17β-群勃龙对大鼠海马神经元的影响及其作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
群勃龙醋酸酯(17β-hydroxyestra-4,9,11-trien-3-one17-acetate)是一种高效的甾类蛋白同化激素,它从20世纪70年代开始便在美国被作为促生长剂用于农场牲畜。群勃龙醋酸酯在体内释放后,便在动物血液中被迅速地水解成17β-群勃龙(17β-trenbolone,17β-hydroxyestra-4,9,11-trien-3-one)。17β-群勃龙与雄激素有着类似的结构,且是一种有效的雄激素受体(AR)激动剂。人类与17β-群勃龙的可能接触途径有以下几种:(1)有意注射。作为一种同化类雄激素类固醇,群勃龙被健身者作为用来增加肌肉和力量的药品。在已经发表的调查结果中,群勃龙是最受欢迎的注射药物之一。多数注射者为业余健身爱好者,他们以较大的剂量长期注射群勃龙。(2)食用肉残留。(3)食物链富集。17β-群勃龙被牲畜和人排出体外后,饲养场的废水、饲养场旁边的河流以及城市污水排放的下游均可能被17β-群勃龙污染,而且饲养场的粪便常被用作农田的肥料。17β-群勃龙在环境中性质稳定,具有较长的半衰期(在粪水中半衰期为260天)。17β-群勃龙可以进入水生生物和植物体内,经过食物链的层层累积,最终可能进入到人体内。(4)可能的临床应用。虽然17β-群勃龙与内源雄激素睾酮(T)及二氢睾酮(DHT)结构类似,但是其不能被5α-还原酶还原,也不能被芳香化,它所引起的雄激素样和/或雌激素样的副作用比一般的雄激素给药产生的副作用要小,因此17β-群勃龙作为药物与T及DHT相比有明显的优势。目前已有研究考虑将其应用于临床治疗。
     因为17β-群勃龙是一种合成的雄激素,因此对其生殖毒性的研究一直都是热点,其它方面较少有人研究。目前的研究主要采用动物模型研究17β-群勃龙的生殖毒性。17β-群勃龙的生殖毒性包括破坏下丘脑-垂体-性腺轴(HPG axis)、干扰动物体内源激素的水平及影响动物生殖器官的发育和生殖能力。17β-群勃龙既会引起不同物种中雌性个体的雄性化,也可能会使发育中的雄性个体去雄性化。17β-群勃龙的神经毒性尚未见报道。在神经退行性病变(如阿尔茨海默症,AD)的发病机理中,除了遗传因素,环境因素也起着至关重要的作用。中枢神经系统(CNS)是内源雄激素的重要作用靶点之一,而17β-群勃龙作为一种合成雄激素也有可能作用于神经系统。
     本研究分别用动物实验和细胞培养实验研究17β-群勃龙的神经毒性作用。在动物实验中,将17β-群勃龙经肌肉注射给正常成年Wistar大鼠及孕鼠,17β-群勃龙的注射剂量分别为0.2、1、5mg/kg体重,药物处理时间为0.5、2、6、12、24、48h。检测大鼠脑组织、肌肉、血液及脑脊液(CSF)中17β-群勃龙的浓度及β-淀粉样蛋白42(Aβ42)的水平,并分析大鼠血清激素水平的变化。在细胞培养实验中,研究了1-100nmol/L浓度的17β-群勃龙对原代培养大鼠海马神经元的影响,包括对其细胞活力、神经元凋亡的影响,及对AD相关蛋白早老素-1(PS1)和Aβ42的影响,探索了AR和雌激素受体(ER)及基因组效应和非基因组效应在17β-群勃龙的作用中所扮演的角色。
     主要实验结果如下:
     1.17β-群勃龙可以穿过大鼠血脑屏障,聚集于大脑,尤其是海马中。当17β-群勃龙注射剂量分别为0.2、1、5mg/kg体重时,在给药48h后海马中17β-群勃龙的浓度分别为:雄鼠5.42±0.27、6.12±0.21、7.03±0.17ng/g,雌鼠2.07±0.10、2.99±0.39、6.43±0.55ng/g。相对应的除海马外剩余脑组织中的17β-群勃龙浓度分别为雄鼠2.64±0.25、2.85±0.30、4.44±0.24ng/g,雌鼠1.55±0.20、1.89±0.22、3.74±0.26ng/g。雄鼠三个剂量组及雌鼠最高剂量组(5mg/kg体重)中的海马中17β-群勃龙的浓度均显著高于对应的除海马外剩余脑组织中的17β-群勃龙浓度。17β-群勃龙可以影响大鼠的血清激素水平,引起T、雌二醇(E2)及孕酮(PROG)水平的波动。17β-群勃龙也可以穿过胎盘屏障,并可在胎鼠脑中检出。给予孕鼠注射5mg/kg体重的群勃龙48h后,胎鼠脑中17β-群勃龙的浓度为2.59±0.21ng/g。17β-群勃龙可以引起雄性大鼠脑及海马中Aβ42的过量积累,胎鼠脑中Aβ42也显著增加。
     2.为更好地研究17β-群勃龙对海马损伤的机制,本研究采用原代培养的海马神经元作为实验对象,进行体外实验。发现17β-群勃龙对原代培养的海马神经元有细胞毒性作用,可以引起细胞活力下降,引起其形态学改变、染色质凝集、凋亡小体形成、磷脂酰丝氨酸外翻、线粒体膜电位下降及caspase-3活力的增强。说明17β-群勃龙可以引起海马神经元的凋亡。17β-群勃龙能够抑制T对神经元的神经保护作用。研究中采用不同的激动剂和抑制剂处理,探究17β-群勃龙的细胞毒性作用机制。17β-群勃龙使原代培养的海马神经元caspase-3活性及Aβ42产生增加,并引起PS1蛋白表达水平的下降,这三种过程均是AR和ER依赖性的,其作用过程同时有基因组效应和非基因组效应的参与。
     大鼠血清激素水平的改变表明其HPG axis可能受到影响。当孕鼠接触17β-群勃龙时,子代个体的CNS在胎儿时期可能就已经受到损伤。脑中Aβ42的增加将会影响胚胎CNS的正常发育及神经元的正常功能。根据文献中所提到的生殖毒性在子代出生后的发育过程中显现出来的结果,CNS所受的损害可能是不可逆转的。海马在学习和记忆等行为中发挥着重要作用,17β-群勃龙在海马中的累积及其对海马神经元的细胞毒性作用可能会产生严重的后果,如认知障碍、记忆损伤等,这些症状最后会引发痴呆。17β-群勃龙具有神经毒性,可以引起海马神经元凋亡,影响AD相关蛋白Aβ42和PS1的表达,它在神经退行性病变中起到了一定的作用。目前17β-群勃龙作为一种同化类雄激素类固醇被健身爱好者广泛使用,其使用剂量、使用周期、使用时间长短等应当受到监管。另外,17β-群勃龙是一种环境雄激素,使除了健身爱好者之外的更多的人也处在暴露于17β-群勃龙的危险中。神经退行性病变(如AD)的发病是受基因因素和环境因素共同影响的。目前大量的人力、物力、财力都放在了对基因因素的研究上,但是相当多的AD病人并没有携带如PS1、APP等的突变基因,因此环境因素在AD的发病中扮演着重要的角色。因为CNS是激素作用的重要靶点之一,因此该研究的意义不只在于对17β-群勃龙毒性作用的发现。环境激素在我们的生存环境中无处不在,它们有着与人体内源激素相似的结构和/或性质,因此它们对神经系统的影响值得关注。发现这些危险因素并采取预防措施,将对延缓神经退行性病变有重要意义。
     本文主要创新点:
     1.给成年大鼠肌肉注射17β-群勃龙后,17β-群勃龙会分布于脑中,尤其是海马中。给孕鼠注射后,可以在胎鼠脑中检出17β-群勃龙。神经组织是17β-群勃龙的一个作用靶点。
     2.17β-群勃龙有神经毒性,会引起原代培养的海马神经元凋亡,引起AD相关蛋白Aβ42和PS1的表达水平变化。由神经元产生的Aβ42的增加,而PS1的蛋白表达水平下降,并且这些过程由激素受体介导。
     3.17β-群勃龙作为一种同化类雄激素类固醇和一种环境雄激素,在神经退行性病变中发挥了一定作用,这对于17β-群勃龙的使用起到了指导作用,并启发研究者对环境激素与神经退行性病变之间关系的思考。
Trenbolone acetate (17β-hydroxyestra-4,9,11-trien-3-one17-acetate) is asynthetic anabolic steroid that has been used extensively since the1970s as a growthpromoter for livestocks in the USA. After being released, trenbolone acetate is rapidlyhydrolyzed to17β-trenbolone (17β-hydroxyestra-4,9,11-trien-3-one) in blood streamof the animals.17β-trenbolone shares similar molecular structure with endogenousandrogens. Humans are exposed to17β-trenbolone through several possible routes.(1)Humans contact trenbolone through deliberate injection. As an anabolic-androgenicsteroid, trenbolone is used by a large portion of recreational exercisers to increasemuscle size and strength. The exercisers often inject trenbolone in large doses for longtimes.(2)17β-trenbolone may remains in meat consumed by humans.(3)17β-trenbolone can be excreted by the animals and humans and the feedlot effluent,the river near the feedlot, and downstream discharges from urban wastewater can allbe contaminated by17β-trenbolone. Besides, manure from livestock feedlot iscommonly applied to agricultural fields as an alternative to commercial fertilizers.17β-trenbolone has long half-life (260d) and stable properties in the environment. Itmay be absorbed by aquatic animals as well as plants and can be incorporated intofood chains.(4)17β-trenbolone is regarded as a promising candidate in clinicalapplication. The properties that17β-trenbolone cannot be reduced or aromatized andis metabolized to less potent androgens and reduces serum testosterone anddihydrotestosterone levels make17β-trenbolone to be able to reduce incidence ofandrogenic and/or estrogenic side effects associated with androgen administration.
