紫外光学频率梳驱动源的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将飞秒光学频率梳拓展到紫外和极紫外波段,可为紫外非线性光学、阿秒脉冲、紫外光学频率梳等关键科学问题的研究提供有效的实验工具。因此,超快精密光谱科学与技术以及强场时-频域精密操控正在开始向紫外乃至软X射线超短波段推进,以探求在更精确时间尺度上和更短波段范畴内操控光场的方法。
     目前国际上公认的最为可行有效的产生紫外光学频率梳的方案之一是利用集高平均功率、高重复频率、时频域精密控制三种特性于一身的超短脉冲激光作为驱动源,与原子或分子在该强驱动光场中辐射高次谐波的途径获取紫外光学频率梳。超短脉冲激光驱动源的研制是该方案顺利实施的关键环节。本论文围绕紫外光学频率梳的驱动光源开展工作,分别在驱动源的多个环节和部件进行了科学探索和实验研究,并攻克了多项关键技术难题。
     本论文的主要研究成果和创新点概括如下:
     1.研制成小型化超短脉冲激光振荡器,获得了脉冲宽度最窄为41 fs的激光输出,为紫外光学频率梳的驱动源提供了长期稳定的信号脉冲。
     a)以新型掺镱激光晶体、掺镱单模光纤为增益介质分别构建了超短脉冲激光振荡器,通过管理腔内群速度色散,分析锁模状态、输出功率和输出光谱的相互关系,有效地抑制了脉冲分裂,获得了脉冲宽度最窄为41 fs的超短脉冲输出,3 dB光谱宽度为70 nm。
     b)研究了新型Yb:YAG透明陶瓷的激光性能,通过优化腔型结构、解决热累积问题,获得了平均功率高达40 W的连续激光输出,为进一步获得高质量的陶瓷激光介质和高性能的陶瓷激光器提供了可行性依据。
     2.完善了多波长超短脉冲的时域同步技术,为可见波段和红外波段超短脉冲的全光精确同步提供了一种解决方案。该方案为高重复频率OPCPA技术、以及紫外光学频率梳的研究提供了精确同步泵浦脉冲和信号脉冲。
     a)提出并利用交叉吸收调制技术精确同步多波长超短脉冲的新原理,实现了钛宝石飞秒激光器与掺镱光纤纳秒激光器、掺铒光纤纳秒激光器的同步输出,大幅度降低了脉冲同步控制对主控激光功率的需求,并扩大了受控腔长失配的允许范围。
     b)实验上采用有源增益调制技术及偏振旋转非线性开关,在光纤激光器中实现了近周期量级超短脉冲的相干和非相干叠加。整形前后脉冲的时间同步精度保持在飞秒量级。由于有源增益机制的引入,消除了脉冲整形过程中插入损耗的影响,能量增益接近30 dB。
     3.研制成功高重复频率超短脉冲光纤放大器,为紫外光学频率梳的产生提供了高能量驱动脉冲。
     a)研究了掺镱晶体激光及国产双包层光纤的可调谐输出特性,解决了增益竞争和模式匹配的问题,在Hg0、I2、He的若干特定跃迁能级处获得了高功率激光输出。
     b)采用CPA技术搭建了高功率光纤飞秒激光系统。系统研制过程中,优化设计了高功率泵浦聚焦耦合装置、高功率激光输出耦合装置、光纤端面冷却装置、光纤包层冷却装置,控制了放大器的寄生振荡、脉冲畸变现象,最终获得了平均功率为150W的飞秒脉冲输出。
     c)将激光同步技术与光纤放大技术相结合,实现了高功率光纤激光与钛宝石激光的同步输出。在有效抑制自发辐射的基础上,高功率光纤放大器为种子光提供了超过50 dB的能量增益,并很好的保持了种子脉冲的方波特性。该项研究为解决高重复频率OPCPA课题中高功率泵浦激光脉冲与信号光脉冲精确同步提供了有效的技术途径。
The femtosecond optical frequency "combs" in ultraviolet (UV) and extreme ultraviolet (XUV) wavelengths could provide an effective tool in the investigation of scientific issues, such as UV nonlinear optics, attosecond pulse generation and UV frequence standard. Aiming for a better controlment on the light field in time-frequency domain, science and technology in precision spectroscopy are moving towards to UV and even XUV wavelength.
