高胰岛素促单核/巨噬源性泡沫细胞ACAT-1表达及漏芦对其影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心脑血管疾病严重危害着人类健康,动脉粥样硬化是心脑血管疾病共同的病理基础。全世界每年死于心脑血管疾病的比率接近总死亡人数的三分之一;我国每年死于心、脑血管疾病的人数占总死亡人数的41%,近年来心脑血管疾病的年轻化趋势日益渐重,故早期预防动脉粥样硬化的发生具有十分重要的社会意义。
     目的:
     高胰岛素血症是致动脉粥样硬化发生的独立危险因素,单核巨噬细胞源性泡沫细胞是动脉粥样硬化早期病变的基础,研究高浓度胰岛素与动脉粥样硬化的形成机制及寻找早期防治动脉粥样硬化的药物,将为预防并治疗高胰岛素血症并发症开辟新出路。
     以往研究表明,漏芦可减轻动脉粥样硬化的病变程度,抑制巨噬细胞摄取ox-LDL,对单核巨噬细胞源性泡沫细胞的形成有显著抑制作用。
     本实验通过佛波酯诱导人单核细胞成巨噬细胞后,再与ox-LDL孵育,同时给予高胰岛素处理,在其基础上再给予不同浓度的漏芦提取物,进而探索漏芦提取物抑制高胰岛素促进巨噬细胞摄入ox-LDL的机制,从而探索漏芦对于早期动脉粥样硬化的预防与治疗效果。本实验研究对于漏芦预防动脉粥样硬化早期病变有一定的意义。
     方法:
     1.MTT实验确定诱导单核细胞的最佳PMA浓度:人单核细胞与PMA孵育,观察PMA对人单核细胞转化成巨噬细胞的影响。
     2.MTT实验确定胰岛素、氟伐他汀及漏芦的实验浓度:人巨噬细胞与不同浓度胰岛素、氟伐他汀及漏芦作用48h后,通过检测细胞活性观察三者的细胞毒性。
     3.油红0染色观察泡沫细胞转化率、酶法测定泡沫细胞胆固醇酯含量、实时荧光定量PCR实验检测ACAT-lmRNA的表达量及Western blot实验检测ACAT-1蛋白的表达量:PMA诱导人单核细胞成巨噬细胞后,再与ox-LDL孵育,并且同时分别给予胰岛素、氟伐他汀及漏芦培养48h。
     结果:
     1.MTT实验确定诱导单核细胞的最佳PMA浓度:
     PMA作用单核细胞24h及48h后,在40-160nmol/L范围内,随PMA浓度的升高巨噬细胞转化率升高,在160-640nmol/L范围内,随PMA浓度的升高巨噬细胞转化率降低;PMA作用24h后,160nmol/L浓度组与单核细胞组比较差异最大,有明显统计学意义(P<0.01),作用48h后,160nmol/L浓度组与单核细胞组比较差异最大,有统计学意义(Y<0.05),且PMA诱导24h较48h巨噬细胞转化率高,故选择160nmol/LPMA诱导单核细胞24h。
     2.MTT实验确定胰岛素、氟伐他汀及漏芦的实验浓度:
     不同浓度胰岛素作用于人巨噬细胞48h后,胰岛素浓度在0.005-0.1u/L范围内时,与巨噬细胞组比较差异均无统计学意义(P>O.05)。氟伐他汀10-5mol/L浓度组与巨噬细胞组相比差异有统计学意义(PO.05),故本实验采用10-6mol/L作为药物作用浓度。漏芦浓度在0.005-0.5g/L浓度范围时与巨噬细胞组比较差异均无统计学意义(P>0.05),1g/L浓度组与巨噬细胞组比较差异有统计学意义(P<0.05),出现细胞毒性,故选用O.5、0.05、0.005g/L分别作为漏芦高、中、低药物浓度进行实验。
     3.油红0染色观察泡沫细胞转化率:
     ox-LDL+0.02U/L胰岛素浓度组与ox-LDL组相比差异有统计学意义(P<0.05),泡沫细胞转化率升高,并且随着胰岛素浓度升高,转化率升高。正常人空腹胰岛素水平为0.005-0.015U/L,胰岛素水平高于0.015U/L即为高胰岛素血症,故本实验选取0.02U/L的胰岛素浓度作为研究浓度。
     ox-LDL+胰岛素组与ox-LDL组相比差异有统计学意义(P<0.05),泡沫细胞转化率升高:ox-LDL+胰岛素+氟伐他汀组、ox-LDL+胰岛素+高浓度漏芦组、ox-LDL+胰岛素+中浓度漏芦组、ox-LDL+胰岛素+低浓度漏芦组与ox-LDL+胰岛素组相比差异均有统计学意义(P<0.05),泡沫细胞转化率降低,且随漏芦浓度升高,泡沫细胞转化率降低越明显。
     4.酶法测定巨噬细胞源性泡沫细胞胆固醇酯含量:
     ox-LDL组较巨噬细胞组差异有统计学意义(P<0.05),胆固醇酯含量增高;0.02U/L胰岛素组、0.04U/L胰岛素组、0.06U/L胰岛素组均较ox-LDL组差异有统计学意义(P<0.05),胆固醇酯含量均增高,随着胰岛素浓度升高,胆固醇酯含量升高。
     ox-LDL组较巨噬细胞组差异有统计学意义(K0.05),胆固醇酯含量增高;ox-LDL+胰岛素组较ox-LDL组差异有统计学意义(P<0.05),胆固醇酯含量增高:ox-LDL+胰岛素+氟伐他汀组、ox-LDL+胰岛素+高浓度漏芦组、ox-LDL+胰岛素十中浓度漏芦组、ox-LDL+胰岛素+低浓度漏芦组均较ox-LDL+胰岛素组差异有统计学意义(P<0.05),胆固醇酯含量降低,且随漏芦浓度升高,胆固醇酯含量降低越明显。
     5.实时荧光定量PCR实验检测ACAT-lmRNA的表达量:
     ox-LDL组较巨噬细胞组差异有统计学意义(P<0.05), ACAT-lmRNA的表达量升高;ox-LDL+胰岛素组较ox-LDL组差异有统计学意义(P<0.05), ACAT-lmRNA的表达量升高;ox-LDL+胰岛素+氟伐他汀组、ox-LDL+胰岛素+高浓度漏芦组、ox-LDL+胰岛素+中浓度漏芦组、ox-LDL+胰岛素+低浓度漏芦组均较ox-LDL+胰岛素组差异有统计学意义(P<0.05), ACAT-lmRNA的表达量降低,且随漏芦浓度升高,ACAT-lmRNA的表达量降低越明显。
     6. Western blot实验观察ACAT-1蛋白的表达量:
     ox-LDL组较巨噬细胞组差异有统计学意义(P<0.05), ACAT-1蛋白的表达量升高;ox-LDL+胰岛素组较ox-LDL组差异有统计学意义(P<0.05), ACAT-1蛋白的表达量升高;ox-LDL+胰岛素+氟伐他汀组、ox-LDL+胰岛素+高浓度漏芦组、ox-LDL+胰岛素+中浓度漏芦组、ox-LDL+胰岛素+低浓度漏芦组均较ox-LDL+胰岛素组差异有统计学意义(P<0.05), ACAT-1蛋白的表达量降低,且随漏芦浓度升高,ACAT-1蛋白的表达量降低越明显。
     结论:
     1.PMA诱导单核细胞转化成巨噬细胞后,再与ox-LDL孵育,能够模拟单核巨噬细胞源性泡沫细胞的形成过程。
     2.油红0染色及酶法测定泡沫细胞胆固醇酯含量发现高浓度胰岛素具有促进巨噬细胞源性泡沫细胞形成的作用,漏芦提取物可以抑制高浓度胰岛素促进泡沫细胞形成过程的作用。
     3. Western blot实验及实时荧光定量PCR实验均发现:高浓度胰岛素促进泡沫细胞形成的作用与促进ACAT-1的表达关系密切,漏芦提取物能够抑制高浓度胰岛素促进ACAT-1表达过程的作用。
     4.由此可见高浓度胰岛素促进泡沫细胞形成与漏芦提取物抑制泡沫细胞形成的作用均与ACAT-1有密切的关系。本实验为漏芦预防动脉粥样硬化提供了初步实验依据。
Atherosclerosis is the common pathological basis of cardiovascular and cerebrovascular diseases which is very harmful to human health. The pepole dying of cardiovascular and cerebrovascular diseases in the world reaches one third of total deaths; in China, the pepole dying of cardiovascular and cerebrovascular diseases reaches41%oftotal deaths.In recent years there is a growing number of young people suffering from cardiovascular and cerebrovascular diseases, and therefore early prevention of atherosclerosis has a very important social significance.