     Because17β-trenbolone is a synthetic androgen, its reproductive toxicity has beenthe research hotspot. Previous studies using different animal models reported that17β-trenbolone exposure altered the endogenous hormone level, disruptedhypothalamic-pituitary-gonadal axis, and influenced development of reproductiveorgan and reproductive capacity.17β-trenbolone could cause masculinization of females of different animal species and demasculinization developing maleindividuals. So far no literature has reported on the neurotoxicity of17β-trenbolone.Both genetic and environmental factors contribute to neurodegenerative disorders. Ina large number of neurodegenerative diseases, for example Alzheimer's disease (AD),patients do not carry the mutant genes. Other risk factors, for example theenvironmental factors, should be evaluated. Brain is an androgen-sensitive tissue and17β-trenbolone is a synthetic androgen, thus17β-trenbolone might have effects onnervous system.
     In the present study, both animal experiment and cell culture experiment werecarried to evaluate the neurotoxicity of17β-trenbolone. In the animal experiment,17β-trenbolone was administered to adult and pregnant rats, with different doses (0.2,1, and5mg/kg body weight) and different treatment time (0.5,2,6,12,24, and48h).17β-trenbolone distribution in the adult rats and fetal rats were determined. Its effectson hormone levels and Aβ42accumulation in vivo were evaluated. In the in vitrostudies, effects of17β-trenbolone on primary cultured hippocampal neurons weretested.17β-trenbolone's concentrations were from1-100nmol/L and the treatmenttime was48h. Cell viability and neuron apoptosis were assessed. Changes ofAD-related proteins β-amyloid (Aβ42) and presenilin-1(PS) were determined byELISA and western blot analysis, respectively. Underlying mechanisms were studied.
     The main results were listed below.
     1.17β-trenbolone could be detected in brain, hippocampus, cerebrospinal fluid,plasma, and muscle of male and female rats, and in fetus brain. It crossed the bloodbrain barrier and placental barrier.17β-trenbolone accumulated in adult rat brain,especially in hippocampus. When the injection doses were0.2,1, and5mg/kg bodyweight, as for male rats,17β-trenbolone concentrations in the hippocampus were5.42±0.27,6.12±0.21, and7.03±0.17ng/g, respectively.17β-trenbolone concentrationsin the rest of the brain were2.64±0.25,2.85±0.30, and4.44±0.24ng/g,respectively. As for female rats, when the injection doses were0.2,1, and5mg/kgbody weight,17β-trenbolone concentrations in the hippocampus were2.07±0.10,2.99±0.39, and6.43±0.55ng/g, respectively, while in the rest of the brain were1.55±0.20,1.89±0.22, and3.74±0.26ng/g, respectively. After being treated with17β-trenbolone at the dose of5mg/kg body weight for48h,17β-trenbolone concentration in fetus brain was2.59±0.21ng/g.17β-trenbolone administrationaltered the serum hormone levels, causing fluctuation of testosterone, estradiol, andprogesterone levels.17β-trenbolone administration led to Aβ42accumulation in thebrain (especially the hippocampus) of adult male rats. Increase of Aβ42was alsoobserved in fetus brain. Excessive Aβ42would influence the development and normalfunction of nervous system.
     2. To investigate the effects of17β-trenbolone on hippocampal neurons andunderlying mechanisms,17β-trenbolone was administered to primary culturedhippocampal neurons.17β-trenbolone exerted cytotoxicity on hippocampal neurons.Cell viability was reduced and17β-trenbolone induced neuron morphological changes,chromatin condensation, nuclear fragmentation, translocation of phosphatidylserine,and mitochondrial membrane potential decrease in primary hippocampal neurons,indicating induction of apoptosis of the neurons.17β-trenbolone resistedneuroprotective function of testosterone. Presenilin-1protein expression wasdown-regulated while Aβ42production and caspase-3activities were increased. Bothandrogen and estrogen receptors mediated the processes, so did the genomic andnon-genomic signaling pathways.
     In conclusion,17β-trenbolone had neurotoxicity. It can induce apoptosis ofhippocampal neurons and regulate the expression of AD-related proteins Aβ42andpresenilin-1.17β-trenbolone played roles in neurodegeneration.17β-trenbolone couldinfluence brain, especially the hippocampus, and the damage even occurs indevelopmental brains if the mother has been exposed to17β-trenbolone. As ananabolic-androgenic steroid, it is used widely in large doses for long times byexercisers. As an environmental androgen, common people may also be exposed to17β-trenbolone through various ways. Since damages of neurons may occur muchearlier than the clinical symptoms of neurodegenerative disorders, exposure to17β-trenbolone should be regarded as a high risk environmental factor in AD onset.Thus, the use of17β-trenbolone should be monitored. In addition, environmentalhormone may be at anywhere around us. Inspired by17β-trenbolone, when wepouring large amount of funds and efforts on research over genetic factors of AD, wecan spare some time to discover the environmental factors which may be influencingmore people.
     Innovations:
     1.17β-trenbolone distributed in the brain, especially in the hippocampus of theadult rats after intramuscular injection. It can also be detected in the fetus brain whenthe pregnant rats were exposed to17β-trenbolone. Nervous system is one of thetargets of17β-trenbolone.
     2.17β-trenbolone is neurotoxic. It induced apoptosis of the primary hippocampalneurons and changed the expression of two AD-related proteins, Aβ42andpresenilin-1. Production of Aβ42was promoted while the protein expression ofpresenilin-1was down-regulated. The processes were mediated by hormone receptors.
     3. As both an anabolic-androgenic steroid and an environment androgen,17β-trenbolone played roles in neurodegeneration. The results guided the use of17β-trenbolone. Moreover, they inspired the thinking of the relationship ofenvironmental hormones and neurodegenerative diseases.
引文
[1] Hardy J. Amyloid, the presenilins and Alzheimer's disease [J]. TrendsNeurosci,1997,20(4):154-159.
    [2] Price D L, Sisodia S S. Mutant genes in familial Alzheimer's disease andtransgenic models [J]. Annu Rev Neurosci,1998,21(1):479-505.
    [3] Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer’sdisease [J]. Neurobiology of Aging,2000,21(3):383-421.
    [4] Braak H, Braak E. Alzheimer's disease: striatal amyloid deposits andneurofibrillary changes [J]. J Neuropathol Exp Neurol,1990,49(3):215-224.
    [5] Hardy J. The Alzheimer family of diseases: Many etiologies, onepathogenesis?[J]. Proc Natl Acad Sci USA,1997,94(6):2095-2097.
    [6] Hardy J A, Higgins G A. Alzheimer's disease: the amyloid cascadehypothesis [J]. Science,1992,256(5054):184-185.
    [7] Laferla F M, Oddo S. Alzheimer's disease: Aβ, tau and synapticdysfunction [J]. Trends Mol Med,2005,11(4):170-176.
    [8] Wolfe M S. Chapter65–Presenilin-1[M]//Rawlings N D, Salvesen G.Handbook of Proteolytic Enzymes. London; Academic Press.2013:273-278.
    [9] Wolfe M S, Selkoe D J. Giving Alzheimer's the old one-two [J]. Cell,2010,142(2):194-196.
    [10] Suzuki N, Cheung T T, Cai X D, et al. An increased percentage of longamyloid beta protein secreted by familial amyloid beta protein precursor (betaAPP717) mutants [J]. Science,1994,264(5163):1336-1340.
    [11] Tanzi R E, Bertram L. Twenty years of the Alzheimer’s disease amyloidhypothesis: a genetic perspective [J]. Cell,2005,120(4):545-555.
    [12] Behl C, Davis J, Lesley R, et al. Hydrogen peroxide mediates amyloid βprotein toxicity [J]. Cell,1994,77(6):817-827.
    [13] Yuan J, Yankner B A. Apoptosis in the nervous system [J]. Nature,2000,407(6805):802-809.
    [14] Laudon H, Hansson E M, Melén K, et al. A nine-transmembrane domaintopology for presenilin1[J]. J Biol Chem,2005,280(42):35352-35360.
    [15] Selkoe D J. Resolving controversies on the path to Alzheimer'stherapeutics [J]. Nat Med,2011,17(9):1060-1065.
    [16] De Strooper B, Iwatsubo T, Wolfe M S. Presenilins and γ-secretase:structure, function, and role in Alzheimer disease [J]. Cold Spring Harb Perspect Med,2012,2(1): a006304.
