRAIL)、Fas配体(FasL)或通过NK细胞分泌的TNF-α来实现细胞毒性作用,而且可能通过产生IFN-γ、白细胞介素和生长因子调节免疫应答。此外,在免疫应答过程中,NK细胞产生的许多趋化因子对树突状细胞(DC)、巨噬细胞和中性粒细胞产生影响。本研究采用NDV HN激活NK、DC和单核细胞,并稳定激活T细胞,这突显了HN基因佐剂在肿瘤治疗方面的潜在活性。
     在这项研究中,我们采用HN作为肿瘤治疗的一个潜在的分子免疫佐剂。研究表明,Ad-HN能够在体外诱导外周血单个核细胞分泌淋巴因子效应细胞因子。此外,Ad-HN佐剂与对照佐剂相比,促使减少肿瘤的生长并提供生存益处。因此,HN在肿瘤基因治疗方面是一个合适的免疫佐剂。
     本研究表明SGC7901细胞中成功表达的HN可执行NA和HA的功能。我们进一步确定含HN的SGC7901细胞可诱导PBMCs分泌淋巴因子效应细胞因子TNF-α,IFN-α和IFN-γ的增加。TNF-α可促进巨噬细胞的抗肿瘤细胞毒作用,NK细胞释放的IFN-γ能促进Th1细胞极化和随后的细胞毒T淋巴细胞的诱导。此外,IFN-α具有抗肿瘤作用以及对免疫细胞的多种活性。所有这些均有助于各种直接和间接的抗肿瘤效应的功能。接着,我们表明,NK细胞与Ad-HN感染的SGC7901细胞孵育后可增强NK细胞对未感染靶细胞的杀伤能力,这将有助于体内的溶瘤作用。
     我们还设置了HN佐剂与Ad-Apoptin联合应用的治疗肿瘤模型,实验数据显示,用Ad-Apoptin治疗并随后用Ad-HN作为佐剂辅助治疗与单独Ad-Apoptin治疗的荷瘤小鼠相比肿瘤负荷减少。我们还观察到应用NDV HN作为免疫佐剂实验组具有明显的生存益处。这可能是由于凋亡素基因和HN之间的协同反应。因为凋亡素可以阻碍肿瘤的迅速增长,同时,HN建立了免疫防御防止肿瘤的渗透,扩散和转移。
     总之,体外实验和缺乏适应性免疫系统体内肿瘤模型结果表明,先天免疫反应,尤其是NK细胞,通过佐剂HN在抑制同基因移植和改善平均生存期方面起着关键的作用。结果进一步加强了HN基因在肿瘤的治疗上潜在的佐剂活性。
Although many cancer gene therapy strategies aim at eradicating tumor cellswith the final goal to restrain tumor growth and confer longer survival time,augmentation of anti-tumor immune responses and induction of long-term immunesurveillance are coordinative important. Innate immunity not only plays an importantrole in the induction of adaptive immune responses but contributes to anticanceractivities. Therefore, novel therapeutic strategies including triggering of the innatearm of the immune system may be successful in increasing anti-tumor activity.
     Molecular adjuvants are kinds of molecules that can synergic stimulate adaptiveand innate immune responses. Furthermore, these adjuvants can not only activate NKbut stimulate innate immune system to produce cytokines. Therefore the studies aboutthese molecules most focus on vaccine development. Although there are only twoadjuvants were currently permitted for clinical use, other molecular adjuvants,including cytokines, bacterial product, heat shock protein, virus like particles andimmunostimulatory complexes, are extensively researched. However, many of themolecules have side effects which make them fail in clinical using. In this study, tofulfill the highlighted demand for non-toxic adjuvants, we investigated the use ofNDV HN as a molecular immune adjuvant.
     In our previous studies, we generated an oncolytic adenovirus Ad-Apoptin basedon a cancer cell selective apoptosis-inducing gene. It was shown that Ad-Apoptincould perform strong antitumor and apoptosis-inducing effects in vitro. It also couldconfer significant anticancer activity toward solid tumors in vivo. In addition,Ad-Apoptin was shown to be capable of suppressing metastatic nodules. Recently, Ad-Apoptin was shown to directly restrain tumor growth via system delivering.Because of these therapeutic properties of Ad-Apoptin, we sought to evaluate the useof the recombinant adenovirus as a candidate of anti-tumor gene therapy. However,the recombinant was absence of immune stimulating capacities, which made itinadequate to obtain prolonged anti-tumor activity.
     NDV is a paramyxovirus with a negative single-stranded RNA genome whichcauses inflammation of the respiratory and gastrointestinal tract in a wide variety ofpoultry species. HN, a74kDa multifunctional membrane class II glycoprotein, is oneof the most important structural proteins of NDV. The protein can not only mediatesrecognition of sialic acid containing receptors but also possesses NA which cancleave the sialic acid on those receptors. It was demonstrated that HN could stimulatea strong interferon-α response in peripheral blood mononuclear cells (PBMCs). It wasshown that HN protein could confer T cell co-stimulatory function and inducinginnate immune activities. Furthermore, HN had also the type I interferons inducingcapacities. Additionally, NDV HN was shown to directly activate human NK cells viatriggering the NKp44and NKp46receptors.
     Antitumor immunity can be either innate or adaptive. Although adaptiveantitumor immune activity can induce reactivity against defined antigens, induce longlasting immune memory, and give low toxicity to normal tissues, innate approachesmay also be of benefit. In fact, the most effective immunological antitumor responseshave been seen with active innate approaches. NK, a key component of the innateimmune system, is characterized by their rapid response and strong cytolytic activitywithout pre-sensitization and involving of major histocompatibility molecules. NKcan not only carry out cytotoxicity through the expression of TNF-related apoptosisinducing ligand (TRAIL) or Fas ligand (FasL) on the NK cell surface or TNF-αsecretion by NK cell, but regulate immune responses through produce IFN-γ,interleukins and growth factors. Furthermore, NK cells produce many chemokinesthat impact dendritic cells (DCs), macrophages and neutrophils during an immuneresponse. NDV HN used in present study can activate NK, DCs, monocytes, and stabilize activated T cells. This highlights the potential adjuvant activity of the HNgene in tumor therapy.
     In this study, we approached the use of HN as a potential molecular immuneadjuvant in tumor therapy. We demonstrated that Ad-HN was capable of inducinglymphokine effector cytokines of PBMCs in vitro. In addition, Ad-HN adjuvant led toreduction of tumor growth and provided survival benefits when compared to thecontrol adjuvants. Therefore, it is plausible that HN is a suitable immune adjuvant forcancer gene therapy.
     We demonstrated here that HN successfully expressed in SGC7901cellsperform both NA and HA. We further shown that SGC7901cells carrying HNinduced PBMCs to secrete increased amounts of lymphokine effector cytokinesTNF-α, IFN-α and IFN-γ. It was known that TNF-α could contribute to the antitumorcytotoxicity of activated macrophages, and IFN-γ released by NK could promote Th1cell polarization and subsequent cytotoxic-T-lymphocyte induction. Additionally,IFN-α could exhibit anti-tumor effects as well as had multiple activities on immunecells. All these might be contribute to variety of direct and indirect antitumor effectorfunctions. Subsequently, we showed that the incubation of NK cells withAd-HN-infected SGC7901cells was able to enhance the cytotoxic activity of NKagainst uninfected target cells, which might be contribute to the in vivo oncolyticproperties.
     We also investigated in settings of therapeutic antitumor model whether HNadjuvant co-application with Ad-Apoptin could improve effectivity. Data showed areduction of tumor burden in tumor bearing mice upon therapeutic treatment withAd-Apoptin and subsequently Ad-HN as adjuvant in comparison to Ad-Apoptintreatment alone. We further observed remarkable survival benefits in the group ofapplication of NDV HN as an immune adjuvant. All these might be due to thesynergistic reaction between Apoptin and HN. Since Apoptin could obstruct theprompt growth of the tumors, meanwhile HN established the immunological defenseagainst the infiltration, the diffusion and the metastasis of the tumors.
     In conclusion, the results from in vitro experiments and in vivo tumor modellack of adaptive immune system suggested that innate immune response, most likelyinvolving NK cells, plays a key role in the suppression of syngeneic graft andimprovement of the mean survival directed by adjuvant property of HN. The resultsfurther reinforced the potential adjuvant activity of the HN gene in tumor therapy.
引文
[1] SKEHEL JJ, WILEY DC. Receptor binding and membrane fusion in virus entry:the influenza hemagglutinin[J]. Annual review of biochemistry,2000,69:531-569.
    [2] WEISSENHORN W, DESSEN A, CALDER LJ et al. Structural basis formembrane fusion by enveloped viruses[J]. Molecular membrane biology,1999,16(1):3-9.
    [3] HEINZ FX, ALLISON SL. Structures and mechanisms in flavivirus fusion[J].Advances in virus research,2000,55:231-269.
    [4] CRENNELL S, TAKIMOTO T, PORTNER A, TAYLOR G. Crystal structure ofthe multifunctional paramyxovirus hemagglutinin-neuraminidase[J]. Naturestructural biology,2000,7(11):1068-1074.
    [5] WILSON IA, SKEHEL JJ, WILEY DC. Structure of the haemagglutininmembrane glycoprotein of influenza virus at3A resolution[J]. Nature,1981,289(5796):366-373.
    [6] CHEN J, LEE KH, STEINHAUER DA et al. Structure of the hemagglutininprecursor cleavage site, a determinant of influenza pathogenicity and the origin ofthe labile conformation[J]. Cell,1998,95(3):409-417.
    [7] BULLOUGH PA, HUGHSON FM, SKEHEL JJ, WILEY DC. Structure ofinfluenza haemagglutinin at the pH of membrane fusion[J]. Nature,1994,371(6492):37-43.
    [8] DURRER P, GALLI C, HOENKE S et al. H+-induced membrane insertion ofinfluenza virus hemagglutinin involves the HA2amino-terminal fusion peptidebut not the coiled coil region[J]. The Journal of biological chemistry,1996,271(23):13417-13421.
    [9] SKEHEL JJ, BAYLEY PM, BROWN EB et al. Changes in the conformation ofinfluenza virus hemagglutinin at the pH optimum of virus-mediated membranefusion[J]. Proceedings of the National Academy of Sciences of the United Statesof America,1982,79(4):968-972.