     The hyperinsulinnemia is an independent risk factor of the atherosclerosis. The foam cells from mononuclear-macrophagocyte are the foundation of the atherosclerosis inearly lesion phase.The study about the formation mechanism of the hyperinsulinnemiaand atherosclerosis and looking for the drugs of early prevention and treatment of atherosclerosis will open up a new way to provide prevention and treatment for complications of hyperinsulinemia.
     The previous studies show that Loulu could reduce the lesion of atherosclerosis and inhibit macrophage uptake of ox-LDL. The foam cells from mononuclear-macrophagocyte could be significantly inhibited by Loulu.
     Objective:
     Tn this study, monocyte has been induced to macrophage by PMA, incubating withox-LDL,at the same time,high insulin and Loulu have been added to the cells,finally we can explore the mechanism that the extract of Loulu inhibits macrophage uptake of ox-LDL which is promoted by hyperinsulinemia. We can explore the prevention and treatment effect of the Loulu on early atherosclerosis.lt has an very important meaning to prevention of atherosclerosis.
     Methods:
     1. Detecting the optimal PMA concentration of inducing monocytes by MTT assay:
     After THP-1cells being incubated with PMA, to observe the influence of monocyte from the different concentrations of PMA.
     2. Determining the concentration of experimental drugs such as insulin, Fluorine simvastatin and Loulu by MTT:After macrophages being incubated with insulin, Fluorine simvastatin and Loulu48h, to observe cytotoxicity of insulin, Fluorine simvastatin and Loulu by detecting cells activity.
     3. Detecting the rate of foam cell transformation by Oil red O staining, detectingthe cholesterol ester content of foam cells by enzymatic, observing the expression of ACAT-lmRNA by real time PCR and observing the expression of AC AT-1protein by Western blot:after monocyte has been induced to macrophage by PMA,incubating with ox-LDL48h, at the same time, high insulin, Fluorine simvastatin and Loulu have been added to the cells.
     Results:
     1. Detecting the optimal PMA concentration of inducing monocytes by MTT assay:After incubating with PMA24h and48h, we could see that the conversion of macrophagesincreases following increasing of PMA concentration between40nmoL/L and160nmoL/L, and the conversion of macrophages reduces following increasing of PMAconcentration between160nmoL/L and480nmoL/L.There is statistically significant difference between160noml/L group and monocyte group (P<0.05). Compared with48h, the conversion of macrophages rate of24h is higher, so we choose the160noml/L PMA to induce THP-1cells24h.
     2. Determining the concentration of experimental drugs such as insulin, Fluorine simvastatin and Loulu by MTT:
     After cultivating by different concentrations of insulin48h,compared with the control group,there is no statistically significant difference between0.005U/L and0.1U/L (P>0.05). After cultivating by different concentrations Fluorine simvastatin of48h,compared with the control group,there is no statistically significant difference below10-5mol/L (P>0.05), and there is statistically significant difference exceed10-5mol/L (P<0.05).Therefore, we choose the10-6mol/L as the action concentration of drug. After cultivated by different concentrations of Loulu48h, compared with the control group,there is no statistically significant difference between0.005g/l and0.5g/L (P>0.05),there is statistically significant in lg/L(P<0.05),which appears cytotoxicity.
     3. Detecting the rate of foam cell transformation by Oil red O staining:
     There is statistically significant difference between group of ox-LDL and group of ox-LDL and0.02U/L insulin(P<0.05); foam cell transformation rate increases with insulin concentrations. Normal fasting insulin level is0.005-0.015U/L, and definitionof the hyperinsulinemia is insulin level which is higher than the0.015U/L, so we select0.02U/L insulin concentration as the research concentration.
     There is statistically significant between group of ox-LDL and group of ox-LDL and insulin (P<0.05); foam cell transformation rate increases with insulin concentrations. Compared with the ox-LDL+insulin group by ox-LDL-+insulin+Fluorine simvastatin group,ox-LDL+insulin+high concentrations of Loulu group, ox-LDL+insulin+concentration Loulu group, ox-LDL+insulin+low concentrations of the Loulu group,the difference is statistically significant (P<0.05), foam cell transformation rate reduces following increasing of Loulu concentration.
     4. Detecting the cholesterol ester content of foam cells by enzymatic:
     There is statistically significant between group of ox-LDL and macrophage group (P<0.05),the cholesterol ester content of foam cells increased. Compared with ox-LDLgroup,0.02U/L insulin group,0.04U/L insulin group and0.06U/L insulin group have statistical difference(P<0.05), cholesterol ester content increased with insulinconcentrations increasing.
     There is statistically significant difference between group of ox-LDL and macrophage group (P<0.05), the cholesterol ester content of foam cells increased. Compared with the ox-LDL+insulin group by ox-LDL-+insulin+Fluorine simvastatin group,ox-LDL+insulin+high concentrations of Loulu group, ox-LDL+insulin+concentration Loulu group ox-LDL+insulin+low concentrations of the Loulu group,thedifference is statistically significant (P<0.05), the cholesterol ester content of foam cells reduces following increasing of Loulu concentration.