    [17] Turner P R, O’connor K, Tate W P, et al. Roles of amyloid precursorprotein and its fragments in regulating neural activity, plasticity and memory [J]. ProgNeurobiol,2003,70(1):1-32.
    [18] Haass C, Selkoe D J. Soluble protein oligomers in neurodegeneration:lessons from the Alzheimer's amyloid β-peptide [J]. Nat Rev Mol Cell Biol,2007,8(2):101-112.
    [19] Andersen K, Launer L J, Dewey M E, et al. Gender differences in theincidence of AD and vascular dementia The EURODEM Studies [J]. Neurology,1999,53(9):1992-1992.
    [20] Bachman D, Wolf P A, Linn R, et al. Prevalence of dementia andprobable senile dementia of the Alzheimer type in the Framingham Study [J].Neurology,1992,42(1):115-115.
    [21] Brayne C, Gill C, Huppert F, et al. Incidence of clinically diagnosedsubtypes of dementia in an elderly population. Cambridge Project for Later Life [J].The British Journal of Psychiatry,1995,167(2):255-262.
    [22] Farrer L A, Cupples L A, Haines J L, et al. Effects of age, sex, andethnicity on the association between apolipoprotein E genotype and Alzheimer disease[J]. JAMA,1997,278(16):1349-1356.
    [23] Fratiglioni L, Viitanen M, Von Strauss E, et al. Very Old Women atHighest Risk of Dementia and Alzheimer's Disease Incidence Data from theKungsholmen Project, Stockholm [J]. Neurology,1997,48(1):132-138.
    [24] Hagnell O, Jesj L, Rorsman B. Incidence of dementia in the LundbyStudy [J]. Neuroepidemiology,1992,11(Suppl.1):61-66.
    [25] Jorm A, Korten A, Henderson A. The prevalence of dementia: aquantitative integration of the literature [J]. Acta Psychiatr Scand,1987,76(5):465-479.
    [26] M ls P K, Marttila R J, Rinne U K. Epidemiology of dementia in aFinnish population [J]. Acta Neurol Scand,1982,65(6):541-552.
    [27] Rocca W A, Amaducci L A, Schoenberg B S. Epidemiology of clinicallydiagnosed Alzheimer's disease [J]. Ann Neurol,1986,19(5):415-424.
    [28] Ruitenberg A, Ott A, Van Swieten J C, et al. Incidence of dementia: doesgender make a difference?[J]. Neurobiology of Aging,2001,22(4):575-580.
    [29] Barnes L L, Wilson R S, Bienias J L, et al. Sex differences in the clinicalmanifestations of Alzheimer disease pathology [J]. Arch Gen Psychiatry,2005,62(6):685-691.
    [30] Buckwalter J G, Sobel E, Dunn M E, et al. Gender differences on a briefmeasure of cognitive functioning in Alzheimer's disease [J]. Arch Neurol,1993,50(7):757-760.
    [31] Corder E H, Ghebremedhin E, Taylor M G, et al. The biphasicrelationship between regional brain senile plaque and neurofibrillary tangledistributions: modification by age, sex, and APOE polymorphism [J]. Ann N Y AcadSci,2004,1019(1):24-28.
    [32] Henderson V W, Buckwalter J G. Cognitive deficits of men and womenwith Alzheimer's disease [J]. Neurology,1994,44(1):90-90.
    [33] Schultz C, Braak H, Braak E. A sex difference in neurodegeneration ofthe human hypothalamus [J]. Neurosci Lett,1996,212(2):103-106.
    [34] Schultz C, Ghebremedhin E, Braak E, et al. Sex-dependent cytoskeletalchanges of the human hypothalamus develop independently of Alzheimer's disease [J].Exp Neurol,1999,160(1):186-193.
    [35] Duara R, Barker W, Lopez-Alberola R, et al. Alzheimer's diseaseInteraction of apolipoprotein E genotype, family history of dementia, gender,education, ethnicity, and age of onset [J]. Neurology,1996,46(6):1575-1579.
    [36] Hyman B, Gomez‐Isla T, Briggs M, et al. Apolipoprotein E andcognitive change in an elderly population [J]. Ann Neurol,1996,40(1):55-66.
    [37] Fleisher A, Grundman M, Jack Jr C R, et al. Sex, apolipoprotein E ε4status, and hippocampal volume in mild cognitive impairment [J]. Arch Neurol,2005,62(6):953.
    [38] Manly J, Merchant C, Jacobs D, et al. Endogenous estrogen levels andAlzheimer’s disease among postmenopausal women [J]. Neurology,2000,54(4):833-837.
    [39] Paganini-Hill A, Henderson V W. Estrogen deficiency and risk ofAlzheimer's disease in women [J]. Am J Epidemiol,1994,140(3):256-261.
    [40] Carlson M, Zandi P, Plassman B, et al. Hormone replacement therapyand reduced cognitive decline in older women The Cache County Study [J].Neurology,2001,57(12):2210-2216.
    [41] Kawas C, Resnick S, Morrison A, et al. A prospective study of estrogenreplacement therapy and the risk of developing Alzheimer's disease The BaltimoreLongitudinal Study of Aging [J]. Neurology,1997,48(6):1517-1521.
    [42] Hogervorst E, Boshuisen M, Riedel W, et al. The effect of hormonereplacement therapy on cognitive function in elderly women [J].Psychoneuroendocrinology,1999,24(1):43-68.
    [43] Leblanc E S, Janowsky J, Chan B K, et al. Hormone replacement therapyand cognition [J]. JAMA,2001,285(11):1489-1499.
    [44] Pike C J, Carroll J C, Rosario E R, et al. Protective actions of sex steroidhormones inAlzheimer’s disease [J]. Front Neuroendocrinol,2009,30(2):239-258.
    [45] Behl C, Widmann M, Trapp T, et al.17-[beta] Estradiol protects neuronsfrom oxidative stress-induced cell death in vitro [J]. Biochem Biophys Res Commun,1995,216(2):473-482.
    [46] Goodman Y, Bruce A J, Cheng B, et al. Estrogens Attenuate andCorticosterone Exacerbates Excitotoxicity, Oxidative Injury, and Amyloid β‐Peptide Toxicity in Hippocampal Neurons [J]. Journal of Neurochemistry,1996,66(5):1836-1844.
    [47] Green P S, Gridley K E, Simpkins J W. Estradiol protects againstβ-amyloid (25–35)-induced toxicity in SK-N-SH human neuroblastoma cells [J].Neurosci Lett,1996,218(3):165-168.
    [48] Gridley K E, Green P S, Simpkins J W. Low concentrations of estradiolreduce β-amyloid (25–35)-induced toxicity, lipid peroxidation and glucose utilizationin human SK-N-SH neuroblastoma cells [J]. Brain Research,1997,778(1):158-165.
    [49] Mook-Jung I, Joo I, Sohn S, et al. Estrogen blocks neurotoxic effects ofβ-amyloid (1–42) and induces neurite extension on B103cells [J]. Neurosci Lett,1997,235(3):101-104.
    [50] Pike C J. Estrogen Modulates Neuronal Bcl‐xl Expression and β‐Amyloid‐Induced Apoptosis [J]. Journal of Neurochemistry,1999,72(4):1552-1563.
    [51] Walsh D M, Selkoe D J. Aβ oligomers–a decade of discovery [J]. Journalof Neurochemistry,2007,101(5):1172-1184.
    [52] Cotman C W, Pike C J, CopaniA. β-Amyloid neurotoxicity: a discussionof in vitro findings [J]. Neurobiology of Aging,1992,13(5):587-590.
    [53] Walsh D, Klyubin I, Fadeeva J, et al. Amyloid-b oligomers: theirproduction, toxicity and therapeutic inhibition [J]. Biochem Soc Trans,2002,30(4):552-556.
    [54] Yankner B A, Lu T. Amyloid β-protein toxicity and the pathogenesis ofAlzheimer disease [J]. J Biol Chem,2009,284(8):4755-4759.
    [55] Ivins K J, Bui E T, Cotman C W. β-amyloid induces local neuritedegeneration in cultured hippocampal neurons: evidence for neuritic apoptosis [J].Neurobiol Dis,1998,5(5):365-378.
    [56] Pike C J, Cummings B J, Cotman C W.[beta]-Amyloid induces neuriticdystrophy in vitro: similarities with Alzheimer pathology [J]. Neuroreport,1992,3(9):769-772.
    [57] Hartley D M, Walsh D M, Chianping P Y, et al. Protofibrillarintermediates of amyloid β-protein induce acute electrophysiological changes andprogressive neurotoxicity in cortical neurons [J]. J Neurosci,1999,19(20):8876-8884.
    [58] Kamenetz F, Tomita T, Hsieh H, et al. APP processing and synapticfunction [J]. Neuron,2003,37(6):925-937.
    [59] Rowan M, Klyubin I, Wang Q, et al. Synaptic memory mechanisms:Alzheimer's disease amyloid beta-peptide-induced dysfunction [J]. Biochem SocTrans,2007,35(5):1219-1223.