    [10] KOZLOV MM, CHERNOMORDIK LV. A mechanism of protein-mediatedfusion: coupling between refolding of the influenza hemagglutinin and lipidrearrangements[J]. Biophysical journal,1998,75(3):1384-1396.
    [11] BENTZ J. Membrane fusion mediated by coiled coils: a hypothesis[J].Biophysical journal,2000,78(2):886-900.
    [12] GRUENKE JA, ARMSTRONG RT, NEWCOMB WW, BROWN JC, WHITEJM. New insights into the spring-loaded conformational change of influenzavirus hemagglutinin[J]. Journal of virology,2002,76(9):4456-4466.
    [13] GODLEY L, PFEIFER J, STEINHAUER D et al. Introduction of intersubunitdisulfide bonds in the membrane-distal region of the influenza hemagglutininabolishes membrane fusion activity[J]. Cell,1992,68(4):635-645.
    [14] WHARTON SA, SKEHEL JJ, WILEY DC. Studies of influenzahaemagglutinin-mediated membrane fusion[J]. Virology,1986,149(1):27-35.
    [15] RUIGROK RW, MARTIN SR, WHARTON SA et al. Conformational changes inthe hemagglutinin of influenza virus which accompany heat-induced fusion ofvirus with liposomes[J]. Virology,1986,155(2):484-497.
    [16] STEGMANN T, SCHOEN P, BRON R et al. Evaluation of viral membranefusion assays. Comparison of the octadecylrhodamine dequenching assay withthe pyrene excimer assay[J]. Biochemistry,1993,32(42):11330-11337.
    [17] WARD CW, DOPHEIDE TA. Influenza virus haemagglutinin. Structuralpredictions suggest that the fibrillar appearance is due to the presence of acoiled-coil[J]. Australian journal of biological sciences,1980,33(4):441-447.
    [18] BUCKLAND R, WILD F. Leucine zipper motif extends[J]. Nature,1989,338(6216):547.
    [19] CHAMBERS P, PRINGLE CR, EASTON AJ. Heptad repeat sequences arelocated adjacent to hydrophobic regions in several types of virus fusionglycoproteins[J]. The Journal of general virology,1990,71(Pt12):3075-3080.
    [20] CHEN L, COLMAN PM, COSGROVE LJ et al. Cloning, expression, andcrystallization of the fusion protein of Newcastle disease virus[J]. Virology,2001,290(2):290-299.
    [21] CALDER LJ, GONZALEZ-REYES L, GARCIA-BARRENO B et al. Electronmicroscopy of the human respiratory syncytial virus fusion protein andcomplexes that it forms with monoclonal antibodies[J]. Virology,2000,271(1):122-131.
    [22] DUTCH RE, HAGGLUND RN, NAGEL MA, PATERSON RG, LAMB RA.Paramyxovirus fusion (F) protein: a conformational change on cleavageactivation[J]. Virology,2001,281(1):138-150.
    [23] PATERSON RG, RUSSELL CJ, LAMB RA. Fusion protein of theparamyxovirus SV5: destabilizing and stabilizing mutants of fusion activation[J].Virology,2000,270(1):17-30.
    [24] WHARTON SA, SKEHEL JJ, WILEY DC. Temperature dependence of fusionby sendai virus[J]. Virology,2000,271(1):71-78.
    [25] LAMB RA. Paramyxovirus fusion: a hypothesis for changes[J]. Virology,1993,197(1):1-11.
    [26] WILMANNS C, FAN D, O'BRIAN CA, BUCANA CD, FIDLER IJ. Orthotopicand ectopic organ environments differentially influence the sensitivity of murinecolon carcinoma cells to doxorubicin and5-fluorouracil[J]. International journalof cancer,1992,52(1):98-104.
    [27] KERBEL RS. What is the optimal rodent model for anti-tumor drug testing?[J].Cancer metastasis reviews,1998,17(3):301-304.
    [28] KERBEL RS. Human tumor xenografts as predictive preclinical models foranticancer drug activity in humans: better than commonly perceived-but they canbe improved[J]. Cancer biology&therapy,2003,2(4Suppl1): S134-139.
    [29] PETERSON JK, HOUGHTON PJ. Integrating pharmacology and in vivo cancermodels in preclinical andclinical drug development[J]. Eur J Cancer,2004,40(6):837-844.
    [30] VAN DYKE T, JACKS T. Cancer modeling in the modern era: progress andchallenges[J]. Cell,2002,108(2):135-144.
    [31] OTTEWELL PD, COLEMAN RE, HOLEN I. From genetic abnormality tometastases: murine models ofbreast cancer and their use in the development ofanticancer therapies[J]. Breast cancer research and treatment,2006,96(2):101-113.
    [32] TALMADGE JE, SINGH RK, FIDLER IJ, RAZ A. Murine models to evaluatenovel and conventional therapeutic strategies for cancer[J]. The Americanjournal of pathology,2007,170(3):793-804.
    [33] BRODIE SG, XU X, QIAO W et al. Multiple genetic changes are associatedwith mammary tumorigenesisin Brca1conditional knockout mice[J]. Oncogene,2001,20(51):7514-7523.
    [34] STAMBOLIC V, TSAO MS, MACPHERSON D et al. High incidence of breastand endometrial neoplasiaresembling human Cowden syndrome in pten+/-mice[J]. Cancer research,2000,60(13):3605-3611.
    [35] GOURLEY C, MICHIE CO, ROXBURGH P et al. Increased incidence ofvisceral metastases in scottish patients with BRCA1/2-defective ovarian cancer:an extension of the ovarian BRCAness phenotype[J]. J ClinOncol,28(15):2505-2511.
    [36] ALBIGES L, ANDRE F, BALLEYGUIER C et al. Spectrum of breast cancermetastasis in BRCA1mutation carriers: highly increased incidence of brainmetastases[J]. Ann Oncol,2005,16(11):1846-1847.
    [37] SCHMITZ M, GRIGNARD G, MARGUE C et al. Complete loss of PTENexpression as a possible early prognostic marker for prostate cancer metastasis[J].International journal of cancer,2007,120(6):1284-1292.
    [38] SHARPLESS NE, DEPINHO RA. The mighty mouse: genetically engineeredmouse models in cancer drug development[J]. Nature reviews,2006,5(9):741-754.
    [39] HEYER J, KWONG LN, LOWE SW, CHIN L. Non-germline geneticallyengineered mouse models for translational cancer research[J]. Nat Rev Cancer,10(7):470-480.
    [40] KIM IS, BAEK SH. Mouse models for breast cancer metastasis[J]. Biochemicaland biophysical research communications,394(3):443-447.
    [41] PAEZ-RIBES M, ALLEN E, HUDOCK J et al. Antiangiogenic therapy elicitsmalignant progression of tumors to increased local invasion and distantmetastasis[J]. Cancer cell,2009,15(3):220-231.
    [42] BERGERS G, SONG S, MEYER-MORSE N, BERGSLAND E, HANAHAN D.Benefits of targeting both pericytes and endothelial cells in the tumorvasculature with kinase inhibitors[J]. The Journal of clinical investigation,2003,111(9):1287-1295.
    [43] SINGH M, LIMA A, MOLINA R et al. Assessing therapeutic responses in Krasmutant cancers using genetically engineered mouse models[J]. Naturebiotechnology,28(6):585-593.
    [44] FRANCIA G, KERBEL RS. Raising the bar for cancer therapy models[J]. Naturebiotechnology,28(6):561-562.
    [45] VAN DYKE T. Finding the tumor copycat: approximating a human cancer[J].Nature medicine,16(9):976-977.
    [46] OLIVE KP, JACOBETZ MA, DAVIDSON CJ et al. Inhibition of Hedgehogsignaling enhances delivery of chemotherapy in a mouse model of pancreaticcancer[J]. Science (New York, NY,2009,324(5933):1457-1461.
    [47] FIDLER IJ, HART IR. Biological diversity in metastatic neoplasms: origins andimplications[J]. Science (New York, NY,1982,217(4564):998-1003.
    [48] PRICE JE. Analyzing the metastatic phenotype[J]. Journal of cellularbiochemistry,1994,56(1):16-22.
    [49] WARREN RS, YUAN H, MATLI MR, GILLETT NA, FERRARA N. Regulationby vascular endothelial growth factor of human colon cancer tumorigenesis in amouse model of experimental liver metastasis[J]. The Journal of clinicalinvestigation,1995,95(4):1789-1797.
    [50] CRUZ-MUNOZ W, MAN S, XU P, KERBEL RS. Development of a preclinicalmodel of spontaneous human melanoma central nervous system metastasis[J].Cancer research,2008,68(12):4500-4505.
    [51] MUNOZ R, MAN S, SHAKED Y et al. Highly efficacious nontoxic preclinicaltreatment for advanced metastatic breast cancer using combination oralUFT-cyclophosphamide metronomic chemotherapy[J]. Cancer research,2006,66(7):3386-3391.
    [52] FRANCIA G, EMMENEGGER U, LEE CR et al. Long-term progression andtherapeutic response of visceral metastatic disease non-invasively monitored inmouse urine using beta-human choriogonadotropin secreting tumor cell lines[J].Molecular cancer therapeutics,2008,7(10):3452-3459.
    [53] SHIH IM, TORRANCE C, SOKOLL LJ et al. Assessing tumors in livinganimals through measurement of urinary beta-human chorionic gonadotropin[J].Nature medicine,2000,6(6):711-714.
    [54] FIDLER IJ. Models for spontaneous metastasis[J]. Cancer research,2006,66(19):9787.
    [55] MORIKAWA K, WALKER SM, JESSUP JM, FIDLER IJ. In vivo selection ofhighly metastatic cells from surgical specimens of different primary humancolon carcinomas implanted into nude mice[J]. Cancer research,1988,48(7):1943-1948.
    [56] KUBOTA T. Metastatic models of human cancer xenografted in the nude mouse:the importance of orthotopic transplantation[J]. Journal of cellular biochemistry,1994,56(1):4-8.