     5. Observing the expression of ACAT-1mRNA by real time PCR:
     There is statistically significant between group of ox-LDL and macrophage group (P<0.05),the ACAT-lmRNA increased. Compared with the ox-LDL+insulin group by ox-LDL-H-insulin+Fluorine simvastatin group,ox-LDL+insulin+high concentrations of Loulu group, ox-LDL+insulin+concentration Loulu group, ox-LDL+insulin+low concentrations of the Loulu group,the differences is statistically significant (P<0.05), the ACAT-1mRNA reduces following increasing of Loulu concentration.
     6.Observing the expression of ACAT-1protein by Westren blot:There is statistically significant between group of ox-LDL and macrophage group (P<0.05),the ACAT-1protein increased. Compared with the ox-LDL+insulin group by ox-LDL-+insulin+Fluorine simvastatin group,ox-LDL+insulin+high concentrations of Loulu group, ox-LDL+insulin+concentration Loulu group, ox-LDL+insulin+low concentrations of the Loulu group,the differences is statistically significant (P<0.05), the ACAT-1protein reduces following increasing of Loulu concentration.
     Conclusions:
     1. Induced by PMA,macrophages were incubated with ox-LDL,which can simulate the formation of foam cells.
     2. Detecting the rate of foam cell transformation by Oil red O staining and detecting the cholesterol ester content of foam cells by enzymatic:high concentrations of insulin can promote foam cell formation, which can be inhibited by Loulu.
     3. By Western blot and real time PCR:the function which high concentrations of insulin can promote foam cell formation is related to the exprssion of ACAT-1which is promoted by insulin, which can be inhibited by Loulu.
     4. So the function that insulin of high concentrations promoting foam cell formation and Loulu inhibiting foam cell formation is close related with the expression of ACAT-1. This study provides preliminary experimental evidence for Loulu preventing atherosclerosis.
引文
[1]杨永宗.动脉粥样硬化性心血管病基础与临床(第二版)[M].北京:科学出版社,2009.11.
    [2]MoghadasianM H. Experimental atherosclerosis:a histori-cal overview[J]. Life Sc.i 2002,70:855-865.
    [3]Williams J K, Sukhova G K, Herrington D M, et a.1 Pravastatin has cholesterol lowering independent effects on the artery wall of atherosclerotic monkeys [J]. J Am CollCardio.l 1998,31:684-691.
    [4]Danesh J, Wheeler JG, HirschfieldGM, eta.1 Oreactiveprotein and other circulatingmarkers of inflammation in the prediction of coronary heart disease[J]. N Engl J Med,2004,350:1387-1397.
    [5]Curb J D, AbbottR D, Rodriguez B L, et a.1 C-reactiveprotein and the future risk of thromboembolic stroke in healthymen[J]. Circulation,2003, 107:2016-2020.
    [6]谭健苗,杨永宗,袁中华等.巨噬细胞源性与肌源性泡沫细胞的不同特性研究[J].广州医学院学报,2001,29(2):25-29.
    [7]Choudhury RP.Lee JM,Greaves DR. Mechanisms of diseAse:macrophage-derived foam cells emerging As therapeutic targets in atherosclerosis [J]. Nat Clin Pract CardiovAsc Med.2005,2(6):309-15.
    [8]李素敏.弱氧化型低密度脂蛋白的致动脉粥样硬化作用[J].中国动脉硬化杂志,2002,10(3):271-274.
    [9]李勇.氧化的低密度脂蛋白与动脉粥样硬化[J].国外医学心血管疾病分册,1996,23:158.
    [10]Negre-Salvayre A.Pieraggi MT.Mebile L,et al.Pretective effect 17 β-estradiol against the cytotoxicity of minimally oxidized LDLto cultured bovine-aortic eudothelial cells[J]. Atherosclerosis,1993,99:207.
    [11]Bolten EJ, Jessup W, Stauley K, et al. Enhanced LDL Oxidation by murine-macrophage foam cells and their failure to secrete nitric-oxide[J]. Atherosclerosis,1994,108:213.
    [12]蓝荣芳,刘正湘.oxLDL与动脉粥样硬化[J].中国组织化学与细胞化学杂志,2002,1l(4):485-488.
    [13]Zhao B, ZhangY, Liu B, et al. Endothelial cells injured by oxidized low density lipoproteins[J]. Am J Hematol.1995; 49(3):2S0-2S2.
    [14]崔国芳.何秉贤.低密度脂蛋白与动脉粥样硬化关系的研究进展[J].现代诊断与治疗.1999,10(5):287—289.
    [15]Li D, Yang B, Mehta JL, et al.Ox-LDL induces apoptosis in human coronary artery endothelial cells:role of PKC, PTK, bcl-2, and Fas[J]. Am J Physiol. 1998; 275 (2):568-576.
    [16]罗朝淑,万英,李著华.氧化低密度脂蛋白在动脉粥样硬化发病机理中的作用[J].四川生理科学杂志.2005;27(1):23-25.
    [17]汪浩川,刘秉文,傅明德.天然和氧化修饰脂蛋白对培养人动脉平滑肌细胞原癌基因表达的影响[J].生物化学与生物物理学报.1995,27(5):507-513.
    [18]Hamiltion TA, Ma G, Chisom GM. Oxidized low density lipoprotein suppresses the expression of tumor necrosis factor a mRNA in stimulated morine peritoneal macrophages[J]. J Immunod.1990;144(6):2343-2350.
    [19]Li M, Freeman MW, Libby P. Regulation of smooth muscle cell scavenger receptor express in vivo by atherogenic diets and in vitro by cytokines[J].J Clin Invest.1995; 95:122-133.
    [20]Ottnad E, Parthasarathy S, Sambrano GR, et al. A macrophage receptor for oxidized low density lipoprotein distinct the receptor for acetyl low density lipoprotein:partial purification and role in recognition of oxidatively damaged cells[J]. Proc Natl Acad Sci USA.1995;28;92(5):1391-1395.
    [21]Sparrow CP, Parthasarathy S, Steinberg D. A macrophage recetor that oxidized low density lipoprotein but not acetylated low density lipoprotein[J]. J Bio-1 Chem.1989:264:2599.
    [22]Giardina JB,Tanner DJ,Khalil RA. Oxidized-LDL enhances coronary vasoconstriction by increasing the activity of protein kinase C isoforms alpha and epsilon[J]. Hypertension.2001;37(2):561-568.
    [23]Chan H, Lougheed M, Laher I, et al. Oxidized low-density lipoprotein in-hibits endothelium-dependent vasodilation by an antioxidant-sensitive, lys-ophosphatidylcholine-independent mechanism[J]. J Cardiovascular Pharmacology. 2003; 41(6):856-865.
    [24]Mukherjee S, Coaxum SD, Maleque M, et al. Effects of oxidized low density lipoprotein on nitric oxide synthetase and protein kinase C activitiesin bovine endothelial cells[J]. Cell Mol Biol-(Noisy-le-grand).2001:47 (6):1051-1058.
    [25]王燕.OxLDL与动脉粥样硬化的相关性研究-OxLDL与动脉粥样硬化关系的临床观察研究一体外阻断OxLDL对内皮细胞损伤的实验研究[D].济南:山东大学,2009.