    [60] Cheng I H, Scearce-Levie K, Legleiter J, et al. Accelerating amyloid-βfibrillization reduces oligomer levels and functional deficits in Alzheimer diseasemouse models [J]. J Biol Chem,2007,282(33):23818-23828.
    [61] LesnéS, Koh M T, Kotilinek L, et al. A specific amyloid-β proteinassembly in the brain impairs memory [J]. Nature,2006,440(7082):352-357.
    [62] Mattson M P, Partin J, Begley J. Amyloid β-peptide inducesapoptosis-related events in synapses and dendrites [J]. Brain Research,1998,807(1):167-176.
    [63] Weiss J H, Pike C J, Cotman C W. Rapid Communication: Ca2+ChannelBlockers Attenuate β‐Amyloid Peptide Toxicity to Cortical Neurons in Culture [J].Journal of Neurochemistry,1994,62(1):372-375.
    [64] Mark R J, Hensley K, Butterfield D A, et al. Amyloid beta-peptideimpairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+homeostasis and cell death [J]. J Neurosci,1995,15(9):6239-6249.
    [65] Cotman C W, Anderson A J. A potential role for apoptosis inneurodegeneration and Alzheimer's disease [J]. Molecular Neurobiology,1995,10(1):19-45.
    [66] Yao M, Nguyen T-V V, Pike C J. β-Amyloid-induced neuronal apoptosisinvolves c-Jun N-terminal kinase-dependent downregulation of Bcl-w [J]. J Neurosci,2005,25(5):1149-1158.
    [67] Dubal D B, Shughrue P J, Wilson M E, et al. Estradiol modulates bcl-2in cerebral ischemia: a potential role for estrogen receptors [J]. J Neurosci,1999,19(15):6385-6393.
    [68] Nilsen J, Brinton R D. Mechanism of estrogen-mediated neuroprotection:regulation of mitochondrial calcium and Bcl-2expression [J]. Proceedings of theNational Academy of Sciences,2003,100(5):2842-2847.
    [69] Stoltzner S E, Berchtold N C, Cotman C W, et al. Estrogen regulatesbcl-x expression in rat hippocampus [J]. Neuroreport,2001,12(13):2797-2800.
    [70] Antonsson B, Martinou J-C. The Bcl-2protein family [J]. Exp Cell Res,2000,256(1):50-57.
    [71] Cory S, Adams J M. The Bcl2family: regulators of the cellularlife-or-death switch [J]. Nature Reviews Cancer,2002,2(9):647-656.
    [72] Nguyen T-V V, Yao M, Pike C J. Flutamide and cyproterone acetate exertagonist effects: induction of androgen receptor-dependent neuroprotection [J].Endocrinology,2007,148(6):2936-2943.
    [73] Zhao L, Wu T-W, Brinton R D. Estrogen receptor subtypes alpha andbeta contribute to neuroprotection and increased Bcl-2expression in primaryhippocampal neurons [J]. Brain Research,2004,1010(1):22-34.
    [74] Yune T Y, Park H G, Lee J Y, et al. Estrogen-induced Bcl-2expressionafter spinal cord injury is mediated through phosphoinositide-3-kinase/Akt-dependentCREB activation [J]. J Neurotrauma,2008,25(9):1121-1131.
    [75] Bezprozvanny I, Mattson M P. Neuronal calcium mishandling and thepathogenesis of Alzheimer's disease [J]. Trends Neurosci,2008,31(9):454-463.
    [76] Mattson M P, Lovell M A, Furukawa K, et al. Neurotrophic FactorsAttenuate Glutamate‐Induced Accumulation of Peroxides, Elevation of IntracellularCa2+Concentration, and Neurotoxicity and Increase Antioxidant Enzyme Activitiesin Hippocampal Neurons [J]. Journal of Neurochemistry,1995,65(4):1740-1751.
    [77] Choi D W. Ionic dependence of glutamate neurotoxicity [J]. J Neurosci,1987,7(2):369-379.
    [78] Brinton R D, Chen S, Montoya M, et al. The estrogen replacementtherapy of the Women’s Health Initiative promotes the cellular mechanisms ofmemory and neuronal survival in neurons vulnerable to Alzheimer’s disease [J].Maturitas,2000,34: S35-S52.
    [79] Regan R F, Guo Y. Estrogens attenuate neuronal injury due tohemoglobin, chemical hypoxia, and excitatory amino acids in murine cortical cultures[J]. Brain Research,1997,764(1):133-140.
    [80] Singer C A, Figueroa-Masot X A, Batchelor R H, et al. Themitogen-activated protein kinase pathway mediates estrogen neuroprotection afterglutamate toxicity in primary cortical neurons [J]. J Neurosci,1999,19(7):2455-2463.
    [81] Carroll J C, Rosario E R, Pike C J. Progesterone blocks estrogenneuroprotection from kainate in middle-aged female rats [J]. Neurosci Lett,2008,445(3):229-232.
    [82] Rosario E R, Ramsden M, Pike C J. Progestins inhibit theneuroprotective effects of estrogen in rat hippocampus [J]. Brain Research,2006,1099(1):206-210.
    [83] Sastre M, Walter J, Gentleman S M. Interactions between APP secretasesand inflammatory mediators [J]. J Neuroinflammation,2008,5(25).
    [84] Vasto S, Candore G, ListìF, et al. Inflammation, genes and zinc inAlzheimer's disease [J]. Brain Research Reviews,2008,58(1):96-105.
    [85] Vedder H, Anthes N, Stumm G, et al. Estrogen hormones reduce lipidperoxidation in cells and tissues of the central nervous system [J]. Journal ofNeurochemistry,1999,72(6):2531-2538.
    [86] Rice-Evans C A, Miller N J, Paganga G. Structure-antioxidant activityrelationships of flavonoids and phenolic acids [J]. Free Radical Biol Med,1996,20(7):933-956.
    [87] Subbiah M, Kessel B, Agrawal M, et al. Antioxidant potential of specificestrogens on lipid peroxidation [J]. J Clin Endocrinol Metab,1993,77(4):1095-1097.
    [88] Alvarez‐De‐La‐Rosa M, Silva I, Nilsen J, et al. Estradiol preventsneural tau hyperphosphorylation characteristic of Alzheimer's disease [J]. Ann N YAcad Sci,2005,1052(1):210-224.
    [89] Goodenough S, Schleusner D, Pietrzik C, et al. Glycogen synthasekinase3β links neuroprotection by17β-estradiol to keyAlzheimer processes [J].Neuroscience,2005,132(3):581-589.
    [90] Liu X-A, Zhu L-Q, Zhang Q, et al. Estradiol attenuates tauhyperphosphorylation induced by upregulation of protein kinase-A [J]. NeurochemRes,2008,33(9):1811-1820.
    [91] Zhang Q-G, Wang R, Khan M, et al. Role of Dickkopf-1, an antagonist ofthe Wnt/β-catenin signaling pathway, in estrogen-induced neuroprotection andattenuation of tau phosphorylation [J]. J Neurosci,2008,28(34):8430-8441.
    [92] Shughrue P J, Lane M V, Merchenthaler I. Comparative distribution ofestrogen receptor‐α and‐β mRNA in the rat central nervous system [J]. Journal ofComparative Neurology,1997,388(4):507-525.
    [93] Lu Y-P, Zeng M, Swaab D F, et al. Colocalization and alteration ofestrogen receptor-α and-β in the hippocampus inAlzheimer’s disease [J]. Hum Pathol,2004,35(3):275-280.
    [94] Hestiantoro A, Swaab D F. Changes in estrogen receptor-α and-β in theinfundibular nucleus of the human hypothalamus are related to the occurrence ofAlzheimer’s disease neuropathology [J]. J Clin Endocrinol Metab,2004,89(4):1912-1925.
    [95] Kalesnykas G, Roschier U, Puoliv li J, et al. The effect of aging on thesubcellular distribution of estrogen receptor‐alpha in the cholinergic neurons oftransgenic and wild‐type mice [J]. Eur J Neurosci,2005,21(5):1437-1442.
    [96] Kelly J F, Bienias J L, ShahA, et al. Levels of Estrogen Receptors α andβ in Frontal Cortex of Patients withAlzheimer’s Disease: Relationship to Mini-MentalState Examination Scores [J]. Current Alzheimer Research,2008,5(1):45-51.
    [97] Schupf N, Lee J H, Wei M, et al. Estrogen Receptor-α variants increaserisk ofAlzheimer’s Disease in women with Down syndrome [J]. Dement GeriatrCogn Disord,2008,25(5):476-482.
    [98] Savaskan E, Olivieri G, Meier F, et al. Hippocampal estrogen β-receptorimmunoreactivity is increased in Alzheimer’s disease [J]. Brain Research,2001,908(2):113-119.
    [99] Brann D W, Dhandapani K, Wakade C, et al. Neurotrophic andneuroprotective actions of estrogen: basic mechanisms and clinical implications [J].Steroids,2007,72(5):381-405.
    [100] Ogiue-Ikeda M, Tanabe N, Mukai H, et al. Rapid modulation of synapticplasticity by estrogens as well as endocrine disrupters in hippocampal neurons [J].Brain Research Reviews,2008,57(2):363-375.