    [57] FURUKAWA T, KUBOTA T, WATANABE M, KITAJIMA M, HOFFMAN RM.A novel "patient-like" treatment model of human pancreatic cancer constructedusing orthotopic transplantation of histologically intact human tumor tissue innude mice[J]. Cancer research,1993,53(13):3070-3072.
    [58] KIGUCHI K, KUBOTA T, AOKI D et al. A patient-like orthotopic implantationnude mouse model of highly metastatic human ovarian cancer[J]. Clinical&experimental metastasis,1998,16(8):751-756.
    [59] PRICE JE, ZHANG RD. Studies of human breast cancer metastasis using nudemice[J]. Cancer metastasis reviews,1990,8(4):285-297.
    [60] DAWSON M R, D U D A D G, F U K U M U R A D, J A I N R K.VEGFR1-activity-independent metastasis formation[J]. Nature,2009,461(7262): E4; discussion E5.
    [61] NANGIA-MAKKER P, HOGAN V, HONJO Y et al. Inhibition of human cancercell growth and metastasis in nude mice by oral intake of modified citruspectin[J]. Journal of the National Cancer Institute,2002,94(24):1854-1862.
    [62] TEICHER BA, HOLDEN SA, ARA G et al. Potentiation of cytotoxic cancertherapies by TNP-470alone and with other anti-angiogenic agents[J].International journal of cancer,1994,57(6):920-925.
    [63] HOLDEN SA, EMI Y, KAKEJI Y, NORTHEY D, TEICHER BA. Hostdistribution and response to antitumor alkylating agents of EMT-6tumor cellsfrom subcutaneous tumor implants[J]. Cancer chemotherapy and pharmacology,1997,40(1):87-93.
    [64] BARNETT SC, ECCLES SA. Studies of mammary carcinoma metastasis in amouse model system. II: Lectin binding properties of cells in relation to theincidence and organ distribution of metastases[J]. Clinical&experimentalmetastasis,1984,2(4):297-310.
    [65] BARNETT SC, ECCLES SA. Studies of mammary carcinoma metastasis in amouse model system. I: Derivation and characterization of cells with differentmetastatic properties during tumour progression in vivo[J]. Clinical&experimental metastasis,1984,2(1):15-36.
    [66] HOFFMAN RM. Imaging cancer dynamics in vivo at the tumor and cellularlevel with fluorescent proteins[J]. Clinical&experimental metastasis,2009,26(4):345-355.
    [67] SAHAI E. Illuminating the metastatic process[J]. Nat Rev Cancer,2007,7(10):737-749.
    [68] KOZLOWSKI JM, FIDLER IJ, CAMPBELL D et al. Metastatic behavior ofhuman tumor cell lines grown in the nude mouse[J]. Cancer research,1984,44(8):3522-3529.
    [69] POSTE G, DOLL J, HART IR, FIDLER IJ. In vitro selection of murine B16melanoma variants with enhanced tissue-invasive properties[J]. Cancer research,1980,40(5):1636-1644.
    [70] KERBEL RS, MAN MS, DEXTER D. A model of human cancer metastasis:extensive spontaneous and artificial metastasis of a human pigmented melanomaand derived variant sublines in nude mice[J]. Journal of the National CancerInstitute,1984,72(1):93-108.
    [71] DU MANOIR JM, FRANCIA G, MAN S et al. Strategies for delaying or treatingin vivo acquired resistance to trastuzumab in human breast cancer xenografts[J].Clin Cancer Res,2006,12(3Pt1):904-916.
    [72] FRANCIA G, MAN S, LEE CJ et al. Comparative impact of trastuzumab andcyclophosphamide on HER-2-positive human breast cancer xenografts[J]. ClinCancer Res,2009,15(20):6358-6366.
    [73] MAN S, BOCCI G, FRANCIA G et al. Antitumor effects in mice of low-dose(metronomic) cyclophosphamide administered continuously through thedrinking water[J]. Cancer research,2002,62(10):2731-2735.
    [74] HURWITZ H, FEHRENBACHER L, NOVOTNY W et al. Bevacizumab plusirinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer[J]. TheNew England journal of medicine,2004,350(23):2335-2342.
    [75] HUDIS CA. Trastuzumab--mechanism of action and use in clinical practice[J].The New England journal of medicine,2007,357(1):39-51.
    [76] KERBEL RS. Antiangiogenic therapy: a universal chemosensitization strategyfor cancer?[J]. Science (New York, NY,2006,312(5777):1171-1175.
    [77] MAN S, MUNOZ R, KERBEL RS. On the development of models in mice ofadvanced visceral metastatic disease for anti-cancer drug testing[J]. Cancermetastasis reviews,2007,26(3-4):737-747.
    [78] VANTYGHEM SA, WILSON SM, POSTENKA CO et al. Dietary genisteinreduces metastasis in a postsurgical orthotopic breast cancer model[J]. Cancerresearch,2005,65(8):3396-3403.
    [79] MCCULLOCH P, GEORGE WD. Warfarin inhibits metastasis of Mtln3ratmammary carcinoma without affecting primary tumour growth[J]. Britishjournal of cancer,1989,59(2):179-183.
    [80] DELLAPASQUA S, BERTOLINI F, BAGNARDI V et al. Metronomiccyclophosphamide and capecitabine combined with bevacizumab in advancedbreast cancer[J]. J Clin Oncol,2008,26(30):4899-4905.
    [81] CRUZ-MUNOZ W, MAN S, KERBEL RS. Effective treatment of advancedhuman melanoma metastasis in immunodeficient mice using combinationmetronomic chemotherapy regimens[J]. Clin Cancer Res,2009,15(15):4867-4874.
    [82] LAWSON DH. Choices in adjuvant therapy of melanoma[J]. Cancer Control,2005,12(4):236-241.
    [83] LIN NU, WINER EP. Brain metastases: the HER2paradigm[J]. Clin Cancer Res,2007,13(6):1648-1655.
    [84] PALMIERI D, LOCKMAN PR, THOMAS FC et al. Vorinostat inhibits brainmetastatic colonization in a model of triple-negative breast cancer and inducesDNA double-strand breaks[J]. Clin Cancer Res,2009,15(19):6148-6157.
    [85] CARBONELL WS, ANSORGE O, SIBSON N, MUSCHEL R. The vascularbasement membrane as "soil" in brain metastasis[J]. PloS one,2009,4(6):e5857.
    [86] MINN AJ, KANG Y, SERGANOVA I et al. Distinct organ-specific metastaticpotential of individual breast cancer cells and primary tumors[J]. The Journal ofclinical investigation,2005,115(1):44-55.
    [87] ZHANG XH, WANG Q, GERALD W et al. Latent bone metastasis in breastcancer tied to Src-dependent survival signals[J]. Cancer cell,2009,16(1):67-78.
    [88] WELCH DR. Technical considerations for studying cancer metastasis in vivo[J].Clinical&experimental metastasis,1997,15(3):272-306.
    [89] STEEG PS, THEODORESCU D. Metastasis: a therapeutic target for cancer[J].Nature clinical practice,2008,5(4):206-219.
    [90] DUNN LK, MOHAMMAD KS, FOURNIER PG et al. Hypoxia and TGF-betadrive breast cancer bone metastases through parallel signaling pathways in tumorcells and the bone microenvironment[J]. PloS one,2009,4(9): e6896.
    [91] KANG Y, SIEGEL PM, SHU W et al. A multigenic program mediating breastcancer metastasis to bone[J]. Cancer cell,2003,3(6):537-549.
    [92] BOS PD, ZHANG XH, NADAL C et al. Genes that mediate breast cancermetastasis to the brain[J]. Nature,2009,459(7249):1005-1009.
    [93] FRANCIA G, KERBEL RS. Raising the bar for cancer therapy models[J]. Naturebiotechnology,2010,28(6):561-562.
    [94] JEMAL A, BRAY F, CENTER MM et al. Global cancer statistics. CA: acancer journal for clinicians2011:69-90.
    [95] PARKIN DM. The global health burden of infection-associated cancers in theyear2002[J]. International journal of cancer,2006,118(12):3030-3044.
    [96] MING L, THORGEIRSSON SS, GAIL MH et al. Dominant role of hepatitis Bvirus and cofactor role of aflatoxin in hepatocarcinogenesis in Qidong, China[J].Hepatology (Baltimore, Md,2002,36(5):1214-1220.
    [97] EL-SERAG HB, MASON AC. Rising incidence of hepatocellular carcinoma inthe United States[J]. The New England journal of medicine,1999,340(10):745-750.
    [98] EL-SERAG HB. Epidemiology of hepatocellular carcinoma in USA[J]. HepatolRes,2007,37Suppl2: S88-94.
    [99] TSAI WL, CHUNG RT. Viral hepatocarcinogenesis[J]. Oncogene,2010,29(16):2309-2324.
    [100] PERZ JF, ARMSTRONG GL, FARRINGTON LA, HUTIN YJ, BELL BP. Thecontributions of hepatitis B virus and hepatitis C virus infections to cirrhosisand primary liver cancer worldwide[J]. Journal of hepatology,2006,45(4):529-538.
    [101] CHEN CJ, YANG HI, SU J et al. Risk of hepatocellular carcinoma across abiological gradient of serum hepatitis B virus DNA level[J]. Jama,2006,295(1):65-73.
    [102] LIANG TJ, HELLER T. Pathogenesis of hepatitis C-associated hepatocellularcarcinoma[J]. Gastroenterology,2004,127(5Suppl1): S62-71.
    [103] HEINDRYCKX F, COLLE I, VAN VLIERBERGHE H. Experimental mousemodels for hepatocellular carcinoma research[J]. International journal ofexperimental pathology,2009,90(4):367-386.
    [104] WU L, TANG ZY, LI Y. Experimental models of hepatocellular carcinoma:developments and evolution[J]. Journal of cancer research and clinicaloncology,2009,135(8):969-981.
    [105] FAUSTO N, CAMPBELL JS. Mouse models of hepatocellular carcinoma[J].Seminars in liver disease,2010,30(1):87-98.
    [106] ARAVALLI RN, STEER CJ, SAHIN MB, CRESSMAN EN. Stem cell originsand animal models of hepatocellular carcinoma[J]. Digestive diseases andsciences,2010,55(5):1241-1250.