    [26]斯维特拉娜.儿童胰岛素抵抗.糖尿病天地临床刊.2009:3(7)290-304.
    [27]何榕,毛节明.胰岛素在动脉粥样硬化和再狭窄发病中的作用[J].心血管病学进展,2005,26(5):491—492.
    [28]Bonora E, Willeit J, Kiech l S, e t a.l U-shaped and J-shaped relationships between serum insulin and coronary heart disease in the general population. The Bruneck Study[J]. Diabetes Care,1998,21(2):221-230.
    [29]Marian J, Muisa B, Michiel L, et al. High Cumulative Insulin Exposure:a Risk Factor of Atherosclerosis in Type 1 Diabetes? [J]. Atherosclerosis,2005, 181:185-192.
    [30]王旭开,杨成明,王红勇等.医源性不同胰岛素剂量对中年2型糖尿病患者合并冠状动脉事件的作用[J].中国动脉硬化杂志,2005,13(7):345—347.
    [31]Karabulut A.Iltunur K, Toprak N, et al.Insulin Response to Oral Glucose Loading and Coronary Artery Dis ease in N on diabetes [J]. Int Heart J.2005, 46(5):761-770.
    [32]Rewers M, Zaccaro D, Agostino RD, etal. Insulin sensitivity, insulinemia, and coronary artery disease:the insulin resistance atherosclerosis study[J]. Diabetes Care,2004,27:781-787.
    [33]EZ Jia.ZJ Yang.B Yuan.et al. Relationship between true fasting plasma i-nsulin level and angiographic characteristics of coronary atherosclerosis [J].ClinCardiol,2006,29(1):25-30.
    [34]Vaidyula VR.Boden G.Rao AK.et al. Platelet and monocyte activation byhyperglycemia and hyperinsulinemia in healthy subjects[J]. Platelets.2006, 17(8):577-585.
    [35]Zhang Ye,Wang Yan, etal. Insulin promotes vascular smooth muscle cell proliferation via microRNA-208-mediated downregulation of p21[J]. Journal of Hypertension,2011,29(8):1560-1568.
    [36]Iida KT,Suzuki H.Sone H,et al. Insulin inhibits apoptosis of macrophagec ell line, THP-1 cells,via phosphatidy linositol-3-kinase-dependent pathway [J].Arterioscler Thromb Vase Biol,2002,22:380-386.
    [37]Fischoeder A.Meyborg H.Stibenz D,et al. Insulin augments matrix metallo-proteinase-9 expression in monocytes[J]. Cardiovasc Res,2007,73(4):841-848.
    [38]Kaoruko TI.Hitoshi S.Yasushi K,et al. Insulin Up-regulates Tumor Necrosis Factor-a Production in Macrophages through an Extracellular-regulated Kinase-dependent Pathway[J].J Biol Chem,2001,276(35):32531-32537.
    [39]Costa Rosa LF,Safi DA.Cury Y,et al. The effect of insulin on macrophage metabolism and function[J]. Cell Biochem Funct,1996,14:33-42.
    [40]Sporstol M,Mousavi SA.Eskild W.et al. ABCA1.ABCG1 and SR-BI:hormonal regulation in primary rat hepatocytes and human cell lines[J].BMC Mol-Biol,2007,8:5.
    [41]Lisa OR,Line MG,Stephen JY.et al. Glucose-dependent regulation of cholesterol ester metabolism in macrophages by insulin and leptin[J]. J Biol-Chem,2002,277(45):42557-42562.
    [42]Pry or PR, Liu SC, Clark AE.et al. Chronic insulin effects on insulin signaling and GLUT4 endocytosis are reversed by metformin[J]. Biochem J,2000,348:83-91.
    [43]Buhman K F, Accad M, Farese RV. Mammalian acyl-CoA:cholesterol acyltransferases[J].Biochim BiophysActa,2000,1529:142-154.
    [44]Anderson R G W. The caveolae membrane System[J]. Annu. Rev. Biochem,19
    [46]Meiner V L,Case S, Myers H M,et aL Disruption Of the acyl-coA:cholesterol acyltransferase gene in mice:evidence suggesting multiple cholesterol esterification enzymes in mammals[J]. Proc Natl Acad Sci US A,1996,93(24):14041-14046.
    [47]Cases S, Novak S, Zheng Y, et al. ACAT-2, A second mammalian acyl CoA: cholesterolacyltransferase:itscloning, expression,andcharacterization[J]. J. B iol.Chem,1998,273:26755-26764.
    [48]Anderson R A, Joyce C, Davis M, et al. Identineation Of a form of acyl-CoA: cholesterol acyltransferase specific to liver and intestine in nonhuman primates[J] J. Biol.Chem,1998,273:26747-26754.
    [49]0elkers P, Behari A.Cromley D,et al. Characterization of two human genesencoding acyl coenzyme A-cholesterol acyltransferase related enzymes [J]. J. Biol.Chem,1998,273:26765-26771.
    [50]Kinncunen PM.De Michele A.Lange LG.et al. Chemical modification of acyl-CoA:cholesterol acyltransferase:I. identification of acyl-CoA:cholesterola-cyltransferase sub-types by diferential diethyl pyrocarbonate sensitivity [J].Biochemistry,1988,27(19):7344-7350.
    [5l]Chang TY,Chang CCY.Chen D. Acyl-Coenzyme A:cholesterol acyltransferase [Jl.Ann. Rev.Biochem,1996,66:613-38.
    [52]Meiner VL, Cases S, Myers HM, etal. Disruption of the acyl-CoA:eholesterol acyltransferase gene in mice:evidences uggesting multiple cholesterol esterifieationenzymesin mammals[J]. Proe. Natl. Acad. Sci. U. S. A.1996:93:14041-6.
    [53]Accad M., Smith SJ..Newland DL., etal. Massive xanthomatosis and alteredcomposition of atheroselerotic lesions in hyperlipidemic mice lacking acyl-CoA:eholesterol acyltransferase 1. J. Clin[J]. Invest.2000; 105:711-9.
    [54]Batetta B.Mulas MF.Petruzzo P,et al. Opposite pattern of MDRI and caveolin-1 gene expression in human atherosclerotic lesions and proliferating human smooth muscle cells[J].Cell Mol Life Sci,2001,58(8):1113-1120.
    [55]Petruzzo P.Mulas MF.Brotzu G,et al. Lipid metabolism and molecular changes innormal and atherosclerotic vessels[J]. Eur JVasc Surg,2001,22(1):31-36.
    [56]黎荣山,周胜华,王志平等.ACAT-1在单核细胞向泡沫细胞分化过程中的表达变化[J].疑难病杂志,2009,8(11):650.
    [57]狄鸣,成蓓,雷健等.细胞因子对平滑肌细胞及肌源性泡沫细胞内酰基辅酶A胆固醇酰基转移酶mRNA的影响[J].临床心血管病杂志2005;7:414-416.