    [101] Gandy S, Petanceska S. Regulation of Alzheimer-amyloid precursortrafficking and metabolism [M]. Neuropathology and Genetics of Dementia. Springer.2001:85-100.
    [102] Chang D, Kwan J, Timiras P S. Estrogens influence growth, maturation,and amyloid beta-peptide production in neuroblastoma cells and in a beta-APPtransfected kidney293cell line [J]. Adv Exp Med Biol,1997,429:261-271.
    [103] Baker L D, Sambamurti K, Craft S, et al.17β-Estradiol reduces plasmaAβ40for HRT-naive postmenopausal women withAlzheimer disease: a preliminarystudy [J]. The American Journal of Geriatric Psychiatry,2003,11(2):239-244.
    [104] Manthey D, Heck S, Engert S, et al. Estrogen induces a rapid secretionof amyloid β precursor protein via the mitogen‐activated protein kinase pathway [J].Eur J Biochem,2001,268(15):4285-4291.
    [105] Olariu A, Yamada K, Nabeshima T. Amyloid pathology and proteinkinase C (PKC): possible therapeutics effects of PKC activators [J]. J Pharmacol Sci,2005,97(1):1-5.
    [106] Cordey M, Pike C J. Conventional protein kinase C isoforms mediateneuroprotection induced by phorbol ester and estrogen [J]. Journal of Neurochemistry,2006,96(1):204-217.
    [107] SétálóJr G, Singh M, Nethrapalli I S, et al. Protein kinase C activity isnecessary for estrogen-induced Erk phosphorylation in neocortical explants [J].Neurochem Res,2005,30(6-7):779-790.
    [108] Zhang S, Huang Y, Yao T. Estrogen stimulates release of secretedamyloid precursor protein from primary rat cortical neurons via protein kinase Cpathway1[J]. Acta Pharmacol Sin,2005,26(2):171-176.
    [109] Vincent B, Smith J D. Effect of Estradiol on Neuronal Swedish-Mutated2-Amyloid Precursor Protein Metabolism: Reversal by Astrocytic Cells [J]. BiochemBiophys Res Commun,2000,271(1):82-85.
    [110] Greenfield J P, Leung L W, Cai D, et al. Estrogen Lowers Alzheimerβ-Amyloid Generation by Stimulatingtrans-Golgi Network Vesicle Biogenesis [J]. JBiol Chem,2002,277(14):12128-12136.
    [111] Rogers J, Strohmeyer R, Kovelowski C, et al. Microglia andinflammatory mechanisms in the clearance of amyloid β peptide [J]. Glia,2002,40(2):260-269.
    [112] Bruce-Keller A J, Keeling J L, Keller J N, et al. Antiinflammatory effectsof estrogen on microglial activation [J]. Endocrinology,2000,141(10):3646-3656.
    [113] Harris-White M E, Chu T, Miller S A, et al. Estrogen (E2) andglucocorticoid (Gc) effects on microglia and Aβ clearance in vitro and in vivo [J].Neurochem Int,2001,39(5):435-448.
    [114] Shen R, Sumitomo M, Dai J, et al. Identification and characterization oftwo androgen response regions in the human neutral endopeptidase gene [J]. Mol CellEndocrinol,2000,170(1):131-142.
    [115] Vardy E R, Catto A J, Hooper N M. Proteolytic mechanisms inamyloid-β metabolism: therapeutic implications for Alzheimer's disease [J]. TrendsMol Med,2005,11(10):464-472.
    [116] Feldman H A, Longcope C, Derby C A, et al. Age trends in the level ofserum testosterone and other hormones in middle-aged men: longitudinal results fromthe Massachusetts male aging study [J]. J Clin Endocrinol Metab,2002,87(2):589-598.
    [117] Muller M, Den Tonkelaar I, Thijssen J, et al. Endogenous sex hormonesin men aged40-80years [J]. European Journal of Endocrinology,2003,149(6):583-589.
    [118] Gouchie C, Kimura D. The relationship between testosterone levels andcognitive ability patterns [J]. Psychoneuroendocrinology,1991,16(4):323-334.
    [119] Janowsky J S, Oviatt S K, Orwoll E S. Testosterone influences spatialcognition in older men [J]. Behav Neurosci,1994,108(2):325.
    [120] Alexander G M, Swerdloff R S, Wang C, et al. Androgen–behaviorcorrelations in hypogonadal men and eugonadal men [J]. Horm Behav,1998,33(2):85-94.
    [121] Barrett-Connor E, Goodman-Gruen D, Patay B. Endogenous sexhormones and cognitive function in older men [J]. J Clin Endocrinol Metab,1999,84(10):3681-3685.
    [122] Moffat S D, Zonderman A B, Metter E J, et al. Longitudinal assessmentof serum free testosterone concentration predicts memory performance and cognitivestatus in elderly men [J]. J Clin Endocrinol Metab,2002,87(11):5001-5007.
    [123] Strittmatter W J, Roses A D. Apolipoprotein E and Alzheimer disease [J].Proceedings of the National Academy of Sciences,1995,92(11):4725-4727.
    [124] Hogervorst E, Lehmann D, Warden D, et al. Apolipoprotein E ε4andtestosterone interact in the risk of Alzheimer's disease in men [J]. Int J GeriatrPsychiatry,2002,17(10):938-940.
    [125] Raber J. Androgens, apoE, and Alzheimer's disease [J]. Science's SAGEKE,2004,2004(11): re2.
    [126] Raber J. AR, apoE, and cognitive function [J]. Horm Behav,2008,53(5):706-715.
    [127] Moffat S D, Zonderman A B, Metter E J, et al. Free testosterone and riskfor Alzheimer disease in older men [J]. Neurology,2004,62(2):188-193.
    [128] Rosario E R, Chang L, Stanczyk F Z, et al. Age-related testosteronedepletion and the development of Alzheimer disease [J]. JAMA,2004,292(12):1431-1432.
    [129] Jones K J, Brown T J, Damaser M. Neuroprotective effects of gonadalsteroids on regenerating peripheral motoneurons [J]. Brain Research Reviews,2001,37(1):372-382.
    [130] Simerly R, Swanson L, Chang C, et al. Distribution of androgen andestrogen receptor mRNA‐containing cells in the rat brain: an in situ hybridizationstudy [J]. Journal of Comparative Neurology,1990,294(1):76-95.
    [131] Ahlbom E, Prins G S, Ceccatelli S. Testosterone protects cerebellargranule cells from oxidative stress-induced cell death through a receptor mediatedmechanism [J]. Brain Research,2001,892(2):255-262.
    [132] Hammond J, Le Q, Goodyer C, et al. Testosterone‐mediatedneuroprotection through the androgen receptor in human primary neurons [J]. Journalof Neurochemistry,2001,77(5):1319-1326.
    [133] Nguyen T V V, Yao M, Pike C J. Androgens activate mitogen‐activatedprotein kinase signaling: Role in neuroprotection [J]. Journal of Neurochemistry,2005,94(6):1639-1651.
    [134] Pike C J. Testosterone attenuates β-amyloid toxicity in culturedhippocampal neurons [J]. Brain Research,2001,919(1):160-165.
    [135] Zhang Y, Champagne N, Beitel L K, et al. Estrogen and androgenprotection of human neurons against intracellular amyloid β1-42toxicity through heatshock protein70[J]. J Neurosci,2004,24(23):5315-5321.
    [136] Iqbal K, Del C Alonso A, Chen S, et al. Tau pathology in Alzheimerdisease and other tauopathies [J]. Biochimica et Biophysica Acta (BBA)-MolecularBasis of Disease,2005,1739(2):198-210.
    [137] Park S-Y, Tournell C, Sinjoanu R C, et al. Caspase-3-andcalpain-mediated tau cleavage are differentially prevented by estrogen andtestosterone in beta-amyloid-treated hippocampal neurons [J]. Neuroscience,2007,144(1):119-127.
    [138] Gouras G K, Xu H, Gross R S, et al. Testosterone reduces neuronalsecretion of Alzheimer's β-amyloid peptides [J]. Proceedings of the National Academyof Sciences,2000,97(3):1202-1205.
    [139] Goodenough S, Engert S, Behl C. Testosterone stimulates rapid secretoryamyloid precursor protein release from rat hypothalamic cells via the activation of themitogen-activated protein kinase pathway [J]. Neurosci Lett,2000,296(1):49-52.
    [140] Iwata N, Tsubuki S, Takaki Y, et al. Identification of the majorAβ1–42-degrading catabolic pathway in brain parenchyma: suppression leads tobiochemical and pathological deposition [J]. Nat Med,2000,6(2):143-150.
    [141] Yao M, Nguyen T V V, Rosario E R, et al. Androgens regulate neprilysinexpression: role in reducing β‐amyloid levels [J]. Journal of Neurochemistry,2008,105(6):2477-2488.
    [142] Zeng Y, Li B, Ma W, et al. Discussion on Current Pollution StatusandLegislation of Environmental Hormone in China [J]. Procedia EnvironmentalSciences,2011,11(1267-1277.
    [143] Chung K, Johnson B. Application of cellular mechanisms to growth anddevelopment of food producing animals [J]. Journal of Animal Science,2008,86(14suppl): E226-E235.