    [107] KALRA N, KUMAR V. c-Fos is a mediator of the c-myc-induced apoptoticsignaling in serum-deprived hepatoma cells via the p38mitogen-activatedprotein kinase pathway[J]. The Journal of biological chemistry,2004,279(24):25313-25319.
    [108] SINGH M, KUMAR V. Transgenic mouse models of hepatitis Bvirus-associated hepatocellular carcinoma[J]. Reviews in medical virology,2003,13(4):243-253.
    [109] MURATA M, MATSUZAKI K, YOSHIDA K et al. Hepatitis B virus X proteinshifts human hepatic transforming growth factor (TGF)-beta signaling fromtumor suppression to oncogenesis in early chronic hepatitis B[J]. Hepatology(Baltimore, Md,2009,49(4):1203-1217.
    [110] GEARHART TL, BOUCHARD MJ. The hepatitis B virus X protein modulateshepatocyte proliferation pathways to stimulate viral replication[J]. Journal ofvirology,2010,84(6):2675-2686.
    [111] ZHAO J, WU G, BU F et al. Epigenetic silence of ankyrin-repeat-containing,SH3-domain-containing, and proline-rich-region-containing protein1(ASPP1)and ASPP2genes promotes tumor growth in hepatitis B virus-positivehepatocellular carcinoma[J]. Hepatology (Baltimore, Md,2010,51(1):142-153.
    [112] CHENG B, ZHENG Y, GUO X, WANG Y, LIU C. Hepatitis B viral X proteinalters the biological features and expressions of DNA repair enzymes in LO2cells[J]. Liver Int,2010,30(2):319-326.
    [113] KIM CM, KOIKE K, SAITO I, MIYAMURA T, JAY G. HBx gene of hepatitisB virus induces liver cancer in transgenic mice[J]. Nature,1991,351(6324):317-320.
    [114] YU DY, MOON HB, SON JK et al. Incidence of hepatocellular carcinoma intransgenic mice expressing the hepatitis B virus X-protein[J]. Journal ofhepatology,1999,31(1):123-132.
    [115] KIM SY, LEE PY, SHIN HJ et al. Proteomic analysis of liver tissue fromHBx-transgenic mice at early stages of hepatocarcinogenesis[J]. Proteomics,2009,9(22):5056-5066.
    [116] CUI F, WANG Y, WANG J et al. The up-regulation of proteasome subunits andlysosomal proteases in hepatocellular carcinomas of the HBx gene knockintransgenic mice[J]. Proteomics,2006,6(2):498-504.
    [117] WANG Y, CUI F, LV Y et al. HBsAg and HBx knocked into the p21locuscauses hepatocellular carcinoma in mice[J]. Hepatology (Baltimore, Md,2004,39(2):318-324.
    [118] KNUDSON AG, JR. Mutation and cancer: statistical study of retinoblastoma[J].Proceedings of the National Academy of Sciences of the United States ofAmerica,1971,68(4):820-823.
    [119] HUEBNER RJ, TODARO GJ. Oncogenes of RNA tumor viruses asdeterminants of cancer[J]. Proceedings of the National Academy of Sciences ofthe United States of America,1969,64(3):1087-1094.
    [120] LAKHTAKIA R, KUMAR V, REDDI H et al. Hepatocellular carcinoma in ahepatitis B 'x' transgenic mouse model: A sequential pathological evaluation[J].Journal of gastroenterology and hepatology,2003,18(1):80-91.
    [121] DUNSFORD HA, SELL S, CHISARI FV. Hepatocarcinogenesis due to chronicliver cell injury in hepatitis B virus transgenic mice[J]. Cancer research,1990,50(11):3400-3407.
    [122] CHISARI FV, PINKERT CA, MILICH DR et al. A transgenic mouse model ofthe chronic hepatitis B surface antigen carrier state[J]. Science (New York, NY,1985,230(4730):1157-1160.
    [123] CHISARI FV, FILIPPI P, BURAS J et al. Structural and pathological effects ofsynthesis of hepatitis B virus large envelope polypeptide in transgenic mice[J].Proceedings of the National Academy of Sciences of the United States ofAmerica,1987,84(19):6909-6913.
    [124] TOSHKOV I, CHISARI FV, BANNASCH P. Hepatic preneoplasia in hepatitisB virus transgenic mice[J]. Hepatology (Baltimore, Md,1994,20(5):1162-1172.
    [125] HUANG SN, CHISARI FV. Strong, sustained hepatocellular proliferationprecedes hepatocarcinogenesisin hepatitis B surface antigen transgenic mice[J].Hepatology (Baltimore, Md,1995,21(3):620-626.
    [126] BARONE M, SPANO D, D'APOLITO M et al. Gene expression analysis inHBV transgenic mouse liver: a model to study early events related tohepatocarcinogenesis[J]. Molecular medicine (Cambridge, Mass,2006,12(4-6):115-123.
    [127] NAKAMOTO Y, GUIDOTTI LG, KUHLEN CV, FOWLER P, CHISARI FV.Immune pathogenesis of hepatocellular carcinoma[J]. The Journal ofexperimental medicine,1998,188(2):341-350.
    [128] SU SB, MOTOO Y, IOVANNA JL et al. Overexpression of p8is inverselycorrelated with apoptosis in pancreatic cancer[J]. Clin Cancer Res,2001,7(5):1320-1324.
    [129] RAY R, CHEN G, VANDE VELDE C et al. BNIP3heterodimerizes withBcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2homology3(BH3) domain at both mitochondrial and nonmitochondrial sites[J]. TheJournal of biological chemistry,2000,275(2):1439-1448.
    [130] SELL S, HUNT JM, DUNSFORD HA, CHISARI FV. Synergy betweenhepatitis B virus expression and chemical hepatocarcinogens in transgenicmice[J]. Cancer research,1991,51(4):1278-1285.
    [131] KOIKE K, MORIYA K, MATSUURA Y. Animal models for hepatitis C andrelated liver disease[J]. Hepatol Res,2010,40(1):69-82.
    [132] KOIKE K, MORIYA K, ISHIBASHI K et al. Expression of hepatitis C virusenvelope proteins in transgenic mice[J]. The Journal of general virology,1995,76(Pt12):3031-3038.
    [133] MORIYA K, FUJIE H, SHINTANI Y et al. The core protein of hepatitis C virusinduces hepatocellular carcinoma in transgenic mice[J]. Nature medicine,1998,4(9):1065-1067.
    [134] KOIKE K, MORIYA K, KIMURA S. Role of hepatitis C virus in thedevelopment of hepatocellular carcinoma: transgenic approach to viralhepatocarcinogenesis[J]. Journal of gastroenterology and hepatology,2002,17(4):394-400.
    [135] ICHIBANGASE T, MORIYA K, KOIKE K, IMAI K. A proteomics methodrevealing disease-related proteins in livers of hepatitis-infected mouse model[J].Journal of proteome research,2007,6(7):2841-2849.
    [136] LERAT H, HONDA M, BEARD MR et al. Steatosis and liver cancer intransgenic mice expressing the structural and nonstructural proteins of hepatitisC virus[J]. Gastroenterology,2002,122(2):352-365.
    [137] KAMEGAYA Y, HIASA Y, ZUKERBERG L et al. Hepatitis C virus acts as atumor accelerator by blocking apoptosis in a mouse model ofhepatocarcinogenesis[J]. Hepatology (Baltimore, Md,2005,41(3):660-667.
    [138] GALON J, COSTES A, SANCHEZ-CABO F et al. Type, density, and locationof immune cells within human colorectal tumors predict clinical outcome[J].Science (New York, NY,2006,313(5795):1960-1964.
    [139] MLECNIK B, TOSOLINI M, KIRILOVSKY A et al. Histopathologic-basedprognostic factors of colorectal cancers are associated with the state of the localimmune reaction[J]. J Clin Oncol,2011,29(6):610-618.
    [140] HANAHAN D, WEINBERG RA. Hallmarks of cancer: the next generation[J].Cell,2011,144(5):646-674.
    [141] GALON J, FRIDMAN WH, PAGES F. The adaptive immunologicmicroenvironment in colorectal cancer: a novel perspective[J]. Cancer research,2007,67(5):1883-1886.
    [142] SHANNON P, MARKIEL A, OZIER O et al. Cytoscape: a softwareenvironment for integrated models of biomolecular interaction networks[J].Genome research,2003,13(11):2498-2504.
    [143] BINDEA G, MLECNIK B, HACKL H et al. ClueGO: a Cytoscape plug-in todecipher functionally grouped gene ontology and pathway annotationnetworks[J]. Bioinformatics (Oxford, England),2009,25(8):1091-1093.
    [144] MLECNIK B, TOSOLINI M, CHAROENTONG P et al. Biomolecular networkreconstruction identifies T-cell homing factors associated with survival incolorectal cancer[J]. Gastroenterology,2010,138(4):1429-1440.
    [145] MANTOVANI A, ALLAVENA P, SICA A, BALKWILL F. Cancer-relatedinflammation[J]. Nature,2008,454(7203):436-444.
    [146] DIEU-NOSJEAN MC, ANTOINE M, DANEL C et al. Long-term survival forpatients with non-small-cell lung cancer with intratumoral lymphoidstructures[J]. J Clin Oncol,2008,26(27):4410-4417.
    [147] HALAMA N, MICHEL S, KLOOR M et al. Localization and density ofimmune cells in the invasive margin of human colorectal cancer livermetastases are prognostic for response to chemotherapy[J]. Cancer research,2011,71(17):5670-5677.
    [148] NAKANO O, SATO M, NAITO Y et al. Proliferative activity of intratumoralCD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma:clinicopathologic demonstration of antitumor immunity[J]. Cancer research,2001,61(13):5132-5136.
    [149] CURIEL TJ, COUKOS G, ZOU L et al. Specific recruitment of regulatory Tcells in ovarian carcinoma fosters immune privilege and predicts reducedsurvival[J]. Nature medicine,2004,10(9):942-949.
    [150] GOBERT M, TREILLEUX I, BENDRISS-VERMARE N et al. Regulatory Tcells recruited through CCL22/CCR4are selectively activated in lymphoidinfiltrates surrounding primary breast tumors and lead to an adverse clinicaloutcome[J]. Cancer research,2009,69(5):2000-2009.