     One of the most feasible and effective methods in generating UV frequency comb is to use high-average-power high-repetition-rate ultra-short pulse laser with precise control of time-frequency as a driving source for high order harmonic radiation in atoms. Particularlly, the high-power ultrashort pulse laser is the key technique of such programs. This dissertation focuses on the key techniques of high-power-laser system which used to generate UV optical frequence combs. The main results have been summarized as following:
     1. We developed a compact ultrashort pulse laser oscillators and obtained 41 fs laser output, which provided a long-term stable signal pulse for the driving source of the UV frequency comb.
     a) Ultrashort pulse laser oscillators were constructed with the new type Yb-doped laser crystals and Yb-doped single mode fiber as the gain mediums. By managing the intracavity GVD and analyzing the relationship of mode-locked state with the output power and output spectrum, as short as 41 fs pulse width with 3 dB spectral bandwidth of 70 nm was obtained from the fiber laser oscillator.
     b) By optimizing the cavity structure and removing the thermal accumulation, up to 40 W average power was demonstrated by Yb:YAG transparent ceramics, which would provide the feasible basis for further access to high quality ceramic laser media and high-performance ceramic lasers.
     2. The synchronization of multi-wavelength ultrashort pulses in time-frequency domain was improved by all-optical method, which could provide a precise synchronization of the pump pulse and signal pulse for high-repetition-rate OPCPA, high-average-power femtosecond laser, and UV comb generation.
     a) Robust synchronization was achieved for Ti:sapphire, Yb- and Er-doped fiber mode-locked lasers by using cross-absorption modulation (XPM) technology in the master-slave configuration. Significant reduction of the demand on the master laser power and expansion the controlled cavity length mismatch was demonstrated in this experiment.
     b) By using active gain modulation technology and nonlinear polarization rotation switch, a few cycles ultrashort pulse were accumulated and shaped in a fiber oscillator in coherent or incoherent manner. The shaping pulses maintained low timing jitters within femtosecond level. By the introducing of active gain mechanism and eliminating the insertion loss, the energy gain close to 30 dB.
     3. We successfully developed the high-repetition-rate ultrashort pulse fiber amplifier, which could provide a high energy field in driving UV frequency comb.
     a) By eliminating the gain competition and achieving mode matching, the specific energy level transitions of Hg0,I2, He was achieved by wavelength tunable Yb-doped crystals laser and high power double-clad fiber amplifier.
     b) A high-power femtosecond fiber laser system was built by CPA technology. Several devices, such as high power coupling devices and cooling devices, were designed to control the amplifier parasitic oscillations and pulse distortion. By CPA technology and Yb-doped double-clad fiber amplifiers,150-W average power with pulse duration of 270 fs was obtained at 1035 nm.
     c) The laser synchronization between high-power fiber laser and Ti:sapphire laser were demenstrated. High-power optical fiber amplifier provided more than 50 dB energy gain and maintained the pulse shape for the seed laser. This method proved an effective solution for accurate synchronization of the signal and the pump laser of OPCPA system, as well as the UV comb generation.
引文
1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis," Science 288,635 (2000).
    2. S. A. Diddams, D. J. Jones, L. S. Ma, S. T. Cundiff, and J. L. Hall, "Optical frequency measurement across a 104-THz gap with a femtosecond laser frequency comb," Opt. Lett.25,186 (2000).
    3. S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett.84,5102 (2000).
    4. S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An Optical Clock Based on a Single Trapped 199Hg+ Ion," Science 293,825 (2001).
    5. S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum.72,3749 (2001).
    6. S. A. Diddams, L. Hollberg, L. S. Ma, and L. Robertsson, "Femtosecond-laser-based optical clockwork with instability≤6.3×10-16 in 1 s," Opt. Lett.27,58 (2002).
    7. S. Bize, S. A. Diddams, U. Tanaka, C. E. Tanner, W. H. Oskay, R. E. Drullinger, T. E. Parker, T. P. Heavner, S. R. Jefferts, L. Hollberg, W. M. Itano, and J. C. Bergquist, "Testing the Stability of Fundamental Constants with the 199Hg+ Single-Ion Optical Clock," Phys. Rev. Lett.90,150802 (2003).
    8. C. W. Hoyt, Z. W. Barber, C. W. Oates, T. M. Fortier, S. A. Diddams, and L. Hollberg, "Observation and Absolute Frequency Measurements of the 1S0-3P0 Optical Clock Transition in Neutral Ytterbium," Phys. Rev. Lett.95,083003 (2005).