    [144] Metzler M, Pfeiffer E. Genotoxic potential of xenobiotic growthpromoters and their metabolites [J]. APMIS,2001,109(S103): S426-S432.
    [145] Bauer E, Daxenberger A, Petri T, et al. Characterisation of the affinity ofdifferent anabolics and synthetic hormones to the human androgen receptor, humansex hormone binding globulin and to the bovine progestin receptor [J]. AMPIS,2000,108(12):838-846.
    [146] Pottier J, Cousty C, Heitzman R, et al. Differences in thebiotransformation of a17β-hydroxylated steroid, trenbolone acetate, in rat and cow [J].Xenobiotica,1981,11(7):489-500.
    [147] Yarrow J F, Mccoy S C, Borst S E. Tissue selectivity and potentialclinical applications of trenbolone (17beta-hydroxyestra-4,9,11-trien-3-one): A potentanabolic steroid with reduced androgenic and estrogenic activity [J]. Steroids,2010,75(6):377-389.
    [148] Metzler M. Metabolism of some anabolic agents: toxicological andanalytical aspects [J]. Journal of Chromatography B: Biomedical Sciences andApplications,1989,489(1):11-21.
    [149] Spranger B, Metzler M. Disposition of17β-trenbolone in humans [J].Journal of Chromatography B: Biomedical Sciences and Applications,1991,564(2):485-492.
    [150] Wilson V S, Lambright C, Ostby J, et al. In vitro and in vivo effects of17β-trenbolone: a feedlot effluent contaminant [J]. Toxicol Sci,2002,70(2):202-211.
    [151] Santen R, Brodie H, Simpson E, et al. History of aromatase: saga of animportant biological mediator and therapeutic target [J]. Endocr Rev,2009,30(4):343-375.
    [152] Wilson J D. The role of5a-reduction in steroid hormone physiology [J].Reprod Fertil Dev,2001,13(8):673-678.
    [153] Sundaram K, Kumar N, Monder C, et al. Different patterns ofmetabolism determine the relative anabolic activity of19-norandrogens [J]. TheJournal of Steroid Biochemistry and Molecular Biology,1995,53(1):253-257.
    [154] Mantovani A. The role of multigeneration studies in safety assessment ofresidues of veterinary drugs and additives [J]. Annali-Istituto Superiore Di Sanita,1992,28(429-429.
    [155] Ankley G T, Defoe D L, Kahl M D, et al. Evaluation of the modelanti-androgen flutamide for assessing the mechanistic basis of responses to anandrogen in the fathead minnow (Pimephales promelas)[J]. Environ Sci Technol,2004,38(23):6322-6327.
    [156] Freyberger A, Hartmann E, Kr tlinger F. Evaluation of the rodentHershberger bioassay using three reference(anti) androgens [J]. Arh Hig RadaToksikol/Arch Ind Hyg Toxicol,2005,56(2):131-139.
    [157] Freyberger A, Ellinger-Ziegelbauer H, Krotlinger F. Evaluation of therodent Hershberger bioassay: testing of coded chemicals and supplementarymolecular-biological and biochemical investigations [J]. Toxicology,2007,239(1-2):77-88.
    [158] Hotchkiss A K, Nelson R J. An Environmental Androgen,17β-Trenbolone, Affects Delayed-Type Hypersensitivity and Reproductive Tissues inMale Mice [J]. J Toxicol Environ Health, A,2007,70(2):138-140.
    [159] Le Guevel R, Pakdel F. Assessment of oestrogenic potency of chemicalsused as growth promoter by in-vitro methods [J]. Hum Reprod,2001,16(5):1030-1036.
    [160] Akbari Y, Hitt B D, Murphy M P, et al. Presenilin regulates capacitativecalcium entry dependently and independently of gamma-secretase activity [J].Biochem Biophys Res Commun,2004,322(4):1145-52.
    [161] Ankley G T, Jensen K M, Makynen E A, et al. Effects of the androgenicgrowth promoter17‐β‐trenbolone on fecundity and reproductive endocrinology ofthe fathead minnow [J]. Environ Toxicol Chem,2003,22(6):1350-1360.
    [162] Hunt D, Henricks D, Skelley G, et al. Use of trenbolone acetate andestradiol in intact and castrate male cattle: effects on growth, serum hormones, andcarcass characteristics [J]. Journal of Animal Science,1991,69(6):2452-2462.
    [163] Neumann F. Pharmacological and endocrinological studies on anabolicagents [J]. Environ Qual Saf,1976,(5):253-254.
    [164] Miracle A, Ankley G, Lattier D. Expression of two vitellogenin genesvg1and vg3in fathead minnow (Pimephales promelas) liver in response to exposureto steroidal estrogens and androgens [J]. Ecotoxicol Environ Saf,2006,63(3):337-342.
    [165] Zhang X, Hecker M, Park J W, et al. Time‐Dependent transcriptionalprofiles of genes of the hypothalamic‐pituitary‐gonadal axis in medaka (Oryziaslatipes) exposed to fadrozole and17β‐trenbolone [J]. Environ Toxicol Chem,2008,27(12):2504-2511.
    [166] Dorts J, Richter C A, Wright-Osment M K, et al. The genomictranscriptional response of female fathead minnows (Pimephales promelas) to anacute exposure to the androgen,17β-trenbolone [J]. Aquatic Toxicology,2009,91(1):44-53.
    [167] Zhang X, Hecker M, Park J-W, et al. Real-time PCR array to studyeffects of chemicals on the hypothalamic–pituitary–gonadal axis of the Japanesemedaka [J]. Aquatic Toxicology,2008,88(3):173-182.
    [168] Park J-W, Tompsett A, Zhang X, et al. Fluorescence in situ hybridizationtechniques (FISH) to detect changes in CYP19a gene expression of Japanese medaka(Oryzias latipes)[J]. Toxicol Appl Pharmacol,2008,232(2):226-235.
    [169] Henricks D, Brandt R, Titgemeyer E, et al. Serum concentrations oftrenbolone-17beta and estradiol-17beta and performance of heifers treated withtrenbolone acetate, melengestrol acetate, or estradiol-17beta [J]. Journal of AnimalScience,1997,75(10):2627-2633.
    [170] Henricks D, Edwards R, Champe K, et al. Trenbolone, estradiol-17betaand estrone levels in plasma and tissues and live weight gains of heifers implantedwith trenbolone acetate [J]. Journal of Animal Science,1982,55(5):1048-1056.
    [171] Fabry J, Renaville R, Halleux V, et al. Plasma testosterone and LHresponses to LHRH in double-muscled bulls treated with trenbolone acetate andzeranol [J]. Journal of Animal Science,1983,57(5):1138-1145.
    [172] Renaville R, Burny A, Sneyers M, et al. Effects of an anabolic treatmentbefore puberty with trenbolone acetate-oestradiol or oestradiol alone on growth rate,testicular development and luteinizing hormone and testosterone plasmaconcentrations [J]. Theriogenology,1988,29(2):461-476.
    [173] Schneider B A, Tatum J, Engle T, et al. Effects of heifer finishingimplants on beef carcass traits and longissimus tenderness [J]. Journal of AnimalScience,2007,85(8):2019-2030.
    [174] Monks D A, O'bryant E L, Jordan C L. Androgen receptorimmunoreactivity in skeletal muscle: enrichment at the neuromuscular junction [J].Journal of Comparative Neurology,2004,473(1):59-72.
    [175] Sinha-Hikim I, Taylor W E, Gonzalez-Cadavid N F, et al. Androgenreceptor in human skeletal muscle and cultured muscle satellite cells: up-regulation byandrogen treatment [J]. J Clin Endocrinol Metab,2004,89(10):5245-5255.
    [176] Kamanga-Sollo E, White M, Hathaway M, et al. Roles of IGF-I and theestrogen, androgen and IGF-I receptors in estradiol-17β-and trenboloneacetate-stimulated proliferation of cultured bovine satellite cells [J]. Domest AnimEndocrinol,2008,35(1):88-97.
    [177] Kamanga-Sollo E, White M E, Hathaway M R, et al. Effect oftrenbolone acetate on protein synthesis and degradation rates in fused bovine satellitecell cultures [J]. Domest Anim Endocrinol,2011,40(1):60-66.
    [178] Zhao J X, Hu J, Zhu M J, et al. Trenbolone enhances myogenicdifferentiation by enhancing beta-catenin signaling in muscle-derived stem cells ofcattle [J]. Domest Anim Endocrinol,2011,40(4):222-229.
    [179] Ranaweera K, Wise D. The effects of trienbolone acetate on carcasscomposition, conformation and skeletal growth of turkeys [J]. Br Poult Sci,1981,22(2):105-114.
    [180] Christen V, Hickmann S, Rechenberg B, et al. Highly active humanpharmaceuticals in aquatic systems: A concept for their identification based on theirmode of action [J]. Aquat Toxicol,2010,96(3):167-181.
    [181] Thevis M, Guddat S, Schanzer W. Doping control analysis of trenboloneand related compounds using liquid chromatography-tandem mass spectrometry [J].Steroids,2009,74(3):315-321.