    [151] FU J, XU D, LIU Z et al. Increased regulatory T cells correlate with CD8T-cellimpairment and poor survival in hepatocellular carcinoma patients[J].Gastroenterology,2007,132(7):2328-2339.
    [152] GAO Q, QIU SJ, FAN J et al. Intratumoral balance of regulatory and cytotoxicT cells is associated with prognosis of hepatocellular carcinoma afterresection[J]. J Clin Oncol,2007,25(18):2586-2593.
    [153] GRABENBAUER GG, LAHMER G, DISTEL L, NIEDOBITEK G.Tumor-infiltrating cytotoxic T cells but not regulatory T cells predict outcomein anal squamous cell carcinoma[J]. Clin Cancer Res,2006,12(11Pt1):3355-3360.
    [154] HEIMBERGER AB, ABOU-GHAZAL M, REINA-ORTIZ C et al. Incidenceand prognostic impact of FoxP3+regulatory T cells in human gliomas[J]. ClinCancer Res,2008,14(16):5166-5172.
    [155] HILLEN F, BAETEN CI, VAN DE WINKEL A et al. Leukocyte infiltrationand tumor cell plasticity are parameters of aggressiveness in primary cutaneousmelanoma[J]. Cancer Immunol Immunother,2008,57(1):97-106.
    [156] JACOBS JF, IDEMA AJ, BOL KF et al. Prognostic significance andmechanism of Treg infiltration in human brain tumors[J]. Journal ofneuroimmunology,2010,225(1-2):195-199.
    [157] MIZUKAMI Y, KONO K, KAWAGUCHI Y et al. Localisation pattern ofFoxp3+regulatory T cells is associated with clinical behaviour in gastriccancer[J]. British journal of cancer,2008,98(1):148-153.
    [158] SINICROPE FA, REGO RL, ANSELL SM et al. Intraepithelial effector(CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of humancolon carcinoma[J]. Gastroenterology,2009,137(4):1270-1279.
    [159] ZHANG YL, LI J, MO HY et al. Different subsets of tumor infiltratinglymphocytes correlate with NPC progression in different ways[J]. Molecularcancer,2010,9:4.
    [160] BADOUAL C, HANS S, RODRIGUEZ J et al. Prognostic value oftumor-infiltrating CD4+T-cell subpopulations in head and neck cancers[J].Clin Cancer Res,2006,12(2):465-472.
    [161] CARRERAS J, LOPEZ-GUILLERMO A, FOX BC et al. High numbers oftumor-infiltrating FOXP3-positive regulatory T cells are associated withimproved overall survival in follicular lymphoma[J]. Blood,2006,108(9):2957-2964.
    [162] FREY DM, DROESER RA, VIEHL CT et al. High frequency oftumor-infiltrating FOXP3(+) regulatory T cells predicts improved survival inmismatch repair-proficient colorectal cancer patients[J]. International journal ofcancer,2009,126(11):2635-2643.
    [163] LEFFERS N, GOODEN MJ, DE JONG RA et al. Prognostic significance oftumor-infiltrating T-lymphocytes in primary and metastatic lesions of advancedstage ovarian cancer[J]. Cancer Immunol Immunother,2009,58(3):449-459.
    [164] MICHEL S, BENNER A, TARIVERDIAN M et al. High density ofFOXP3-positive T cells infiltrating colorectal cancers with microsatelliteinstability[J]. British journal of cancer,2008,99(11):1867-1873.
    [165] SALAMA P, PHILLIPS M, GRIEU F et al. Tumor-infiltrating FOXP3+Tregulatory cells show strong prognostic significance in colorectal cancer[J]. JClin Oncol,2009,27(2):186-192.
    [166] TOSOLINI M, KIRILOVSKY A, MLECNIK B et al. Clinical impact ofdifferent classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17)in patients with colorectal cancer[J]. Cancer research,2011,71(4):1263-1271.
    [167] TZANKOV A, MEIER C, HIRSCHMANN P et al. Correlation of highnumbers of intratumoral FOXP3+regulatory T cells with improved survival ingerminal center-like diffuse large B-cell lymphoma, follicular lymphoma andclassical Hodgkin's lymphoma[J]. Haematologica,2008,93(2):193-200.
    [168] WINERDAL ME, MARITS P, WINERDAL M et al. FOXP3and survival inurinary bladder cancer[J]. BJU international,2011,108(10):1672-1678.
    [169] BENCHETRIT F, CIREE A, VIVES V et al. Interleukin-17inhibits tumor cellgrowth by means of a T-cell-dependent mechanism[J]. Blood,2002,99(6):2114-2121.
    [170] TARTOUR E, FOSSIEZ F, JOYEUX I et al. Interleukin17, a T-cell-derivedcytokine, promotes tumorigenicity of human cervical tumors in nude mice[J].Cancer research,1999,59(15):3698-3704.
    [171] WILKE CM, KRYCZEK I, WEI S et al. Th17cells in cancer: help orhindrance?[J]. Carcinogenesis,2011,32(5):643-649.
    [172] SCHRECK S, FRIEBEL D, BUETTNER M et al. Prognostic impact oftumour-infiltrating Th2and regulatory T cells in classical Hodgkinlymphoma[J]. Hematological oncology,2009,27(1):31-39.
    [173] ISHIGAMI S, NATSUGOE S, TOKUDA K et al. Prognostic value ofintratumoral natural killer cells in gastric carcinoma[J]. Cancer,2000,88(3):577-583.
    [174] VILLEGAS FR, COCA S, VILLARRUBIA VG et al. Prognostic significanceof tumor infiltrating natural killer cells subset CD57in patients with squamouscell lung cancer[J]. Lung cancer (Amsterdam, Netherlands),2002,35(1):23-28.
    [175] DONSKOV F, VON DER MAASE H. Impact of immune parameters onlong-term survival in metastatic renal cell carcinoma[J]. J Clin Oncol,2006,24(13):1997-2005.
    [176] SHANKARAN V, IKEDA H, BRUCE AT et al. IFNgamma and lymphocytesprevent primary tumour development and shape tumour immunogenicity[J].Nature,2001,410(6832):1107-1111.
    [177] BROWN JM, ATTARDI LD. The role of apoptosis in cancer development andtreatment response[J]. Nat Rev Cancer,2005,5(3):231-237.
    [178] DEGTEREV A, HUANG Z, BOYCE M et al. Chemical inhibitor ofnonapoptotic cell death with therapeutic potential for ischemic brain injury[J].Nat Chem Biol,2005,1(2):112-119.
    [179] KROEMER G, GALLUZZI L, VANDENABEELE P et al. Classification of celldeath: recommendations of the Nomenclature Committee on Cell Death2009[J]. Cell Death Differ,2009,16(1):3-11.
    [180] VANDENABEELE P, GALLUZZI L, VANDEN BERGHE T, KROEMER G.Molecular mechanisms of necroptosis: an ordered cellular explosion[J]. NatRev Mol Cell Biol,2010,11(10):700-714.
    [181] GRUMATI P, COLETTO L, SABATELLI P et al. Autophagy is defective incollagen VI muscular dystrophies, and its reactivation rescues myofiberdegeneration[J]. Nat Med,2010,16(11):1313-1320.
    [182] OBEID M, TESNIERE A, GHIRINGHELLI F et al. Calreticulin exposuredictates the immunogenicity of cancer cell death[J]. Nat Med,2007,13(1):54-61.
    [183] ZITVOGEL L, KEPP O, KROEMER G. Decoding cell death signals ininflammation and immunity[J]. Cell,2010,140(6):798-804.
    [184] GUIDICELLI G, CHAIGNE-DELALANDE B, DILHUYDY MS et al. Thenecrotic signal induced by mycophenolic acid overcomes apoptosis-resistancein tumor cells[J]. PLoS One,2009,4(5): e5493.
    [185] GALLUZZI L, AARONSON SA, ABRAMS J et al. Guidelines for the use andinterpretation of assays for monitoring cell death in higher eukaryotes[J]. CellDeath Differ,2009,16(8):1093-1107.
    [186] SCHWEICHEL JU, MERKER HJ. The morphology of various types of celldeath in prenatal tissues[J]. Teratology,1973,7(3):253-266.
    [187] KROEMER G, LEVINE B. Autophagic cell death: the story of a misnomer[J].Nat Rev Mol Cell Biol,2008,9(12):1004-1010.
    [188] BERRY DL, BAEHRECKE EH. Growth arrest and autophagy are required forsalivary gland cell degradation in Drosophila[J]. Cell,2007,131(6):1137-1148.
    [189] MAIURI MC, ZALCKVAR E, KIMCHI A, KROEMER G. Self-eating andself-killing: crosstalk between autophagy and apoptosis[J]. Nat Rev Mol CellBiol,2007,8(9):741-752.
    [190] GALLUZZI L, JOZA N, TASDEMIR E et al. No death without life: vitalfunctions of apoptotic effectors[J]. Cell Death Differ,2008,15(7):1113-1123.
    [191] YI CH, YUAN J. The Jekyll and Hyde functions of caspases[J]. Dev Cell,2009,16(1):21-34.
    [192] CEN H, MAO F, ARONCHIK I, FUENTES RJ, FIRESTONE GL.DEVD-NucView488: a novel class of enzyme substrates for real-time detectionof caspase-3activity in live cells[J]. Faseb J,2008,22(7):2243-2252.
    [193] TYAS L, BROPHY VA, POPE A, RIVETT AJ, TAVARE JM. Rapid caspase-3activation during apoptosis revealed using fluorescence-resonance energytransfer[J]. EMBO Rep,2000,1(3):266-270.
    [194] BOUCHIER-HAYES L, OBERST A, MCSTAY GP et al. Characterization ofcytoplasmic caspase-2activation by induced proximity[J]. Mol Cell,2009,35(6):830-840.
    [195] YI CH, SOGAH DK, BOYCE M et al. A genome-wide RNAi screen revealsmultiple regulators of caspase activation[J]. J Cell Biol,2007,179(4):619-626.
    [196] MARTIN SJ, REUTELINGSPERGER CP, MCGAHON AJ et al. Earlyredistribution of plasma membrane phosphatidylserine is a general feature ofapoptosis regardless of the initiating stimulus: inhibition by overexpression ofBcl-2and Abl[J]. J Exp Med,1995,182(5):1545-1556.