    9. M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, "An optical lattice clock," Nature 435,321 (2005).
    10. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist "Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place," Science 319,1808 (2008).
    11. K. M. Baird, K. M. Evenson, G. R. Hanes, D. A. Jennings, and F. R. Petersen, "Extension of absolute-frequency measurements to the visible:frequencies of ten hyperfine components of iodine," Opt. Lett.4,263 (1979).
    12. H. P. Layer, W. R. C. Rowley, and B. R. Marx, “National Physical Laboratory-National Bureau of Standards iodine-stabilized helium-neon laser intercomparison,” Opt. Lett.6,188 (1981).
    13. C. R. Pollock, D. A. Jennings, F. R. Petersen, J. S. Wells, R. E. Drullinger, E. C. Beaty, and K. M. Evenson, "Direct frequency measurements of transitions at 520 THz (576 nm) in iodine and 260 THz (1.15 gim) in neon," Opt. Lett.8,133 (1983).
    14. D. A. Jennings, C. R. Pollock, F. R. Petersen, R. E. Drullinger, K. M. Evenson, J. S. Wells, J. L. Hall, and H. P. Layer, "Direct frequency measurement of the I2-stabilized He-Ne 473-THz (633-nm) laser," Opt. Lett.8,136 (1993).
    15. L. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, "Optical Frequency Synthesis and Comparison with Uncertainty at the 10-19 Level," Science 303,1843 (2004).
    16. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, "Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic Generation inside a Femtosecond Enhancement Cavity," Phys. Rev. Lett.94,193201 (2005).
    17. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hansch, "A frequency comb in the extreme ultraviolet," Nature 436,234 (2005).
    18. I. Haitl, T. R. Schibli, A. Marcinkevicius, D.C. Yost, D. D. Hudson, M. E. Fermann, and Jun Ye, "Cavity-enhanced similariton Yb-fiber laser frequency comb:3×1014 W/cm2 peak intensity at 136 MHz," Opt. Lett.32,2870 (2007).
    19. Q. Fu, G. Mak, and H. M. van Driel, "High-power,62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Ti:sapphire laser," Opt. Lett.17,1006(1992).
    20. M. T. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, "Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser," Opt. Lett. 18,977(1993).
    21. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science 326,681 (2009).
    22. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt. Lett.18,1080 (1993).
    23. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, "Soliton pulse compression in dispersion-decreasing fiber," Opt. Lett.18,476 (1993).
    24. J. W. Nicholson, S. Ramachandran, and S. Ghalmi, "A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber," Opt. Express 15,6623 (2007).
    25. Chong, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ," Opt. Lett.32,2408 (2007).
    26. X. Dong, P. Shum, N. Q. Ngo, C. C. Chan, B. Guan, and H. Tam, "Effects of active fiber length on the tunability of erbium-doped fiber ring lasers," Opt. Express 11,3622(2003).
    27. V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, "Bismuth-doped-glass optical fibers-a new active medium for lasers and amplifiers," Opt. Lett.31,2966 (2006).
    28. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett.84,6010 (2000).
    29. E. M. Dianov, A. A. Krylov, V. V. Dvoyrin, V. M. Mashinsky, P. G. Kryukov, O. G. Okhotnikov, and M. Guina, "Mode-locked Bi-doped fiber laser," J. Opt. Soc. Am.B 24,1807(2007).
    30. M. A. Abdelalim, Y. Logvin, D. A. Khalil, and H. Anis, "Properties and stability limits of an optimized mode-locked Yb-doped femtosecond fiber laser," Opt. Express 17,2264 (2009).
    31. O. Prochnow, A. Ruehl, M. Schultz, D. Wandt, and D. Kracht, “All-fiber similariton laser at 1 μm without dispersion compensation,” Opt. Express 15, 6889 (2007).
    32. E. A. Kuzin, B. I. Escamilla, D. E. Garcia-Gomez, and J. W. Haus, “Fiber laser mode locked by a Sagnac interferometer with nonlinear polarization rotation,” Opt. Lett.26,1559(2001).
    33. F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett.92,213902 (2004).
    34. J. W. Nicholson, A. D. Yablon, P. S. Westbrook, K. S. Feder, and M. F. Yan, "High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation," Opt. Express 12,3025 (2004).
    35. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martini, A. Marcinkevicius, M. E. Fermann, and J. Ye, "Optical frequency comb with submillihertz linewidth and more than 10 W average power," Nature photon.2,355 (2008).
