纤维素酶处理竹原纱线的改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代人们生活水平的提高,对纺织服装品的要求也越来越高,开发性能优良或具有高附加值纤维是现代纺织科技工作者的梦想。在本文中,尝试用新的方法,即化学预处理结合纤维素酶处理的改性工艺。研究不同处理工艺对竹原纤维、纱线性能的影响规律,深入研究反应机理,找出纤维素酶活性的最佳条件,确定纱线性能最佳的处理工艺条件,以期为纤维素酶处理工艺和这种新型的天然纤维制品的开发应用及进一步研究提供一定的理论依据。
     本文通过对竹原纤维性能进行了较为深入的研究发现:竹原纤维的吸湿、透湿性较好。竹原纤维长度分布范围,短纤率高于苎麻纤维,平均线密度略低于苎麻纤维,是典型的纤维素Ⅰ,初始模量高,属于高强低伸型的纤维素纤维。
     本文通过对纤维素酶活性实验及纤维素酶处理竹原纤维实验的研究发现:酶的总活是三种组分协同作用的结果,纤维素酶EG组分活性对纱线水解能力的影响较大,而CBH组分对纱线水解影响时间要比EG组分时间长。纱线水解程度在酶浓度5%时,对于底物的结合能力基本饱和。经水—丙酮—NaOH水溶液预处理后整个纤维素纤维的反应性比仅NaOH溶液处理后提高,更易为反应试剂所可及。在酶浓度为25ml/l,pH=5,温度为55℃,处理时间为半小时,浴比为1:30,此时纤维测试的物理性能相对最优。
     本文通过对竹原纱线酶处理前后性能比较实验的研究发现:竹原纱线经过酶处理后并没有改变其纤维基本的分子结构,仍然属于纤维素Ⅰ,结晶度、取向度降低纤维横截面微孔相对变大,纵面受到侵蚀,裂纹有所增加,纱线表面相对光洁,吸湿性能提高,保持了良好的热稳定性。经过松弛状态下酶处理后的竹原纱线纤维滑脱部分要比没有处理的纤维要多,而张力状态下酶处理后的竹原纱线断口相对整齐,滑脱纤维比前两种状态都要少。纱线在张力状态下断裂伸长率下降,变形能力变小,进一步体现了纱线的刚性。纱线在松弛状态下酶处理后断裂伸长率均有增加,纱线变形能力增加,弹性增强。张力状态处理以后纱线的初始模量增加,松弛状态下酶处理的纱线初始模量下降。竹原纱线在松弛状态下酶处理后,急弹性回复率,缓弹性回复率,总弹性回复率都普遍降低,试样总伸长率均有小幅提高,蠕变变化伸长率略有降低。在张力情况下弹性回复率变化不是很明显,但是试样伸长率却明显降低,蠕变伸长变化率有所提高。经过在松弛状态下酶处理后的竹原纱线摩擦断裂次数变化不大,而张力状态酶处理后的竹原纱线摩擦性能有小幅度下降,加捻可以提高纱线的耐磨性能。
The more living standard improved, the more soft goods' function need to be hold. Sothe textile technologists make efforts to creat a new type of fabric or insert special effect informer fabric so that can get a new variety differed with others. In this paper a new waywhich combined cellulose enzymatic with traditional chemical way react to the bambooyarn has been applied. Roundly research the new type fiber property and analyse thedifferent changes of yarn which has been treated. Find a perfect technics to make thebamboo fiber amend certain fault and still possess the original excellent property. So thatcan produce some products with good properties and can provide theoretics furtherresearch.
     It could be found after lots of experiments in bamboo fibers' property research that theabsorbs moisture of bamboo fibers' is good. The length of fibers' are more change thanramie. It is very strong with a tenacity and high initializatial modulus. It belongs thecellulose fiber of high strength combined less elongation.
     It could be found after lots of experiments in activity of cellulose and treating bamboofibers with cellulose that Filter paper, CMC were used as substrate to measure the fullactivity, EG activity of enzyme, respectively. The activeity of cellulase BTH is mosthighest in the cellulases. As cellulose concentration increase, it is easy to see therelationship between weight loss and cellulose concentration, meantime, when thecellulose concentration is 5%, the capability in combined object has saturated. Thepretreatments of water-acetone-sodium hydroxide solution proved to be more effects thanthe pretreatment of sodium hydroxide solution and lead to a drastic change of finestructure and a considerable improvement of accessibility and reactivity of bamboo fibers.The best technics of cellulase dealing with bamboo fiber is the condition that the cellulose concentration is 25ml/l, the tempreture is 55℃, the action time is half an hour, theproportion between solute and solution is 1:30.
     It could be found after lots of experiments in dealing with bamboo yarns with cellulasetechnics combined pretreatment's technics. The bamboo yarns shows some changes inproperties. The property of celluloseⅠis not change, the discomposed temperaturedeclines. Regain of bamboo fibers declines, The orientation of molecules are not asregular as untreated yarns, tenacity of yams less than the untread yarns, but the elasticproperties are more better, meantime, the surface of yarns get smoother than untreatedyarns. The treated yarns still possess good thermal property. The fibers slipped from dealtyarns without tension are more than untreaded yarns which are more than treated yarns intension. The same condition in initializatial modulus, treated yarns in tensions' is thehighest in tenacity, but the elongation is reversed. The elongation recovery capability oftreated yarns without tension is less than untreated yarns and yarn in tension. Twist yarnscan improve property of friction.