    [197] ZWAAL RF, COMFURIUS P, BEVERS EM. Surface exposure ofphosphatidylserine in pathological cells[J]. Cell Mol Life Sci,2005,62(9):971-988.
    [198] QU X, ZOU Z, SUN Q et al. Autophagy gene-dependent clearance of apoptoticcells during embryonic development[J]. Cell,2007,128(5):931-946.
    [199] WHITEHURST AW, BODEMANN BO, CARDENAS J et al. Synthetic lethalscreen identification of chemosensitizer loci in cancer cells[J]. Nature,2007,446(7137):815-819.
    [200] BIANCHI ME, BELTRAME M, PAONESSA G. Specific recognition ofcruciform DNA by nuclear protein HMG1[J]. Science,1989,243(4894Pt1):1056-1059.
    [201] SCAFFIDI P, MISTELI T, BIANCHI ME. Release of chromatin proteinHMGB1by necrotic cells triggers inflammation[J]. Nature,2002,418(6894):191-195.
    [202] BONALDI T, TALAMO F, SCAFFIDI P et al. Monocytic cells hyperacetylatechromatin protein HMGB1to redirect it towards secretion[J]. Embo J,2003,22(20):5551-5560.
    [203] BELL CW, JIANG W, REICH CF,3RD, PISETSKY DS. The extracellularrelease of HMGB1during apoptotic cell death[J]. Am J Physiol Cell Physiol,2006,291(6): C1318-1325.
    [204] CHRISTOFFERSON DE, YUAN J. Cyclophilin A release as a biomarker ofnecrotic cell death[J]. Cell Death Differ,2010,17(12):1942-1943.
    [205] HANDSCHUMACHER RE, HARDING MW, RICE J, DRUGGE RJ,SPEICHER DW. Cyclophilin: a specific cytosolic binding protein forcyclosporin A[J]. Science,1984,226(4674):544-547.
    [206] LI J, ZHANG J, CHEN J et al. Strategy for discovering chemical inhibitors ofhuman cyclophilin a: focused library design, virtual screening, chemicalsynthesis and bioassay[J]. J Comb Chem,2006,8(3):326-337.
    [207] NI S, YUAN Y, HUANG J et al. Discovering potent small molecule inhibitorsof cyclophilin A using de novo drug design approach[J]. J Med Chem,2009,52(17):5295-5298.
    [208] KULLERTZ G, LUTHE S, FISCHER G. Semiautomated microtiter plate assayfor monitoring peptidylprolyl cis/trans isomerase activity in normal andpathological human sera[J]. Clin Chem,1998,44(3):502-508.
    [209] MORI T, ITAMI S, YANAGI T et al. Use of a real-time fluorescencemonitoring system for high-throughput screening for prolyl isomeraseinhibitors[J]. J Biomol Screen,2009,14(4):419-424.
    [210] JIN ZG, LUNGU AO, XIE L et al. Cyclophilin A is a proinflammatory cytokinethat activates endothelial cells[J]. Arterioscler Thromb Vasc Biol,2004,24(7):1186-1191.
    [211] KIRKEGAARD T, ROTH AG, PETERSEN NH et al. Hsp70stabilizeslysosomes and reverts Niemann-Pick disease-associated lysosomalpathology[J]. Nature,2010,463(7280):549-553.
    [212] CASTEDO M, PERFETTINI JL, ROUMIER T et al. Cell death by mitoticcatastrophe: a molecular definition[J]. Oncogene,2004,23(16):2825-2837.
    [213] VAKIFAHMETOGLU H, OLSSON M, ZHIVOTOVSKY B. Death through atragedy: mitotic catastrophe[J]. Cell Death Differ,2008,15(7):1153-1162.
    [214] VITALE I, SENOVILLA L, JEMAA M et al. Multipolar mitosis of tetraploidcells: inhibition by p53and dependency on Mos[J]. Embo J,2010,29(7):1272-1284.
    [215] WEAVER BA, CLEVELAND DW. Decoding the links between mitosis, cancer,and chemotherapy: The mitotic checkpoint, adaptation, and cell death[J].Cancer Cell,2005,8(1):7-12.
    [216] OLSSON M, VAKIFAHMETOGLU H, ABRUZZO PM et al. DISC-mediatedactivation of caspase-2in DNA damage-induced apoptosis[J]. Oncogene,2009,28(18):1949-1959.
    [217] VAKIFAHMETOGLU H, OLSSON M, TAMM C et al. DNA damage inducestwo distinct modes of cell death in ovarian carcinomas[J]. Cell Death Differ,2008,15(3):555-566.
    [218] MADEO F, TAVERNARAKIS N, KROEMER G. Can autophagy promotelongevity?[J]. Nat Cell Biol,2010,12(9):842-846.
    [219] AMARAVADI RK, YU D, LUM JJ et al. Autophagy inhibition enhancestherapy-induced apoptosis in a Myc-induced model of lymphoma[J]. J ClinInvest,2007,117(2):326-336.
    [220] NI HM, BOCKUS A, WOZNIAK AL et al. Dissecting the dynamic turnover ofGFP-LC3in the autolysosome[J]. Autophagy,2011,7(2):188-204.
    [221] SHINTANI T, KLIONSKY DJ. Autophagy in health and disease: adouble-edged sword[J]. Science,2004,306(5698):990-995.
    [222] WILLIAMS A, SARKAR S, CUDDON P et al. Novel targets for Huntington'sdisease in an mTOR-independent autophagy pathway[J]. Nat Chem Biol,2008,4(5):295-305.
    [223] KLIONSKY DJ, ABELIOVICH H, AGOSTINIS P et al. Guidelines for the useand interpretation of assays for monitoring autophagy in higher eukaryotes[J].Autophagy,2008,4(2):151-175.
    [224] ZHANG L, YU J, PAN H et al. Small molecule regulators of autophagyidentified by an image-based high-throughput screen[J]. Proc Natl Acad Sci US A,2007,104(48):19023-19028.
    [225] CRIOLLO A, SENOVILLA L, AUTHIER H et al. The IKK complexcontributes to the induction of autophagy[J]. Embo J,2010,29(3):619-631.
    [226] FARKAS T, HOYER-HANSEN M, JAATTELA M. Identification of novelautophagy regulators by a luciferase-based assay for the kinetics of autophagicflux[J]. Autophagy,2009,5(7):1018-1025.
    [227] JU JS, MILLER SE, JACKSON E et al. Quantitation of selective autophagicprotein aggregate degradation in vitro and in vivo using luciferase reporters[J].Autophagy,2009,5(4):511-519.
    [228] SHVETS E, FASS E, ELAZAR Z. Utilizing flow cytometry to monitorautophagy in living mammalian cells[J]. Autophagy,2008,4(5):621-628.
    [229] HE P, PENG Z, LUO Y et al. High-throughput functional screening forautophagy-related genes and identification of TM9SF1as anautophagosome-inducing gene[J]. Autophagy,2009,5(1):52-60.
    [230] BALGI AD, FONSECA BD, DONOHUE E et al. Screen for chemicalmodulators of autophagy reveals novel therapeutic inhibitors of mTORC1signaling[J]. PLoS One,2009,4(9): e7124.
    [231] LIPINSKI MM, HOFFMAN G, NG A et al. A genome-wide siRNA screenreveals multiple mTORC1independent signaling pathways regulatingautophagy under normal nutritional conditions[J]. Dev Cell,2010,18(6):1041-1052.
    [232] SARKAR S, PERLSTEIN EO, IMARISIO S et al. Small molecules enhanceautophagy and reduce toxicity in Huntington's disease models[J]. Nat ChemBiol,2007,3(6):331-338.
    [233] XIA M, HUANG R, WITT KL et al. Compound cytotoxicity profiling usingquantitative high-throughput screening[J]. Environ Health Perspect,2008,116(3):284-291.
    [234] KANKI T, WANG K, BABA M et al. A genomic screen for yeast mutantsdefective in selective mitochondria autophagy[J]. Mol Biol Cell,2009,20(22):4730-4738.
    [235] TIAN Y, LI Z, HU W et al. C. elegans screen identifies autophagy genesspecific to multicellular organisms[J]. Cell,2010,141(6):1042-1055.
    [236] ARSHAM AM, NEUFELD TP. A genetic screen in Drosophila reveals novelcytoprotective functions of the autophagy-lysosome pathway[J]. PLoS One,2009,4(6): e6068.
    [237] HOFFMAN GR, MOERKE NJ, HSIA M, SHAMU CE, BLENIS J. Ahigh-throughput, cell-based screening method for siRNA and small moleculeinhibitors of mTORC1signaling using the In Cell Western technique[J]. AssayDrug Dev Technol,2010,8(2):186-199.
    [238] HANAHAN D, WEINBERG RA. The hallmarks of cancer[J]. Cell,2000,100(1):57-70.
    [239] FULDA S. Tumor resistance to apoptosis[J]. Int J Cancer,2009,124(3):511-515.
    [240] FULDA S, DEBATIN KM. Extrinsic versus intrinsic apoptosis pathways inanticancer chemotherapy[J]. Oncogene,2006,25(34):4798-4811.
    [241] KROEMER G, GALLUZZI L, BRENNER C. Mitochondrial membranepermeabilization in cell death[J]. Physiol Rev,2007,87(1):99-163.
    [242] GALLUZZI L, KROEMER G. Necroptosis: a specialized pathway ofprogrammed necrosis[J]. Cell,2008,135(7):1161-1163.
    [243] GOLSTEIN P, KROEMER G. Cell death by necrosis: towards a moleculardefinition[J]. Trends Biochem Sci,2007,32(1):37-43.
    [244] GOGVADZE V, ORRENIUS S, ZHIVOTOVSKY B. Mitochondria in cancercells: what is so special about them?[J]. Trends Cell Biol,2008,18(4):165-173.
    [245] BELLANCE N, LESTIENNE P, ROSSIGNOL R. Mitochondria: frombioenergetics to the metabolic regulation of carcinogenesis[J]. Front Biosci,2009,14:4015-4034.
    [246] DIEHN M, CHO RW, LOBO NA et al. Association of reactive oxygen specieslevels and radioresistance in cancer stem cells[J]. Nature,2009,458(7239):780-783.