    36. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and Jun Ye, "Phase-stabilized,1.5 W frequency comb at 2.8-4.8 μm," Opt. Lett.34,1330 (2009).
    37. D. Strickland, and G. Mourous, "Compression of amplified chirped optical pulse," Opt. Commun.56,219 (1985).
    38. A. Baltuska, T. Fuji, and T. Kobayashi, “Controlling the Carrier-Envelope Phase of Ultrashort Light Pulses with Optical Parametric Amplifiers,” Phys. Rev. Lett. 88,133901 (2002).
    39. V. Chekhlov, J. L. Collier, I. N. Ross, P. K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Danson, D. Neely, P. Matousek, and S. Hancock, "35 J broadband femtosecond optical parametric chirped pulse amplification system," Opt. Lett.31,3665 (2006).
    40. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, " Room-temperature diode-pumped Yb:YAG laser," Opt. Lett.16,1089 (1991).
    41. F. O. Ilday, H. Lim, J. R. Buckley, and F. W. Wise, “Practical all-fiber source of high-power,120-fs pulses at 1 μm,” Opt. Lett.28,1362 (2003).
    42. R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, and H. Schonnagel, "Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser," Opt. Commun.134,175 (1997).
    43. A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorge, "High-power diode-pumped Yb3+:CaF2 femtosecond laser," Opt. Lett.29,2767 (2004).
    44. P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, and G. Erbert, "Highly efficient mode-locked Yb:Sc2O3 laser," Opt. Lett.29,391 (2004).
    45. B. Ortac, J. Limpert, and A. Tunnermann, "High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime," Opt. Lett.32,2149 (2007).
    46. F. Brunner, T. Sudmeyer, E. Innerhofer, F. Morier-Genoud, R. Paschotta, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, J. Gao, K. Contag, A. Giesen, and U. Keller, "240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO4)2 laser," Opt. Lett.27,1162 (2002).
    47. G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, "High-power self-mode-locked Yb:Y2O3 ceramic laser," Opt. Lett.32,2741 (2007).
    48. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Efficient Yb3+:Y3A15O12 ceramic microchip lasers," Appl. Phys. Lett.89,091114 (2006).
    49. L. F. Johnson, J. E. Geusic, and G. V. Uitert, "Coherent oscillations from Tm3+, Ho3+, Yb+ and Er3+ ions in yttrium aluminum garnet," Appl. Phys. Lett.7,127 (1965).
    50. D. S. Sumida, and T. Y. Fan, "Room-temperature 50-mJ/pulse side-diode-pumped Yb:YAG laser," Opt. Lett.20,2384 (1995).
    51. J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser,” Opt. Lett.27,1120 (2002).
    52. J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. Bison, Y. Feng, A. Shirakawa, K. Ueda, T. Yanagitani, and A. Kaminskii, "110 W ceramic Nd3+:Y3Al5O12 laser," Appl. Phys. B 79,25 (2004).
    53. 陈亚辉,周勇,宗楠,王桂玲,薄勇,彭钦军,崔大复,许祖彦,吴玉松,李江,潘裕柏,冯锡琪,李军,范飞镝,于爱芳,朱镛,胡章贵,“国产Nd:YAG透明陶瓷实现10.0 W激光输出,”中国激光34,660(2007).
    54. 杨秋红, “激光透明陶瓷研究的历史与最新进展,”硅酸盐学报37,476(2009).
    55. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. Ikesue, and Y. L. Aung, "Experimental study of thermally induced depolarization in Nd:YAG ceramics," Opt. Express 13,5983 (2005).
    56. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Efficient Yb3+:Y3Al5O12 ceramic microchip lasers," Appl. Phys. Lett.89, 091114(2006).
    57. S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, and S. Wada, "Efficient tunable Yb:YAG ceramic laser," Opt. Commun.281,4411 (2008).
    58. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Laser-diode pumped heavy doped Yb:YAG ceramic lasers," Opt. Lett.32,1890 (2007).
    59. J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, "9.2-W diode-end-pumped Yb:Y2O3 ceramic laser," Appl. Phys. Lett.86,161116 (2005).
    60. T. Dascalu, N. Pavel, and T. Tairac, "90 W continuous-wave diode edge-pumped microchip composite Yb:Y3Al5O12 laser," Appl. Phys. Lett.83,4086 (2003).