    [58]柯丽,成蓓,余其振,何平,白智峰.牛磺酸下调单核-巨噬细胞ACAT-1表达[J].临床心血管病杂志.2005;5:299-301.
    [59]W.Cheng, K. V. KvilekVal, N. A. Abumrad, Am. J. Physiol.Dexamethasone enhances accumulation of cholesteryl esters by human macrophages[J].269 (1995)E642HE648.
    [60]Watanabe T, Nishio K, Kanome T, Matsuyama TA, Koba S, Sakai T, Sato K, HongoS, Nose K, Ota H, Kobayashiy Y, Katagiri T, Shiehiri M, MiyaZald A. lmPact of salusin-alpha and-beta on human macrophage foam cell fonnation and coronary atherosclerosis[J]. Cireulation.2008;117(5):638-648.
    [61]B.R. Krause,M. Anderson,C. L. Bisgaier,T. Bocan.R. Bousley.P. DeHart, A. Essenb-urg, K. Hamelehle, R. Homan, K. Kieft, W. MeNally, R. Stanceld, R.S.Newton, Invivo-evidence that the lipid-regulating activity of the ACAT inhibitor CI-976 in rats is due to inhibition of both intestinal and liver ACAT[J]. J. Lipid Res.34(1993)279-294.
    [62]M. W. Hui, D. E. Telford, P. H. R. Figrett, J. T. Billhelmer, P. J. Gillies, Arterioseler[J]. Thromb.14(1994)1498-1508.
    [63]T. P. Carr, R.L.Hamilton Jr.,L. L. Rudel.ACATinhibitors decrease secretionof cholesteryl esters andapolipoprotein B by perfused livers of African green monkeys[J]. J. Lipid Res.36(1995)25-36.
    [64]Katsuhisa Ioriya.Tsuyoshi Noguehi, Masami Muraoka, Katsuya Fujita, Hi-roshi Shimizu,Naohito ohashi. Effect ofSMP-500,a Novel Acyl-COA:CholesterolA cyltransferase Inhibitor,on the Cholesterol Esterification and Its Hypochol es-terolemic Properties[J]. Pharmacology2002;65:18-25.
    [65]Melba Hermandez, Judy Montenegro, Mark Steiner, DooseoP Kim, Carl Sparr-ow, Patricia A. Detlmers, Samuel D.Wright and yu-Sheng Chao. Intestinal absor-ption of cholesterol is mediated by a saturable, inhibitable transporter. Bi-ochimica et Biophysica Acta(BBA)-Moleeular and Cell Biology of Lipids[J].20 00:2-3:232-242.
    [66]Iorlya.Katsuhisa PhD;Kouichi MS;Horisawa,Seiya PhD;Nishimura, Takeshi PhD;Muraoka,Masami PhD;Noguehi,Tsuyoshi BA;Ohashi,Naohito PhD. Pharmacologi-eal Profile of SMP-797,a Novel Acyl-Coenzylme A:Cholesterol Acyltransferase Inhlbitor with Indueible Effect on the Expression of Low-Density Lipoprote-in Receptor[J]. Jounal of Cardiovascular pharmacology,2006;47(2):322-329.
    [67]T.M. A. Bocan, S.B.Mueller, P. D. Uhlendorf, RS. Newton and B. R. Krause, ComPa-rison of CI-976, an ACAT inhibitor, and seleeted lipid-lowering agents for antiatherosclerotic activity in iliac-femoral and thoracic aortic lesions. A biochemical, morphological and morphometric evaluation[J]. Arterioseler T hromb.1991:11:1830-1843.
    [68]Masahiko Matsuo, Futoshi Ito, Akiko Konto, Miho Aketa, Masaaki Tomoi and Kyoiehi Shimomura. Effect of FR145237, a novel ACAT inhibitor, on atherogen-esis in Cholesterol-fed and WHHL rabblts. Evidence for a direct effect on t-he arterial wall[J]. Biochlmica et BioPhysica Acta(BBA)-Lipids and Lipid Me- tabolism.1995:3:254-260.
    [69]T. M. A. Bocan, B. R. Krause, W. S. Rosebury, S. B. Mueller,X. Lu, C. Dagle, T. Ma-jor, C. Uthia, H. Lee, The ACAT Inhibitor Avasimibe Reduces Macrophages and M-atrix Metailoproteinase Expression in Atheroselerotic Lesions of Hyperchol-esteroleraic Rabbits[J]. Arterioscler. Thromb. vase. Biol.20 (2000)70-79.
    [70]R. J.Nicolosi, T.A.Wilson, B. R. Krause, The ACAT Inhibitor, CI-1011 is ef-fective in the Prevention and regression of aortic fatty streak area in ha-msters [J]. Atherosclerosis 137(1998)77-85.
    [71]V. Meiner, C. Tam, M. D. Gunn, L-M. Dong, K. H. Wei sgaber.S. Novak, H.M.Myers, S. K.Erickson, R.V. Farese Jr., A human skin multifunctional 0-acyltransferase that catalyzes the synthesis of acylgiycerols, waxes,and retinyl esters[J]. J. Lipid Res.38(1997)1928-1933.
    [72]Huttunen HJ, Kovacs DM. ACAT as a Drug Target for Aizheimer's Disease[J]. Neurode-gener Dis.2008;5(3-4):212-214.
    [73]Lisa OR,Line MG,Stephen JY.et al. Glucose-dependent regulation of chole-sterol ester metabolism in macrophages by insulin and leptin[J]. J Biol Chem, 2002,277(45):42557-42562.
    [74]白智峰,成蓓,李长运,何平,毛晓波.胰岛素对单核/巨噬源性泡沫细胞ACAT-1表达的影响[J].中华内分泌代谢杂志,2005,21(5):473-474.
    [75]陆菡,成蓓,何平,王彦富,曾永利,葛晶.实时定量PCR检测胰岛素和高糖对巨噬细胞ACAT-1表达的影响[J].中国全科医学,2007,20(4):269-272.
    [76]张颖,沃刻.胰岛素抵抗的研究进展[J].中国社区医师(综合版),2004,6(24):
    [1]孟国凡.动脉粥样硬化的中医病因病机初探[J].云南中医中药杂志,2004,25(4)
    [2]第五永长,肖颖,王友民.动脉粥样硬化中医病机探悉[J].陕西中医学院报,2003,11.26(6)
    [3]王东生.动脉粥样硬化“痰瘀”病理的理论探讨[J].湖南中医学院学报,2004,10.24(5)
    [4]董国菊.中医药防治颈动脉粥样硬化的临床研究进展[J].中西医结合心脑血管病杂志,2004,3.2(3)
    [5]林培正,杨开清.动脉粥样硬化中医湿热病机再认识[J].新中医,2006,3.38(3)
    [6]屈静.从络病理论探讨颈动脉粥样硬化斑块形成的进展[J].山东中医杂志,2005,12.24(12)
    [7]黄河清,黄骏,李明富.谈肝气虚衰与动脉粥样硬化[J].四川中医,1997,15(2):7-8.[8]张愍.冠心病痰浊辩证分型与血清脂蛋白动态平衡关系的研究[J].中西医结合杂志,1995;15(1).