    [247] KROEMER G, POUYSSEGUR J. Tumor cell metabolism: cancer's Achilles'heel[J]. Cancer Cell,2008,13(6):472-482.
    [248] MODICA-NAPOLITANO JS, SINGH KK. Mitochondrial dysfunction incancer[J]. Mitochondrion,2004,4(5-6):755-762.
    [249] CANTER JA, KALLIANPUR AR, PARL FF, MILLIKAN RC. MitochondrialDNA G10398A polymorphism and invasive breast cancer in African-Americanwomen[J]. Cancer Res,2005,65(17):8028-8033.
    [250] PETROS JA, BAUMANN AK, RUIZ-PESINI E et al. mtDNA mutationsincrease tumorigenicity in prostate cancer[J]. Proc Natl Acad Sci U S A,2005,102(3):719-724.
    [251] BAINES CP, KAISER RA, SHEIKO T, CRAIGEN WJ, MOLKENTIN JD.Voltage-dependent anion channels are dispensable for mitochondrial-dependentcell death[J]. Nat Cell Biol,2007,9(5):550-555.
    [252] GALLUZZI L, KROEMER G. Mitochondrial apoptosis without VDAC[J]. NatCell Biol,2007,9(5):487-489.
    [253] KOKOSZKA JE, WAYMIRE KG, LEVY SE et al. The ADP/ATP translocatoris not essential for the mitochondrial permeability transition pore[J]. Nature,2004,427(6973):461-465.
    [254] MAJEWSKI N, NOGUEIRA V, BHASKAR P et al. Hexokinase-mitochondriainteraction mediated by Akt is required to inhibit apoptosis in the presence orabsence of Bax and Bak[J]. Mol Cell,2004,16(5):819-830.
    [255] ZAMORA M, GRANELL M, MAMPEL T, VINAS O. Adenine nucleotidetranslocase3(ANT3) overexpression induces apoptosis in cultured cells[J].FEBS Lett,2004,563(1-3):155-160.
    [256] BAUER MK, SCHUBERT A, ROCKS O, GRIMM S. Adenine nucleotidetranslocase-1, a component of the permeability transition pore, can dominantlyinduce apoptosis[J]. J Cell Biol,1999,147(7):1493-1502.
    [257] LE BRAS M, BORGNE-SANCHEZ A, TOUAT Z et al. Chemosensitization byknockdown of adenine nucleotide translocase-2[J]. Cancer Res,2006,66(18):9143-9152.
    [258] MARZO I, BRENNER C, ZAMZAMI N et al. Bax and adenine nucleotidetranslocator cooperate in the mitochondrial control of apoptosis[J]. Science,1998,281(5385):2027-2031.
    [259] BELZACQ AS, VIEIRA HL, VERRIER F et al. Bcl-2and Bax modulateadenine nucleotide translocase activity[J]. Cancer Res,2003,63(2):541-546.
    [260] ZHIVOTOVSKY B, GALLUZZI L, KEPP O, KROEMER G. Adeninenucleotide translocase: a component of the phylogenetically conserved celldeath machinery[J]. Cell Death Differ,2009,16(11):1419-1425.
    [261] DON AS, KISKER O, DILDA P et al. A peptide trivalent arsenical inhibitstumor angiogenesis by perturbing mitochondrial function in angiogenicendothelial cells[J]. Cancer Cell,2003,3(5):497-509.
    [262] BELZACQ AS, EL HAMEL C, VIEIRA HL et al. Adenine nucleotidetranslocator mediates the mitochondrial membrane permeabilization induced bylonidamine, arsenite and CD437[J]. Oncogene,2001,20(52):7579-7587.
    [263] OUDARD S, CARPENTIER A, BANU E et al. Phase II study of lonidamineand diazepam in the treatment of recurrent glioblastoma multiforme[J]. JNeurooncol,2003,63(1):81-86.
    [264] DOGLIOTTI L, BERRUTI A, BUNIVA T et al. Lonidamine significantlyincreases the activity of epirubicin in patients with advanced breast cancer:results from a multicenter prospective randomized trial[J]. J Clin Oncol,1996,14(4):1165-1172.
    [265] PAPALDO P, LOPEZ M, CORTESI E et al. Addition of either lonidamine orgranulocyte colony-stimulating factor does not improve survival in early breastcancer patients treated with high-dose epirubicin and cyclophosphamide[J]. JClin Oncol,2003,21(18):3462-3468.
    [266] LEHENKARI PP, KELLINSALMI M, NAPANKANGAS JP et al. Furtherinsight into mechanism of action of clodronate: inhibition of mitochondrialADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite[J].Mol Pharmacol,2002,61(5):1255-1262.
    [267] DIEL IJ, JASCHKE A, SOLOMAYER EF et al. Adjuvant oral clodronateimproves the overall survival of primary breast cancer patients withmicrometastases to the bone marrow: a long-term follow-up[J]. Ann Oncol,2008,19(12):2007-2011.
    [268] GREEN JR. Antitumor effects of bisphosphonates[J]. Cancer,2003,97(3Suppl):840-847.
    [269] TANG X, ZHANG Q, SHI S et al. Bisphosphonates suppress insulin-likegrowth factor1-induced angiogenesis via the HIF-1alpha/VEGF signalingpathways in human breast cancer cells[J]. Int J Cancer,2010,126(1):90-103.
    [270] SLACK JL, RUSINIAK ME. Current issues in the management of acutepromyelocytic leukemia[J]. Ann Hematol,2000,79(5):227-238.
    [271] MARCHETTI P, ZAMZAMI N, JOSEPH B et al. The novel retinoid6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphtalene carboxylic acid can triggerapoptosis through a mitochondrial pathway independent of the nucleus[J].Cancer Res,1999,59(24):6257-6266.
    [272] NOTARIO B, ZAMORA M, VINAS O, MAMPEL T. All-trans-retinoic acidbinds to and inhibits adenine nucleotide translocase and induces mitochondrialpermeability transition[J]. Mol Pharmacol,2003,63(1):224-231.
    [273] PARRELLA E, GIANNI M, FRATELLI M et al. Antitumor activity of theretinoid-related molecules (E)-3-(4'-hydroxy-3'-adamantylbiphenyl-4-yl)acrylicacid (ST1926) and6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalenecarboxylic acid (CD437) in F9teratocarcinoma: Role of retinoic acid receptorgamma and retinoid-independent pathways[J]. Mol Pharmacol,2006,70(3):909-924.
    [274] SALA F, ZUCCHETTI M, BAGNATI R et al. Development and validation of aliquid chromatography-tandem mass spectrometry method for thedetermination of ST1926, a novel oral antitumor agent, adamantyl retinoidderivative, in plasma of patients in a Phase I study[J]. J Chromatogr B AnalytTechnol Biomed Life Sci,2009,877(27):3118-3126.
    [275] MAASER K, GRABOWSKI P, OEZDEM Y et al. Up-regulation of theperipheral benzodiazepine receptor during human colorectal carcinogenesis andtumor spread[J]. Clin Cancer Res,2005,11(5):1751-1756.
    [276] GALIEGUE S, CASELLAS P, KRAMAR A, TINEL N,SIMONY-LAFONTAINE J. Immunohistochemical assessment of theperipheral benzodiazepine receptor in breast cancer and its relationship withsurvival[J]. Clin Cancer Res,2004,10(6):2058-2064.
    [277] OKARO AC, FENNELL DA, CORBO M, DAVIDSON BR, COTTER FE.Pk11195, a mitochondrial benzodiazepine receptor antagonist, reducesapoptosis threshold in Bcl-X(L) and Mcl-1expressing humancholangiocarcinoma cells[J]. Gut,2002,51(4):556-561.
    [278] DECAUDIN D, CASTEDO M, NEMATI F et al. Peripheral benzodiazepinereceptor ligands reverse apoptosis resistance of cancer cells in vitro and invivo[J]. Cancer Res,2002,62(5):1388-1393.
    [279] GONZALEZ-POLO RA, CARVALHO G, BRAUN T et al. PK11195potentlysensitizes to apoptosis induction independently from the peripheralbenzodiazepin receptor[J]. Oncogene,2005,24(51):7503-7513.
    [280] WALTER RB, PIRGA JL, CRONK MR et al. PK11195, a peripheralbenzodiazepine receptor (pBR) ligand, broadly blocks drug efflux tochemosensitize leukemia and myeloma cells by a pBR-independent, directtransporter-modulating mechanism[J]. Blood,2005,106(10):3584-3593.
    [281] PALMEIRA CM, WALLACE KB. Benzoquinone inhibits thevoltage-dependent induction of the mitochondrial permeability transitioncaused by redox-cycling naphthoquinones[J]. Toxicol Appl Pharmacol,1997,143(2):338-347.
    [282] COSTANTINI P, BELZACQ AS, VIEIRA HL et al. Oxidation of a critical thiolresidue of the adenine nucleotide translocator enforces Bcl-2-independentpermeability transition pore opening and apoptosis[J]. Oncogene,2000,19(2):307-314.
    [283] LIM D, MORGAN RJ, JR., AKMAN S et al. Phase I trial of menadioldiphosphate (vitamin K3) in advanced malignancy[J]. Invest New Drugs,2005,23(3):235-239.
    [284] SARIN SK, KUMAR M, GARG S et al. High dose vitamin K3infusion inadvanced hepatocellular carcinoma[J]. J Gastroenterol Hepatol,2006,21(9):1478-1482.
    [285] MAGDA D, MILLER RA. Motexafin gadolinium: a novel redox active drugfor cancer therapy[J]. Semin Cancer Biol,2006,16(6):466-476.
    [286] MEHTA MP, SHAPIRO WR, PHAN SC et al. Motexafin gadolinium combinedwith prompt whole brain radiotherapy prolongs time to neurologic progressionin non-small-cell lung cancer patients with brain metastases: results of a phaseIII trial[J]. Int J Radiat Oncol Biol Phys,2009,73(4):1069-1076.
    [287] BRADLEY KA, POLLACK IF, REID JM et al. Motexafin gadolinium andinvolved field radiation therapy for intrinsic pontine glioma of childhood: aChildren's Oncology Group phase I study[J]. Neuro Oncol,2008,10(5):752-758.