    61. T. Dascalu, T. Taira, and N. Pavel, “100-W quasi-continuous-wave diode radially pumped microchip composite Yb:YAG laser,” Opt. Lett.27,1791 (2002).
    62. T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, "Yb:YAG and Nd:YAG edge-pumped slab lasers," Opt. Lett.26,986 (2001).
    63. A. Maria, D. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett.8,174 (1966).
    64. L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. Weingarten, and U. Keller, "Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz," IEEE J. Quantum Electron.38,1331 (2002).
    65. E. Innerhofer, T. Sudmeyer, F. Brunner, R. Haring, A. Aschwanden, R. Paschotta, C. Honninger, M. Kumkar, and U. Keller, "60 W average power in 810-fs pulses from a thin-disk Yb:YAG laser," Opt. Lett.28,367 (2003).
    66. F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, "Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 high-power femtosecond laser operation," Opt. Lett.31,1555 (2006).
    67. M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, "Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping," Appl. Phys. B 80,171(2005).
    68. J. Aus der Au, D. Kopf, F. Morier-Genoud, M. Moser, and U. Keller, "60-fs pulses from a diode-pumped Nd:glass laser," Opt. Lett.22,307 (1997).
    69. M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, N. N. Akhmediev, and J. M. Soto-Crespo, "Multipulse operation of a Ti:sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror," J. Opt. Soc. A. B 16, 895 (1999).
    70. G. Paunescu, J. hein, and R. Sauerbrey, "100-fs diode-pumped Yb:KGW mode-locked laser," Appl. Phys. B 79,555 (2004).
    71. F. Salin, P. Grangier, G. Roger, and A. Brun, "Experiment Observation of Nonsynmmetrical N=2 Solitions in a Femtosecond Laser," Phys. Rev. Lett.60, 569 (1988).
    72. W. Yang, J. Li, F. Zhang, Y. Zhang, Z. Zhang, G. Zhao, L. Zheng, J. Xu, and L. Su, "Group delay dispersion measurement of Yb:Gd2SiO5, Yb:GdYSiO5 and Yb:LuYSiO5 crystal with white-light interferometry," Opt. Express.15,8486 (2007).
    73. J. Kong, J. Lu, K. Takaichi, T. Uematsu, K. Ueda, D. Y. Tang, D. Y. Shen, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Diode-pumped Yb:Y2O3 ceramic laser," Appl. Phys. Lett.82,2556 (2003).
    74. J. Kong, D. Y. Tang, J. Lu, and K. Ueda, "Spectral characteristics of a Yb-doped Y2O3 ceramic laser," Appl. Phys. B 79,449 (2004).
    75. J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi and T. Yanagitani, "9.2-W diode-end-pumped Yb:Y2O3 ceramic laser," Appl. Phys. Lett.86,161116 (2005).
    76. A. Shirakawa, K. Takaichi, H. Yagi, J-F. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. S. Petrov, and A. A. Kaminskii, "Diode-pumped mode-locked Yb3+:Y2O3 ceramic laser," Opt. Express 11,2911 (2003).
    77. Q. H. Yang, J. Ding, H. W. Zhang, and J. Xu, "Investigation of the spectroscopic properties of Yb3+-doped yttrium lanthanum oxide transparent ceramic," Opt. Commun.273,238 (2007).
    78. E. Snitzer, “Optical Maser Action of Nd+3 in a Barium Crown Glass,” Phys. Rev. Lett.7,444 (1961).
    79. J. Stone, and C. A. Burros, “Neodymium-doped silica lasers in end-pumped fiber geometry,” Appl. Phys. Lett.23,888 (1973).
    80. Yao Li, Xiaorong Gu, Ming Yan, E Wu, and Heping Zeng, "Square nanosecond mode-locked Er-fiber laser synchronized to a picosecond Yb-fiber laser," Opt. Express 17,4526 (2009).
    81. S. Pedersen, J. L. Herek, and A. H. Zewail, "The Validity of the "Diradical" Hypothesis:Direct Femtoscond Studies of the Transition-State Structures," Science 266,1359(1994).
    82. A. Stolow, and D. M. Jonas, "Multidimensional Snapshots of Chemical Dynamics," Science 305,1575 (2004).
    83. E. O. Potma, D. J. Jones, J. X. Cheng, X. S. Xie, and J. Ye, "High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers," Opt. Lett.27,1168 (2002).
    84. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, "Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm," J. Opt. Soc. Am. B 17,2086 (2000).