    [9]张大宁.中医补肾活血法研究[M].北京:中国医药出版社,1997.156-164
    [10]徐济民,蔡沛源,李尤官,等.痰浊型冠心病与血脂水平关系的探讨[J].中西医结合杂志,1984,4(5):265.
    [11]沈礼勇.冠心病痰浊型与血清载脂蛋白,脂蛋白组分的关系[J].中国医药学报,1991,6(1):36.
    [12]陈可冀,史载祥.实用瘀证学[M].人民卫生出版社,1999;6
    [13]张艳,杨关林,于睿,柳士博.动脉粥样硬化中医虚瘀痰毒病因病机实质研究探讨[J].时珍国医国药,2007,18(6):1513.
    [14]王 健,杨关林.化瘀祛痰颗粒剂对冠心病患者血管内皮功能的影响[J].辽宁中医杂志,2005,32(5):430.
    [15]周仲英,金妙文.滋肾养肝化痰消瘀法治疗动脉粥样硬化的理论探讨[J].南京中医药大学学报(自然科学版),2002,18(3):137-139.
    [16]林培政.动脉粥样硬化性疾病与中医湿热证的关系[J].中药新药与临床医药,2006,3.17(2)
    [17]绍成五.中医对动脉粥样硬化的认识及防治进展[J].湖南中医药导报,2003,7.9(7)
    [18]杨焕斌.冠心II号治疗颈动脉粥样硬化的临床研究[J].中国中医药科技,2005,1.12(1)
    [19]甄艳军,安杰,周晓红.木贼对动脉粥样硬化早期大鼠血清IL-1.IL-8及TNF—α的影响[J].中国老年学杂志,2003,23(8):1714-1715
    [20]甄艳军,安杰,侯建明.木贼对动脉粥样硬化早期大鼠内皮细胞凋亡及Bax、Bcl-2表达的影响[J].中国老年学杂志,2003,23(5):305-304
    [21]张发艳,华声瑜,范英昌.丹酚酸B及丹参酮II A对家兔动脉粥样硬IL-8及VCAM一1的影响[J].山东中医药大学学报,2006,30(2):152—154.
    [22]王宏伟,熊一力,赵华月.穿心莲提取物对动脉粥样硬化家兔动脉壁PDGF—B. c—sis和C—mVC基因表达的影响[J].同济医科大学学报,1998,27(1):46.
    [23]司秋菊,王鑫国,王亚利,等.蜈蚣对动脉粥样硬化家兔血管内皮细胞功能的影响[J].中药药理与临床,2002,18(6):28—29.
    [24]欧阳静萍,王雄,Muller S,等.当归对TNF-α导致细胞骨架重排的逆转作用[J].湖北医科大学学报,2000,21(1):13-14.
    [25]王保华,欧阳静萍,魏蕾,等.当归及阿魏酸钠对内皮细胞中TGF-β1及bFGF表达的影响[J].辽宁中医杂志,2001,28(1):45-46.
    [26]高尔,王金红,李洪军,等.乳化葛根素对高脂血症家兔血清NO及PGI2的影响[J].潍坊医学院学报,2001,23(1):1-3.
    [27]李永红,李志强,李震海,等.葛根素对球囊损伤血管内皮后血小板活化及血管紧张素II l型受体mRNA变化的影响[J].中华心血管病杂志,2003,31(5):369-372.
    [28]王绿娅,刘舒,王伟,等.葛根素能诱导血管平滑肌细胞凋亡部分相关基因差异表达[J].中国动脉硬化杂志,2002,10(6):487-490.
    [29]陈临溪,王蓉蓉,黄红林,等.银杏叶提取物对饲高胆固醇兔动脉粥样硬化和低密度脂蛋白体外氧化的作用[J].心肺血管病杂志,2001,20(1):46-48.
    [30]胡发明,胡红丁.川芎嗪的实验研究及临床应用[J].中医研究,2004,17(3):57-60
    [31]任新瑜,阮秋蓉,朱大和,等.川芎嗪对平滑肌细胞NF-κB激活、骨形成蛋白-2表达的影响[J].中国组织化学与细胞化学杂志,2003,12(3):306-309.
    [32]柴欣楼,王伟,张壮,崔巍,闫颜芳,牛福玲.漏芦对ox-LDL诱导U937细胞系形成泡沫细胞过程中CD36表达抑制作用的研究[J].中国实验方剂学杂志,2003,9(5):53-54.
    [33]刘斌,石任兵,杨春梅等.祁州漏芦水煎剂化学成分研究[J].北京中医药大学学报,2003.26(1):53-55.
    [34]卢泳才,翁玉春等.漏芦抗动脉粥样硬化的研究[J].中华医学杂志,1985,65(12):750.
    [35]姜晓峰,王林.祁州漏芦和红花漏芦化学与药理研究进展[J].中国药学杂志,1995.30(9):522.
    [1]司徒镇强,吴军正.细胞培养[M].世界图书出版公司,2000,73-75.
    [2]司徒镇强,吴军正.细胞培养[M].世界图书出版公司,2000,79-82.
    [3]王术玲,潘华新,王培训.THP-1巨噬细胞源性泡沫细胞模型的建立及鉴定[J].中药新药与临床药理,2009,20(3):281-28.
    [4]司徒镇强,吴军正.细胞培养[M].世界图书出版公司,1996,186-188.
    [5]Vosper H.Khoudoli GA,Palmer CN. The peroxiscme proliferator activatedrecep-tor delta isrequired for the differentiationof THP-1 monocytic cells byphorbolester [J].Nucl Recept,2003,1(1):9.
    [6]白智峰,成蓓,李长运,何平,毛晓波.胰岛素对单核/巨噬源性泡沫细胞ACAT-1表达的影响[J].中华内分泌代谢杂志,2005,21(5):473-474.
    [1]司徒镇强,吴军正.细胞培养[M].世界图书出版公司,2000,187.
    [2]丹达纳,黄列军.胰岛素是一种抗炎抗动脉粥样硬化的激素[J].糖尿病天地,2009,3(7) :316.
    [3]Marian J, Muisa B, Michiel L, et al. High Cumulative Insulin Exposure:a Risk Factor of Atherosclerosis in Type 1 Diabetes? [J]. Atherosclerosis,2005,181: 185-192.
    [4]James,Richard W. Diabetes and other coronary heart disease risk equivalents[J].Lippincotl Williams. Lipidology,2001,12(4):425-431.
    [5]叶玲玲,曹文丽,姜雯.多囊卵巢综合症患者血瘦素与胰岛素水平关系的探讨[J].现代预防医学,2007,34(7):1376-1378.
    [6]斯维特拉娜.儿童胰岛素抵抗[J].糖尿病天地,2009:3(7)290-304.
    [7]刘洋,马世平,吴斐华.胰岛素抵抗与内皮功能紊乱的共同发病机制[J].海峡药学,2010,22(5):116.