    [182] Ip E J, Barnett M J, Tenerowicz M J, et al. The Anabolic500Survey:Characteristics of Male Users versus Nonusers of Anabolic‐Androgenic Steroids forStrength Training [J]. Pharmacotherapy,2011,31(8):757-766.
    [183] Parkinson A B, Evans N A. Anabolic androgenic steroids: a survey of500users [J]. Med Sci Sports Exerc,2006,38(4):644-651.
    [184] Perry P J, Lund B C, Deninger M J, et al. Anabolic steroid use inweightlifters and bodybuilders: an internet survey of drug utilization [J]. Clin J SportMed,2005,15(5):326-330.
    [185] Durhan E J, Lambright C S, Makynen E A, et al. Identification ofmetabolites of trenbolone acetate in androgenic runoff from a beef feedlot [J]. EnvironHealth Perspect,2006,114(S-1):65-68.
    [186] Liu S, Ying G G, Zhou L J, et al. Steroids in a typical swine farm andtheir release into the environment [J]. Water Res,2012,46(12):3754-68.
    [187] Schiffer B, Daxenberger A, Meyer K, et al. The fate of trenbolone acetateand melengestrol acetate after application as growth promoters in cattle:environmental studies [J]. Environ Health Perspect,2001,109(11):1145-1151.
    [188] Blackwell B R, Karnjanapiboonwong A, Anderson T A, et al. Uptake of17beta-trenbolone and subsequent metabolite trendione by the pinto bean plant(Phaseolus vulgaris)[J]. Ecotoxicol Environ Saf,2012,85(1):110-114.
    [189] Mash H. Assessing the fate and transformation by-product potential oftrenbolone during chlorination [J]. Chemosphere,2010,81(7):946-953.
    [190] Zhang Y, He F, Wan Y, et al. Generation of anti-trenbolone monoclonalantibody and establishment of an indirect competitive enzyme-linked immunosorbentassay for detection of trenbolone in animal tissues, feed and urine [J]. Talanta,2011,83(3):732-737.
    [191] Davis K B, Morrison J, Galvez J I. Reproductive characteristics of adultchannel catfish treated with trenbolone acetate during the phenocritical period of sexdifferentiation [J]. Aquaculture,2000,189(3):351-360.
    [192] Hemmer M J, Hemmer B L, Bowman C J, et al. Effects of p‐nonylphenol, methoxychlor, and endosulfan on vitellogenin induction and expressionin sheepshead minnow (Cyprinodon variegatus)[J]. Environ Toxicol Chem,2001,20(2):336-343.
    [193] Velasco-Santamaria Y M, Madsen S S, Bjerregaard P, et al. Effects of17beta-trenbolone in male eelpout Zoarces viviparus exposed to ethinylestradiol [J].Anal Bioanal Chem,2010,396(2):631-640.
    [194] Rn S, Yamani S, Norrgren L. Comparison of vitellogenin induction, sexratio, and gonad morphology between zebrafish and Japanese medaka after exposureto17α-ethinylestradiol and17β-trenbolone [J]. Arch Environ Contam Toxicol,2006,51(2):237-243.
    [195] Hotchkiss A K, Furr J, Makynen E A, et al. In utero exposure to theenvironmental androgen trenbolone masculinizes female Sprague-Dawley rats [J].Toxicol Lett,2007,174(1-3):31-41.
    [196] Sone K, Hinago M, Itamoto M, et al. Effects of an androgenic growthpromoter17beta-trenbolone on masculinization of Mosquitofish (Gambusia affinisaffinis)[J]. Gen Comp Endocrinol,2005,143(2):151-160.
    [197] Quinn M J, Jr., Lavoie E T, Ottinger M A. Reproductive toxicity oftrenbolone acetate in embryonically exposed Japanese quail [J]. Chemosphere,2007,66(7):1191-1196.
    [198] Boettcher M, Kosmehl T, Braunbeck T. Low-dose effects and biphasiceffect profiles: is trenbolone a genotoxicant?[J]. Mutat Res,2011,723(2):152-157.
    [199]富宏,陶迎红,王学美,等.经皮穿刺延髓池抽取兔和大鼠脑脊液的方法[J].中国比较医学杂志,2006,16(11):684-687.
    [200]陈奇.中药药理研究方法学[M].北京:人民卫生出版社,1993.
    [201] Silcox R, Keeton J, Johnson B. Effects of zeranol and trenbolone acetateon testis function, live weight gain and carcass traits of bulls [J]. Journal of AnimalScience,1986,63(2):358-368.
    [202] Hatanaka Y, Mukai H, Mitsuhashi K, et al. Androgen rapidly increasesdendritic thorns of CA3neurons in male rat hippocampus [J]. Biochem Biophys ResCommun,2009,381(4):728-732.
    [203] Kerr J, Allore R, Beck S, et al. Distribution and hormonal regulation ofandrogen receptor (AR) and AR messenger ribonucleic acid in the rat hippocampus[J]. Endocrinology,1995,136(8):3213-3221.
    [204] Sar M, Lubahn D B, French F S, et al. Immunohistochemical localizationof the androgen receptor in rat and human tissues [J]. Endocrinology,1990,127(6):3180-3186.
    [205] Gracia T, Hilscherova K, Jones P D, et al. Modulation of steroidogenicgene expression and hormone production of H295R cells by pharmaceuticals andother environmentally active compounds [J]. Toxicol Appl Pharmacol,2007,225(2):142-153.
    [206] MaltsevA, Bystryak S, Galzitskaya O. The role of β-amyloid peptide inneurodegenerative diseases [J]. Ageing Res Rev,2011,10(4):440-452.
    [207] Iwatsubo T, OdakaA, Suzuki N, et al. Visualization ofAβ42(43) andAβ40in senile plaques with end-specific Aβ monoclonals: evidence that an initiallydeposited species is Aβ42(43)[J]. Neuron,1994,13(1):45-53.
    [208] Shibata M, Yamada S, Kumar S R, et al. Clearance ofAlzheimer’samyloid-β1-40peptide from brain by LDL receptor–related protein-1at theblood-brain barrier [J]. J Clin Invest,2000,106(12):1489-1499.
    [209] Blennow K. CSF biomarkers for Alzheimer's disease: use in earlydiagnosis and evaluation of drug treatment [J]. Expert Rev Mol Diagn,2005,5(5):661-672.
    [210] Blennow K, Hampel H. CSF markers for incipient Alzheimer's disease[J]. The Lancet Neurology,2003,2(10):605-613.
    [211] Dubois B, Feldman H H, Jacova C, et al. Research criteria for thediagnosis of Alzheimer's disease: revising the NINCDS–ADRDA criteria [J]. TheLancet Neurology,2007,6(8):734-746.
    [212] Tanzi R, Moir R, Wagner S. Clearance ofAlzheimer's Aβ peptide: themany roads to perdition [J]. Neuron,2004,43(5):605-608.
    [213] Blennow K, Vanmechelen E, Hampel H. CSF total tau, Aβ42andphosphorylated tau protein as biomarkers for Alzheimer’s disease [J]. MolecularNeurobiology,2001,24(1-3):87-97.
    [214] Jaffe A B, Toran-Allerand C D, Greengard P, et al. Estrogen regulatesmetabolism of Alzheimer amyloid beta precursor protein [J]. J Biol Chem,1994,269(18):13065-13068.
    [215] Blennow K, Hampel H, Weiner M, et al. Cerebrospinal fluid and plasmabiomarkers in Alzheimer disease [J]. Nature Reviews Neurology,2010,6(3):131-144.
    [216] Haass C, Schlossmacher M G, Hung AY, et al. Amyloid β-peptide isproduced by cultured cells during normal metabolism [J]. Nature,1992,359(6393):322-325.
    [217] Nunez J. Primary culture of hippocampal neurons from P0newborn rats[J]. JoVE,2008, doi:10.3791/895(19):
    [218] Mattson M P. Apoptosis in neurodegenerative disorders [J]. Nat Rev MolCell Biol,2000,1(2):120-130.
    [219] Atwood C S, Obrenovich M E, Liu T, et al. Amyloid-β: a chameleonwalking in two worlds: a review of the trophic and toxic properties of amyloid-β [J].Brain Research Reviews,2003,43(1):1-16.
    [220] Mawuenyega K G, Sigurdson W, Ovod V, et al. Decreased clearance ofCNS β-amyloid inAlzheimer’s disease [J]. Science,2010,330(6012):1774-1774.
    [221] Kovacs D M, Fausett H J, Page K J, et al. Alzheimer–associatedpresenilins1and2: Neuronal expression in brain and localization to intracellularmembranes in mammalian cells [J]. Nat Med,1996,2(2):224-229.
    [222] Shen Y, Li R. Expressing mRNAs for presenilin-1and amyloid precursorprotein (APP-695) from same neuronal populations in rat hippocampus [J]. BrainResearch Bulletin,1998,46(3):233-236.
    [223] Dowjat W, Wisniewski H, Wisniewski T. Alzheimer’s diseasepresenilin-1expression modulates the assembly of neurofilaments [J]. Neuroscience,2001,103(1):1-8.
    [224] Ho A, Shen J. Presenilins in synaptic function and disease [J]. TrendsMol Med,2011,17(11):617-624.