引文
[1] 黄知清,杨春波.竹及其纤维的研究开发现状和发展前景[J].广西化纤通讯.2003:32-36
    [2] 刘政,周湘祁,邢声远.竹原纤维的性能及其产品开发[J].纺织导报.2004,(4):1-2
    [3] 邢声远.会呼吸的纯天然竹原纤维纺织产品[J].北京纺织.2003,24(3):37-38
    [4] 周衡书,钟文燕.竹纤维的开发与应用[J].纺织科学研究.2003:(4),30-36
    [5] Deshpande. A. P, Bhaskar. Rao. M, Lakshmana. Rao. C. Extraction of bamboo fibers and their use as reinforcement in polymeric composites[J]. Journal of Applied Polymer Science. 2000: 76, 83-92
    [6] 坂本和夫,竹纤维的制造方法[P],日本专利:特许138617,1993-06-08
    [7] Fujii. T, Okubo. K. E, co-compositesusingbamboo[J], Sen'iGakkaishi, 2003, 59(3): 12-16
    [8] 徐伟.天然竹纤维的提取及其结构和化学性能的研究[D].苏州大学硕士学位论文.2006:7-8
    [9] 巩继贤,李辉芹.竹纤维一种纺织新材料[J].纺织导报.2003(3):59.
    [1] 邵宽.纺织加工化学[M].北京:中国纺织出版社.1995:49-54
    [2] 徐伟,天然竹纤维的提取及其结构和化学性能的研究[D],苏州大学学位论文.2006:7-8
    [3] 向策宣,等.苎麻纤维碱~尿素改性的研究[J],纺织学报.1986,(6):29-31
    [4] 王德骥,吴德生,陈仲元.苎麻纤维的阳离子化改性研究[J].苎麻纺织科技.1992,15(2):1-6
    [5] 刘晓霞,何文元.高性能苎麻改性纤维的研究[J].纺织科学研究.2004,(1):41-42
    [6] 赵文榜.苎麻纤维的部分氰乙基化改性[J],纺织学报,1993,(6):30-33,199
    [7] 金永安,耿琴玉,胡学梅.苎麻纤维的改性和变性.毛纺科技.2004,(6):53-55
    [8] 陈东辉,马仁汀等.纤维素纤维织物的生物整理[J].纺织学报.1996,17(6):4-7.
    [9] Tyndall R M. Improving the softness and surface appearance of cotton fabrics and garments by treatment with cellulase enzymes[J]. Textile them Color. 1992, 24(6): 23-26.
    [1] 朱宜等.扫描电镜图的形成处理和显微分析[M].北京:北京大学出版社
    [2] 李汝勤.纤维和纺织品的测试原理与仪器[M].上海:中国纺织大学出版社
    [3] 王雪华,蒋耀兴,徐超武.竹原纤维织物导湿透气性能研究[J].棉纺织技术.2006.9,34(9):518
    [4] Dr. Lucius Remer. Leica DMLSP Instructions[M]. leica MICROSYSTEMS. 2000: 10
    [5] 隋淑英等.竹纤维的结构和性能研究.纺织学报[J].2003,24(6):535-536
    [6] 王善元.Teficel纤维的结构和性能特征[J].上海纺织科技.1999,(3):5-8
    [7] 姚穆,周锦芳,黄淑珍等.纺织材料学[M].北京:中国纺织出版社.1996:64-81
    [8] 沈丕华等.苎麻/棉混纺纱的拉伸性能及混纺比选择[J].纺织学报.2002,(6):24-25
    [1] 邵宽.纺织加工化学[M].北京:中国纺织出版社.1996:26
    [2] 李群,赵昔慧.酶在纺织印染工业中的应用[M],北京:化学工业出版社,2006:4-5,14-18.
    [3] 杨传强,龙德树.纤维素酶的活性测定及其影响因素[J].天津纺织工学院学报.1999,18(1):31
    [4] 吕家华.纤维素酶对纤维素纤维的作用[D].东华博士学位论文.2003:27-28,41-42
    [5] International Union of Biochemistry. Nomenclature Committee: Enzyme nomenclature. AcademicPress. 1984: 1-3
    [6] 刘德海,杨玉华,安明理,陈小鸽.纤维素酶酶活的测定方法[J].中国饲料.2002,(17):27-28
    [7] Cavaco-Paulo. Almeida. Effects of Agitation and Endoglucanase[M]. 1996: 66, 287-294
    [8] Ruyssen, Lauwers etc. Pharmaceutical Enzymes Properties and Assay Methods [M]. 1978: 2-3
    [9] Bruno stellmach. Bestimmungs methoden Enzyme Lebensmittelchenie[M]. 1988: 102-104
    [10] 苏茂尧等.预处理对纤维素微结构和反应性能影响的研究[J].华南理工大学学报.1989,95(17):95-97
    [11] J. O. Warwicker, R. Jeffries, R. L. Colbran and R. N. Robinson. Shirley Institute Pamphlet[M] 1966: 93
    [12] L. Segal, J. J. Creely, A. E. Martin and C. M. Conrad, T. R. J[M]. 1959: 28, 786
    [13] N. B. Patil, N. E. Dweltz and T. Radhahrishnan. T. R. J[M]. 1962: 460-471
    [1] 杨定国.波谱分析基础及应用[M].纺织工业出版社.33-35
    [2] 眭伟民,金惠平.纺织有机化学基础[M],上海交通大学出版社.298-300
    [3] Dadashian F., Wilding M. A. An investigation into physical changes occurring in Tencel fibers having different manufacturing dates[J]. Journal of Textile Institute. 1999: 275-287.
    [4] 蒋先明,何伟平.简明红外光谱识谱法[M].广西:广西师范大学出版社.1992:34-97.
    [5] 胡恒亮,穆祥祺.X射线衍射技术[M].北京:纺织工业出版社.1988:155
    [6] 姚穆,周锦芳,黄淑珍等.纺织材料学[M].北京:中国纺织出版社.1996:64-81