    85. A. Sell, A. Leitenstorfer, and R. Huber, "Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm," Opt. Lett.33,2767 (2008).
    86. A. Sell, R. Scheu, A. Leitenstorfer, and R. Huber, "Field-resolved detection of phase-locked infrared transients from a compact Er:fiber system tunable between 55 and 107 THz," Appl. Phys. Lett.93,251107 (2008).
    87. X. D. Yang, Z. Z. Xu, Y. X. Leng, H. H. Lu, L. H. Lin, Z. Q. Zhang, R. X. Li, W. Q. Zhang, D. J. Yin, and B. Tang, "Multiterawatt laser system based on optical parametric chirped pulse amplification," Opt. Lett.27,1135 (2002).
    88. R. Th. Zinkstok, S. Witte, W. Hogervorst, and K. S. E. Eikema, “High-power parametric amplification of 11.8-fs laser pulses with carrier-envelope phase control.” Opt. Lett.30,78 (2005).
    89. Y. Tanaka, T. Hara, H. Kitamura, and T. Ishikawa, "Timing control of an intense picosecond pulse laser to the SPring-8 synchrotron radiation pulses," Rev. Sci. Instrum.71,1268-1274 (2000).
    90. R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and Jun Ye, "Phase-Coherent Optical Pulse Synthesis from Separate Femtosecond Lasers," Science 293,1286 (2001).
    91. G. P. Agrawal, 《Applications of Nonlinear Fiber Optics》 (2008).
    92. A. Leitenstorfer, C. Furst, and A. Laubereau, "Widely tunable two-color mode-locked Ti:sapphire laser with pulse jitter of less than 2 fs," Opt. Lett.20, 916(1995).
    93. M. Rusu, R. Herda, and O. G. Okhotnikov, “1.05-μm mode-locked Ytterbium fiber laser stabilized with the pulse train from a 1.54-μm laser diode,” Opt. Express 12,5258 (2004).
    94. D. Yoshitomi, Y. Kobayashi, M. Kakehata, H. Takada, K. Torizuka, T. Onuma, H. Yokoi, T. Sekiguchi, and Shinki Nakamura, "Ultralow-jitter passive timing stabilization of a mode-locked Er-doped fiber laser by injection of an optical pulse train," Opt. Lett.31,3243 (2006).
    95. Y. Kobayashi, X. Zhou, D. Yoshitomi, and K. Torizuka, "Passive timing synchronization between Ti:sapphire laser and Yb-doped fiber laser," CLEO/QELS, CML6 (2008).
    96. F. Adler, A. Sell, F. Sotier, R. Huber, and A. Leitenstorfer, "Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er:fiber laser," Opt. Lett. 32,3504 (2007).
    97. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum.71,1929 (2000).
    98. S. Yu. Kalmykov, L. M. Gorbunov, P. Mora, and G. Shvets, “Injection, trapping, and acceleration of electrons in a three-dimensional nonlinear laser wakefield,” Phys. Plasmas 13,113102 (2006).
    99. J. A. Fulop, Z. S. Major, B. Horvath, F. Tavella, A. Baltuska, and F. Krausz, "Shaping of picosecond pulses for pumping optical parametric amplification," Appl. Phys. B 87,79 (2007).
    100. D. Umstadter, E. Esarey, and J. Kim, "Nonlinear plasma waves resonantly driven by optimized laser pulse trains," Phys. Rev. Lett.72,1224 (1994).
    101. J. D. Zuegel, S. Borneis, C. Barty, B. Legarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. Leblanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol.49,453 (2006).
    102. P. Leproux, S. Fevrier, V. Doya, P. Roy, and D. Pagnoux, "Modeling and Optimization of Double-Clad Fiber Amplifiers Using Chaotic Propagation of the Pump," Optical Fiber Technology 7,324 (2001).
    103. P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, "High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs," Opt. Express 14,9611 (2006).
    104. M. Auerbach, D. Wandt, C. Fallnich, H. Welling, and S. Unger, "High-power tunable narrow line width ytterbium-doped double-clad fiber laser," Opt. Commun.195,437(2001).
    105. Y. Wang, "Optimization of Pulse Amplification in Ytterbium-Doped Double-Clad Fiber Amplifiers," J. Lightw. Technol.23,2139 (2005).
    106. L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. C. Cho, and M. E. Fermann, "High energy femtosecond Yb cubicon fiber amplifier," Opt. Express 13,4717 (2005).