    [225] Doan A, Thinakaran G, Borchelt D R, et al. Protein topology ofpresenilin1[J]. Neuron,1996,17(5):1023-1030.
    [226] Haass C, De Strooper B. The presenilins in Alzheimer'sdisease--proteolysis holds the key [J]. Science,1999,286(5441):916-919.
    [227] Larner A J. Presenilin-1mutation Alzheimer's disease: a genetic epilepsysyndrome?[J]. Epilepsy Behav,2011,21(1):20-22.
    [228] Georgakopoulos A, Marambaud P, Efthimiopoulos S, et al. Presenilin-1forms complexes with the cadherin/catenin cell–cell adhesion system and is recruitedto intercellular and synaptic contacts [J]. Mol Cell,1999,4(6):893-902.
    [229] Laferla F M. Calcium dyshomeostasis and intracellular signalling inAlzheimer's disease [J]. Nat Rev Neurosci,2002,3(11):862-872.
    [230] Selkoe D J, Wolfe M S. Presenilin: running with scissors in themembrane [J]. Cell,2007,131(2):215-221.
    [231] Cowburn R F, Popescu B O, Ankarcrona M, et al. Presenilin-mediatedsignal transduction [J]. Physiol Behav,2007,92(1-2):93-97.
    [232] Tu H, Nelson O, Bezprozvanny A, et al. Presenilins form ER Ca2+leakchannels, a function disrupted by familial Alzheimer's disease-linked mutations [J].Cell,2006,126(5):981-993.
    [233] Li J, Xu M, Zhou H, et al. Alzheimer presenilins in the nuclearmembrane, interphase kinetochores, and centrosomes suggest a role in chromosomesegregation [J]. Cell,1997,90(5):917-927.
    [234] Lee J-H, Yu W H, Kumar A, et al. Lysosomal proteolysis and autophagyrequire presenilin1and are disrupted by Alzheimer-related PS1mutations [J]. Cell,2010,141(7):1146-1158.
    [235] Culvenor J G, Maher F, Evin G, et al. Alzheimer's disease‐associatedpresenilin1in neuronal cells: Evidence for localization to the endoplasmic reticulum‐Golgi intermediate compartment [J]. Journal of Neuroscience Research,1997,49(6):719-731.
    [236] Takashima A, Sato M, Mercken M, et al. Localization ofAlzheimer-associated presenilin1in transfected COS-7cells [J]. Biochem BiophysRes Commun,1996,227(2):423-426.
    [237] Vito P, LacanáE, D'adamio L. Interfering with apoptosis: Ca2+-bindingprotein ALG-2and Alzheimer's disease gene ALG-3[J]. Science,1996,271(5248):521-525.
    [238] Shen J, Bronson R T, Chen D F, et al. Skeletal and CNS Defects inPresenilin-1Deficient Mice [J]. Cell,1997,89(4):629-639.
    [239] Dowjat W K, Wisniewski T, Efthimiopoulos S, et al. Inhibition of neuriteoutgrowth by familial Alzheimer's disease-linked presenilin-1mutations [J]. NeurosciLett,1999,267(2):141-144.
    [240] Fluhrer R, Friedlein A, Haass C, et al. Phosphorylation of presenilin1atthe caspase recognition site regulates its proteolytic processing and the progression ofapoptosis [J]. J Biol Chem,2004,279(3):1585-1593.
    [241] Mattson M P. ER calcium and Alzheimer's disease: in a state of flux [J].Sci Signal,2010,3(114): pe10.
    [242] Wines-Samuelson M, Schulte E C, Smith M J, et al. Characterization ofage-dependent and progressive cortical neuronal degeneration in presenilinconditional mutant mice [J]. PLoS One,2010,5(4): e10195.
    [243] Tanimukai H, Imaizumi K, Kudo T, et al. Alzheimer-associatedpresenilin-1gene is induced in gerbil hippocampus after transient ischemia [J].Molecular Brain Research,1998,54(2):212-218.
    [244] Fraser P E, Yang D-S, Yu G, et al. Presenilin structure, function and rolein Alzheimer disease [J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis ofDisease,2000,1502(1):1-15.
    [245] Thinakaran G, Borchelt D R, Lee M K, et al. Endoproteolysis ofpresenilin1and accumulation of processed derivatives in vivo [J]. Neuron,1996,17(1):181-190.
    [246] Kim T. Alternative Cleavage of Alzheimer-Associated Presenilins DuringApoptosis by a Caspase-3Family Protease [J]. Science,1997,277(5324):373-376.
    [247] Tesco G, Kim T-W, Diehlmann A, et al. Abrogation of the presenilin1/β-catenin interaction and preservation of the heterodimeric presenilin1complexfollowing caspase activation [J]. J Biol Chem,1998,273(51):33909-33914.
    [248] Handa R J, Pak T R, Kudwa A E, et al. An alternate pathway forandrogen regulation of brain function: Activation of estrogen receptor beta by themetabolite of dihydrotestosterone,5α-androstane-3β,17β-diol [J]. Horm Behav,2008,53(5):741-752.
    [249] Kuiper G G, Lemmen J G, Carlsson B, et al. Interaction of estrogenicchemicals and phytoestrogens with estrogen receptor β [J]. Endocrinology,1998,139(10):4252-4263.
    [250] Lund T D, Hinds L R, Handa R J. The androgen5α-dihydrotestosteroneand its metabolite5α-androstan-3β,17β-diol inhibit thehypothalamo–pituitary–adrenal response to stress by acting through estrogen receptorβ-expressing neurons in the hypothalamus [J]. J Neurosci,2006,26(5):1448-1456.
    [251] Pak T R, Chung W C, Lund T D, et al. The androgen metabolite,5α-androstane-3β,17β-diol, is a potent modulator of estrogen receptor-β1-mediatedgene transcription in neuronal cells [J]. Endocrinology,2005,146(1):147-155.
    [252] Boelsterli U A. Mechanistic toxicology: the molecular basis of howchemicals disrupt biological targets [M]. London: Informa Health Care,2007.
    [253] Keller E T, Ershler W B, Chang C. The androgen receptor: a mediator ofdiverse responses [J]. Front Biosci,1996,1(1): d59-71.
    [254] Abreu-Martin M T, Chari A, Palladino A A, et al. Mitogen-activatedprotein kinase kinase kinase1activates androgen receptor-dependent transcriptionand apoptosis in prostate cancer [J]. Molecular and Cellular Biology,1999,19(7):5143-5154.
    [255] Lin H-K, Yeh S, Kang H-Y, et al. Akt suppresses androgen-inducedapoptosis by phosphorylating and inhibiting androgen receptor [J]. Proc Natl Acad SciUSA,2001,98(13):7200-7205.
    [256] Lin Y, Kokontis J, Tang F, et al. Androgen and its receptor promoteBax-mediated apoptosis [J]. Molecular and Cellular Biology,2006,26(5):1908-1916.
    [257] Foradori C D, Werner S B, Sandau U S, et al. Activation of the androgenreceptor alters the intracellular calcium response to glutamate in primary hippocampalneurons and modulates sarco/endoplasmic reticulum calcium ATPase2transcription[J]. Neuroscience,2007,149(1):155-64.
    [258] Galea L A. Gonadal hormone modulation of neurogenesis in the dentategyrus of adult male and female rodents [J]. Brain Res Rev,2008,57(2):332-41.
    [259] Meyer K, Korz V. Age dependent differences in the regulation ofhippocampal steroid hormones and receptor genes: relations to motivation andcognition in male rats [J]. Horm Behav,2013,63(2):376-84.
    [260] Mcpherson S J, Hussain S, Balanathan P, et al. Estrogen receptor–βactivated apoptosis in benign hyperplasia and cancer of the prostate is androgenindependent and TNFα mediated [J]. Proc NatlAcad Sci USA,2010,107(7):3123-3128.
    [261] Attardi B J, Pham T C, Radler L M, et al. Dimethandrolone (7α,11β-dimethyl-19-nortestosterone) and11β-methyl-19-nortestosterone are notconverted to aromatic A-ring products in the presence of recombinant humanaromatase [J]. The Journal of Steroid Biochemistry and Molecular Biology,2008,110(3):214-222.
    [262] Guennoun R, Fiddes R, Gouezou M, et al. A key enzyme in thebiosynthesis of neurosteroids,3β-hydroxysteroid dehydrogenaseΔ5-Δ4-isomerase(3β-HSD), is expressed in rat brain [J]. Molecular Brain Research,1995,30(2):287-300.
    [263] Brown R E. An introduction to neuroendocrinology [M]. Gateshead:Cambridge University Press,1994.
    [264] Nguyen T V, Yao M, Pike C J. Dihydrotestosterone activates CREBsignaling in cultured hippocampal neurons [J]. Brain Res,2009,1298:1-12.
    [265] Mattson M P, Duan W, Chan S L, et al. Neuroprotective andneurorestorative signal transduction mechanisms in brain aging: modification bygenes, diet and behavior [J]. Neurobiology of Aging,2002,23(5):695-705.
    [266] Selkoe D J. The cell biology of β-amyloid precursor protein andpresenilin in Alzheimer's disease [J]. Trends in Cell Biology,1998,8(11):447-453.