    [8]王凯军,梅洵.高胰岛素血症与动脉粥样硬化研究现状[J]. 实用临床医学,2008,9(10):129.
    [9]白智峰,成蓓,李长运,等.胰岛素对单核/巨噬源性泡沫细胞ACAT-1表达的影响[J].中华内分泌代谢杂志,2005,21(5):473-474.
    [10]张俊峰,葛恒,郭炳诗,王长谦.高胰岛素状态下巨噬细胞PPAR Y抗炎活性的变化[J].心脏杂志,2006,18(1):14.
    [11]张晓刚,陈运贞,雷寒等.胰岛素对THP-1细胞脂蛋白脂酶mRNA表达及细胞泡沫化的影响[J].中国病理生理杂志,2003,19(6):832-836.
    [12]Corsini A, Raiteri M, Soma MR, et al. Pathogenesis of atherosclerosis and the role of 3-hydroxy-3-methylglutary coenzyme A reductase inhibitors[J]. Am J Cardiol,1995,76:21A-28A.
    [13]Inoue T, H ay ashi M, T akay anagi K, et al. Lipid low ering therapy w ith fluvastat in inhibits ox idative m odification of low density lipoprot ein and improves vascular endo thelial funct io n inhypercho lesterolemic pat ients[J].A therosclerosis 2002,160(2):369-376.
    [14]Dupuis J, T ardif JC, Cernacek P, et al.Cholesterol reduction rapidly improvesendot helial funct ion aft er acut e coronary syndrom es. The REC IFE Trial[J]. Circulation,1999,99(5):3227-3233.
    [15]Romano M, Mezzett i A, Marulli C, et al. Fluvastatin reduces soluble P selectin and ICAM 1 levels in hypercholest erolemic patients:Role of nitricoxide[J]. J Investig Med,2000,48(3):183-189
    [16]高奋堂,曹云山,徐义先等.氟伐他汀对人外周血单个核细胞膜联蛋白A1表达水平的影响[J].临床心血管病杂志,2006,22(4):209.
    [17]陈君柱,张芙荣,朱建华等.他汀类药物对外周血内皮祖细胞数量和功能的影响[J].中华心血管病杂志,2004,32(4):346.
    [18]吴健,郑树森,吴丽花等.氟伐他汀抑制内皮细胞表达的研究[J].中华微生物学和免疫学杂志,2006,26(6):489.
    [19]赵鲁米,刘佳,孙彬等.氟伐他汀对高糖诱导人足细胞血管内皮生长因子表达的影响及机制[J].江苏医药,2011,37(15):1740.
    [20]韩英,谢良地,许昌声等.氟伐他汀对大鼠血管平滑肌细胞迁移的影响及其机制[J].中国病理生理杂志,2005,21(11):2133.
    [21]龚树生.试论祁州漏芦的功效[J].北京中医学院学报,1984,2:48.
    [22]龚树生,阎汝南,党毅等.白何首乌总磷脂及漏芦蜕皮甾酮对小鼠细胞免疫的影响[J].中华老年医学杂志,1983,2(4):193-193.
    [23]刘晓青,卢咏才,郭肇铮,等.漏芦对鹌鹑动脉粥样硬化形态学变化的影响[J].中国医药学报,1989,4(3):22-22.
    [24]邹莉波,于庆海.祁州漏芦抗缺氧作用及机制的研究[J].中国药理与临床,1993,6(3):30-30.
    [25]卢泳才,翁玉椿,刘小青,等.中药漏芦抗动脉粥样硬化的实验研究[J].中华医学杂志,1985,65(12):75.
    [26]柴欣楼,王伟,张壮,崔巍,闫颜芳,牛福玲.漏芦对ox-LDL诱导U937细胞系形成泡沫细胞过程中CD36表达抑制作用的研究[J].中国实验方剂学杂志,2003,9(5):
    53-54.
    [27]姜晓峰,王林.祁州漏芦和红花漏芦化学与药理研究进展[J].中国药学杂志,1995.30(9):522.
    [1]李全忠,杨永宗,易光辉,王佐,杨向东.U937泡沫细胞模型的建立[J].中国动脉硬化杂志,1999,7(2):152-154.
    [2]王术玲,潘华新,王培训.THP-1巨噬细胞源性泡沫细胞模型的建立及鉴定[J].中药新药与临床药理,2009,20(3):281-284.
    [3]田玉望,李琳,李丽,胡海.介绍一种改良的油红0脂肪染色法[J].中国组织化学与细胞化学杂志,2007,16(6)
    [4]王术玲.小檗碱联合厚朴酚对THP-1巨噬细胞源性泡沫细胞的干预[D].广州:广州中医药大学,2009:34-36.
    [5]Liang CP,Han S.Okamoto H.Carnemolla R.TabAs I, Accili D,and Tall AR. IncreAsed CD36 protein As a response to defective insulin signaling in macrophages[J]. The American Society for Clinical Investigation,2004,113(5):764-773
    [6]ShAshkin PN, Jain N, Miller YI, Rissing BA, Huo Y, Keller SR.VandenhoffGE.Nadler JL.McIntyre TM. Insulin and glucose play a role in foam cell formation and function[J]. CardiovAsc Diabetol.2006,5:13.
    [7]王辉,姜燕,张凤岭,孙卓祥.胰岛素抵抗与动脉粥样硬化的相关性研究[J].济宁医学院学报,2005,,28(3):65.
    [8]卢泳才,翁玉春等.漏芦抗动脉粥样硬化的研究[J].中华医学杂志,1985,65(12):750.
    [9]姜晓峰,王林.祁州漏芦和红花漏芦化学与药理研究进展[J].中国药学杂志,1995,30(9): 522.
    [1]Fogelman AM,Shechter I,Seager J,et al · Malondialde_hyde Alteration of Low Density Lipoproteins Leads to Cholesteryl Ester Accumulation in Human Monocyte-Macrophages[J].Proc Natl Acad Sci,1980,77(4):2214.
    [2]朱国斌,曾秋棠.脂联素对巨噬细胞源性泡沫细胞内胆固醇含量的影响[J].山西医科大学学报,2010,41(4):292.
    [3]陈志坚,王彦富,廖玉华等.血管紧张素II对THP-1源性泡沫细胞ATP结合盒转运子A1的影响[J].中国病理生理杂志,2007,23(2):316-320.
    [4]何雪峰,李晓辉等.三七总皂苷对小鼠巨噬细胞源性泡沫细胞形成的影响[J].中国药房,2007,18(30):2323.
    [5]寿迪飞,卢德赵等.绞股蓝总皂苷调节THP—l巨噬细胞源性泡沫细胞胆固醇平衡的作用机制[J].浙江中医药大学学报,2011,35(2):297.
    [6]杨永宗,谭健苗等.动脉粥样硬化敏感小鼠C57BL/6J腹膜巨噬细胞源性泡沫细胞模型的建立[J].中国动脉硬化杂志,1995,3(4):279.
    [7]张春妮,吉维民等.刺梨汁对巨噬细胞源性泡沫细胞形成的影响[J].医学研究生报,2000.3(6):366.