    [288] BEY EA, BENTLE MS, REINICKE KE et al. An NQO1-andPARP-1-mediated cell death pathway induced in non-small-cell lung cancercells by beta-lapachone[J]. Proc Natl Acad Sci U S A,2007,104(28):11832-11837.
    [289] MAEDA H, HORI S, OHIZUMI H et al. Effective treatment of advanced solidtumors by the combination of arsenic trioxide and L-buthionine-sulfoximine[J].Cell Death Differ,2004,11(7):737-746.
    [290] DRAGOVICH T, GORDON M, MENDELSON D et al. Phase I trial of imexonin patients with advanced malignancy[J]. J Clin Oncol,2007,25(13):1779-1784.
    [291] MOULDER S, DHILLON N, NG C et al. A phase I trial of imexon, apro-oxidant, in combination with docetaxel for the treatment of patients withadvanced breast, non-small cell lung and prostate cancer[J]. Invest New Drugs,2009,28(5):634-640.
    [292] TRACHOOTHAM D, ZHOU Y, ZHANG H et al. Selective killing ofoncogenically transformed cells through a ROS-mediated mechanism bybeta-phenylethyl isothiocyanate[J]. Cancer Cell,2006,10(3):241-252.
    [293] XIAO D, LEW KL, ZENG Y et al. Phenethyl isothiocyanate-induced apoptosisin PC-3human prostate cancer cells is mediated by reactive oxygenspecies-dependent disruption of the mitochondrial membrane potential[J].Carcinogenesis,2006,27(11):2223-2234.
    [294] ALEXANDRE J, NICCO C, CHEREAU C et al. Improvement of thetherapeutic index of anticancer drugs by the superoxide dismutase mimicmangafodipir[J]. J Natl Cancer Inst,2006,98(4):236-244.
    [295] HUANG P, FENG L, OLDHAM EA, KEATING MJ, PLUNKETT W.Superoxide dismutase as a target for the selective killing of cancer cells[J].Nature,2000,407(6802):390-395.
    [296] WOOD L, LEESE MR, LEBLOND B et al. Inhibition of superoxide dismutaseby2-methoxyoestradiol analogues and oestrogen derivatives: structure-activityrelationships[J]. Anticancer Drug Des,2001,16(4-5):209-215.
    [297] JUAREZ JC, MANUIA M, BURNETT ME et al. Superoxide dismutase1(SOD1) is essential for H2O2-mediated oxidation and inactivation ofphosphatases in growth factor signaling[J]. Proc Natl Acad Sci U S A,2008,105(20):7147-7152.
    [298] LU J, CHEW EH, HOLMGREN A. Targeting thioredoxin reductase is a basisfor cancer therapy by arsenic trioxide[J]. Proc Natl Acad Sci U S A,2007,104(30):12288-12293.
    [299] TUMA RS. Reactive oxygen species may have antitumor activity in metastaticmelanoma[J]. J Natl Cancer Inst,2008,100(1):11-12.
    [300] MATEI D, SCHILDER J, SUTTON G et al. Activity of2methoxyestradiol(Panzem NCD) in advanced, platinum-resistant ovarian cancer and primaryperitoneal carcinomatosis: a Hoosier Oncology Group trial[J]. Gynecol Oncol,2009,115(1):90-96.
    [301] TEVAARWERK AJ, HOLEN KD, ALBERTI DB et al. Phase I trial of2-methoxyestradiol NanoCrystal dispersion in advanced solid malignancies[J].Clin Cancer Res,2009,15(4):1460-1465.
    [302] RAJKUMAR SV, RICHARDSON PG, LACY MQ et al. Novel therapy with2-methoxyestradiol for the treatment of relapsed and plateau phase multiplemyeloma[J]. Clin Cancer Res,2007,13(20):6162-6167.
    [303] O'DAY S, GONZALEZ R, LAWSON D et al. Phase II, randomized, controlled,double-blinded trial of weekly elesclomol plus paclitaxel versus paclitaxelalone for stage IV metastatic melanoma[J]. J Clin Oncol,2009,27(32):5452-5458.
    [304] BERKENBLIT A, EDER JP, JR., RYAN DP et al. Phase I clinical trial ofSTA-4783in combination with paclitaxel in patients with refractory solidtumors[J]. Clin Cancer Res,2007,13(2Pt1):584-590.
    [305] SLYE M. The Incidence and Inheritability of spontaneous tumors in Mice:(Second report.)[J]. The Journal of medical research,1914,30(3):281-298.
    [306] LITTLE CC, TYZZER EE. Further experimental studies on the inheritance ofsusceptibility to a Transplantable tumor, Carcinoma (J. W. A.) of the Japanesewaltzing Mouse[J]. The Journal of medical research,1916,33(3):393-453.
    [307] CAPECCHI MR. Altering the genome by homologous recombination[J].Science (New York, NY,1989,244(4910):1288-1292.
    [308] STRUNK KE, AMANN V, THREADGILL DW. Phenotypic variation resultingfrom a deficiency of epidermal growth factor receptor in mice is caused byextensive genetic heterogeneity that can be genetically and molecularlypartitioned[J]. Genetics,2004,167(4):1821-1832.
    [309] GHEBRANIOUS N, SELL S. The mouse equivalent of the human p53ser249mutation p53ser246enhances aflatoxin hepatocarcinogenesis in hepatitis Bsurface antigen transgenic and p53heterozygous null mice[J]. Hepatology(Baltimore, Md,1998,27(4):967-973.
    [310] MCGLYNN KA, HUNTER K, LEVOYER T et al. Susceptibility to aflatoxinB1-related primary hepatocellular carcinoma in mice and humans[J]. Cancerresearch,2003,63(15):4594-4601.
    [311] STRUEWING JP, HARTGE P, WACHOLDER S et al. The risk of cancerassociated with specific mutations of BRCA1and BRCA2among AshkenaziJews[J]. The New England journal of medicine,1997,336(20):1401-1408.
    [312] QUIGLEY DA, TO MD, PEREZ-LOSADA J et al. Genetic architecture ofmouse skin inflammation and tumour susceptibility[J]. Nature,2009,458(7237):505-508.
    [313] WEBER JL, MAY PE. Abundant class of human DNA polymorphisms whichcan be typed using the polymerase chain reaction[J]. American journal ofhuman genetics,1989,44(3):388-396.
    [314] PLETCHER MT, MCCLURG P, BATALOV S et al. Use of a dense singlenucleotide polymorphism map for in silico mapping in the mouse[J]. PLoSbiology,2004,2(12): e393.
    [315] CARLSON CS, EBERLE MA, RIEDER MJ et al. Selecting a maximallyinformative set of single-nucleotide polymorphisms for association analysesusing linkage disequilibrium[J]. American journal of human genetics,2004,74(1):106-120.
    [316] MOSER AR, DOVE WF, ROTH KA, GORDON JI. The Min (multipleintestinal neoplasia) mutation: its effect on gut epithelial cell differentiation andinteraction with a modifier system[J]. The Journal of cell biology,1992,116(6):1517-1526.
    [317] MACPHEE M, CHEPENIK KP, LIDDELL RA et al. The secretoryphospholipase A2gene is a candidate for the Mom1locus, a major modifier ofApcMin-induced intestinal neoplasia[J]. Cell,1995,81(6):957-966.
    [318] EWART-TOLAND A, BRIASSOULI P, DE KONING JP et al. Identification ofStk6/STK15as a candidate low-penetrance tumor-susceptibility gene in mouseand human[J]. Nature genetics,2003,34(4):403-412.
    [319] PARK YG, ZHAO X, LESUEUR F et al. Sipa1is a candidate for underlyingthe metastasis efficiency modifier locus Mtes1[J]. Nature genetics,2005,37(10):1055-1062.
    [320] REILLY KM, TUSKAN RG, CHRISTY E et al. Susceptibility to astrocytomain mice mutant for Nf1and Trp53is linked to chromosome11and subject toepigenetic effects[J]. Proceedings of the National Academy of Sciences of theUnited States of America,2004,101(35):13008-13013.
    [321] CRAWFORD NP, QIAN X, ZIOGAS A et al. Rrp1b, a new candidatesusceptibility gene for breast cancer progression and metastasis[J]. PLoSgenetics,2007,3(11): e214.
    [322] CRAWFORD NP, ZIOGAS A, PEEL DJ et al. Germline polymorphisms inSIPA1are associated with metastasis and other indicators of poor prognosis inbreast cancer[J]. Breast Cancer Res,2006,8(2): R16.
    [323] DARVASI A. Experimental strategies for the genetic dissection of complextraits in animal models[J]. Nature genetics,1998,18(1):19-24.
    [324] NADEAU JH, SINGER JB, MATIN A, LANDER ES. Analysing complexgenetic traits with chromosome substitution strains[J]. Nature genetics,2000,24(3):221-225.
    [325] DE KONING JP, MAO JH, BALMAIN A. Novel approaches to identifylow-penetrance cancer susceptibility genes using mouse models[J]. Recentresults in cancer research Fortschritte der Krebsforschung,2003,163:19-27;discussion264-266.
    [326] CHURCHILL GA, AIREY DC, ALLAYEE H et al. The Collaborative Cross, acommunity resource for the genetic analysis of complex traits[J]. Naturegenetics,2004,36(11):1133-1137.
    [327] MUCENSKI ML, TAYLOR BA, JENKINS NA, COPELAND NG. AKXDrecombinant inbred strains: models for studying the molecular genetic basis ofmurine lymphomas[J]. Molecular and cellular biology,1986,6(12):4236-4243.
    [328] HUNTER KW, BROMAN KW, VOYER TL et al. Predisposition to efficientmammary tumor metastatic progression is linked to the breast cancer metastasissuppressor gene Brms1[J]. Cancer research,2001,61(24):8866-8872.
    [329] CRAWFORD NP, ALSARRAJ J, LUKES L et al. Bromodomain4activationpredicts breast cancer survival[J]. Proceedings of the National Academy ofSciences of the United States of America,2008,105(17):6380-6385.
    [330] CRAWFORD NP, WALKER RC, LUKES L et al. The Diasporin Pathway: atumor progression-related transcriptional network that predicts breast cancersurvival[J]. Clinical&experimental metastasis,2008,25(4):357-369.