    [8]王彦富,成蓓等.Ghrelin对THP-1细胞泡沫化过程中酰基辅酶A:胆固醇酰基转移酶1表达的影响[J].中国病理生理杂志,2009,25(9):1700.
    [1]Newson RS,Hek K.Hendrika J,et al. Atherosclerosis and incident depressionin late life [J]. Arch Gen Psychiatry,2010,67(11):1144-1150.
    [2]Buhman KF.Accad M, Farese RV. Mammalian acyl-CoA:cholesterol acyltransferases [J]. Biochim BiophysActa,2000,1529:142-154.
    [3]Yao XM, Song BL, Wang CH, et al. Human acyl-coenzyme A:cholesterol acyltransferase (ACAT) [J].J Shanghai Jiaotong University (Agricultural Sci-ence),2006,24(1):108-115.
    [4]Chang C, Dong R, Miyazaki A, et al. Human acyl-CoA:cholesterol acyltrans-ferase (ACAT) and its potential as a target for pharmaceutical intervention a-gainst atherosclerosis [J]. Acta Biochim Biophys Sin (Shanghai),2006,38(3):151-156.
    [5]陆菡,成蓓,何平等.实时定量PCR检测胰岛素和高糖对巨噬细胞ACAT-1 mRNA表达的影响[J].中国全科医学,2007,2(14):269-272.
    [6]白智峰,成蓓,李长运,等.胰岛素对单核/巨噬源性泡沫细胞ACAT-1表达的影响[J].中华内分泌代谢杂志,2005,21(5):473—474.
    [1]Miyazaki A, Sakashita N,Lee 0, et al. Expression of ACAT-1 protein in human atherosclerosis lesions and cultured human monocytes/macrophages [J].Arterioscler Thromb Vase Biol,1998,18:1568-1574.
    [2]Patricia G.Yancey W, Gray J. Lysosomal sequestration of free and esterified cholesterol from oxidized low density lipoprotein in macrophage of different species [J].J Lipid Res,1993,9:1349-1361.
    [3]Brown AJ, Mander EL,Gelissen IC, et al. Cholesterol and oxysterol metabolism and subcellular distribution in macrophage foam cells:accumulation of oxidized esters in lysosomes [J]. J Lip Res,2000,41:226-236.
    [4]Kruth HS, Huang W, Ishii I, et al. Macrophage foam cell formation with native low density lipoprotein [J]. J Biol Chem,2002,277:34573-34580.
    [5]Martha K, Cathcart. Regulation of superoxide anion production by NAPDH oxidase in monocytes/macrophages:contributions to atherosclerosis [J].Arterioscler Thromb Vase Biol,2004,24:23-28.
    [6]成蓓,狄鸣,雷健等.格列本脲对平滑肌细胞及肌源性泡沫细胞内ACAT转录水平的影响[J].中国医药学杂志,2006,26(5):510-512.
    [7]lkenoyaM, Yoshinaka Y, Kobayashi H, et al. A selective ACAT-1 inhibitor, K-604, suppresses fatty streak lesions in fat-fed hamsters without affecting plas-ma cholesterol levels [J]. Atherosclerosis,2007,191(2):290-297.
    [8]Worthley SG, HelftG, Corti R, et al. Statin therapy alone and in combination with an acyl-CoA:cholesterol 0-acyltransferase inhibitor on experimental ather-osclerosis [J]. Pathophysiol Haemost Throrab,2007,36(2):9-17.
    [9]张丽伟,翟桂兰.牛磺酸抗动脉粥样硬化作用研究进展[J].心血管病学进展,2006,27(4):512-514.
    [10]Takano H, Komuro I. Peroxisome proliferator-activated receptor gamma and cardiovascular diseases [J]. Circ J,2009,73(2):214-220.
    [11]陈心,成蓓,王洪星,等.胰岛素抵抗对巨噬细胞ACAT-1表达的影响及罗格列酮的干预作用[J].山东医药,2008,48(2):21-23.
    [12]Mei CL, He P, Cheng B, et al. Chlamydia penumoniae induces macrophage derived foam cell formation via PPAR alpha and PPAR gamma dependent pathways [J]. Cell Biol Int,2009,33(1):301-308.
    [13]万晶晶,成蓓,王彦富,等.脑肠肽Ghrelin通过生长激素促分泌素受体下调人源单核细胞株THP-1源性泡沫细胞酰基辅酶A:胆固醇酰基转移酶l表达的实验研究[J].中华心血管病杂志,2009,37(11):1030-1034.
    [141HUTTER-PAIER B, HUTTUNEN H J, PUGLIELLI L.et al.The ACAT inhibitor CP-1 13,818 markedly reduces amyloid pa-thology in a mouse model ofAlzheimer's disease[J].Neuron,2004,44(2):227-238.
    [15]HUTTUNEN H J, KOVACS D M. ACAT as a drug target forAlzheimer's disease [J].NeurodegenerDis,2008,5(3-4):212-214.
    [16]HUTTUNEN H J, PEACH C, BHATTACHARYYA R.et al. In-hibition of acyl-coenz-yme A:cholesterol acyl transferase modu-lates amyloid precursor protein t-rafficking in the early secretorypathway[J]. FASEB J,2009,23(11):3819-382 8.
    [17]DING D R, SHEN JK. Current status of studies on Acyl-CoA:CholesterolAc-yltransferase(ACAT) inhibitors[J]. Chine New DrugsJ,2005,14(4):396-399.
    [18]GIOVANNONIM P, PIAZ V D, VERGELLIC,et al. Selective ACAT inhibitors as promising antihyperlipidemic, antiathero-scle-rotic and anti-Alzheimerdrugs [J].MiniRevMedChem,2003,3(6):576-584.
    [19]JUNQUERO D, OMS P, CARILLA-DURAND E.etal. Pharma-cologicalprofile of F 12511, (S)-2;,3',5'-trimethyl-4'-hydroxy-alpha-dodecylthioacetanilide a powerful and systemic acylco-enzyme A:cholesterol acyltransferase inhib-itor [J]. BiochemPharmacol,2001,61(1):97-108.
    [20]ASANOS, BANH, KINO K.etal. Synthesis and structure-ac-tivity relationsh ips of N-(4-amino-2,6-diisopropylphenyl)-N-(1,4-diarylpiperidine-4-yl)met-hylureas as anti-hyperlipidemic agents[J]. BioorgMed Chera,2009,17(13):463 6-4646.
    [21]MATSUDA D, OHSHIRO T, OHBAM.etal. Themolecular target of rubimaillin in the inhibition of lipid dropletaccumulation inmacrophages[J]. BiolPharm Bu-11,2009,32(8):1317-1320.
    [22]MIIKE T, SHIRAHASEH, JINOH, etal. Effectsofan anti-oxi-dativeACAT inhibi-toron apoptosis/necrosis and cholesterol accu-mulation under oxidative str-esss in THP-1 cell-derived foam cells[J]. Life Sci,2008,82(1-2):79-84.