    107. L. Shah, M. E. Fermann, J. W. Dawson, and C. P. J. Barty, “Micromachining with a 50 W,50 μJ, subpicosecond fiber laser system,” Opt. Express 14,12546 (2006).
    108. S. Hofer, A. Liem, J. Limpert, H. Zellmer, A. Tunnermann, S. Unger, S. Jetschke, H. R. Muller, and I. Freitag, "Single-frequency master-oscillator fiber power amplifier system emitting 20 W of power," Opt. Lett.26,1326 (2001).
    109. J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, "The Rising Power of Fiber Lasers and Amplifiers," IEEE J. Sel. Topics Quantum Electron.13,537 (2007).
    110. 巫殷忠,刘博文,宋有建,胡明列,贾威,王清月,“基于光子晶体光纤飞秒激光放大器的微纳加工系统,”中国激光35,1078(2008)。
    111. 蒙红云,廖键宏,刘颂豪,“掺镱双包层光纤激光器及其在激光加工中的应用,”激光与光电子学进展41,55(2004)。
    112. A. Liem, J. Limpert, H. Zellmer, and A. Tunnermann, “100-W single-frequency master-oscillator fiber power amplifier,” Opt. Lett.28,1537 (2003).
    113. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12,6088 (2004).
    114. Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, "Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power," Opt. Lett.30,459 (2005).
    115. 李伟,武子淳,陈曦,史俊锋,陈颛,戴明,董海燕,郭胜风, “大功率光纤激光器输出功率突破1 kW,”强激光与粒子束,(2006)。
    116. 朱洪涛,楼祺洪,周军,漆云凤,董景星,魏运荣,“千瓦级双包层光纤激光器冷却方案设计理论和实验研究,”物理学报57,4966(2008)。
    117. 赵振宇,段开椋,王建明,赵卫,王屹山, “高功率光子晶体光纤放大器实验研究,”物理学报57,6335(2008)。
    118. S. Yin, P. Yan, and M. Gong, "End-pumped 300 W continuous-wave ytterbium-doped all-fiber laser with master oscillator multi-stage power amplifiers configuration," Opt. Express 16,17864 (2008).
    119. J. Limpert, A. Liem, T. Gabler, H. Zellmer, A. Tunnermann, S. Unger, S. Jetschke, and H. R. Muller, "High-average-power picosecond Yb-doped fiber amplifier," Opt. Lett.26,1849 (2001).
    120. P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, "High Average Power, High Repetition Rate, Picosecond Pulsed Fiber Master Oscillator Power Amplifier Source Seeded by a Gain-Switched Laser Diode at 1060 nm," IEEE Photon. Technol. Lett.18,1013 (2006).
    121. J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tiinnermann, S. Knoke, H. Voelckel, "100-W average-power, high-energy nanosecond fiber amplifier," Appl. Phys. B 75,477 (2002).
    122. V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, "Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers," J. Opt. Soc.Am.B19,461(2002).
    123. B. Ortac, A. Hideur, T. Chartier, M. Brunel, C. Ozkul, and F. Sanchez, "90-fs stretched-pulse ytterbium-doped double-clad fiber laser," Opt. Lett.28,1305 (2003).
    124. F. Roser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tunnermann, "131 W 220 fs fiber laser system," Opt. Lett.30,2754 (2005).
    125. R. E. Kennedy, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "High-peak-power femtosecond pulse compression with polarization-maintaining ytterbiumdoped fiber amplification," Opt. Lett.32,1199 (2007).
    126. 刘博文,胡明列,宋有建,柴路,王清月, “39 fs,16 W全光子晶体光纤飞秒激光系统,”中国激光35,811(2008)。
    127. Y. Zaouter, D. N. Papadopoulos, M. Hanna, J. Boullet, L. Huang, C. Aguergaray, F. Druon, E. Mottay, P. Georges, and E. Cormier, "Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers," Opt. Lett.33, 107(2008).
    128. T. Eidam, S. Hadrich, F. Roser, E. Seise, T. Gottschall, J. Rothhardt, T. Schreiber, J. Limpert, and A. Tunnermann, "A 325-W-Average-Power Fiber CPA System Delivering Sub-400 fs Pulses," IEEE J. Sel. Topics Quantum Electron.15,187 (2009).
    129. A. Liu, J. Song, K. Kamatani, and K. Ueda, "Rectangular double-clad fibre laser with two-end-bundled pump," Electron. Lett.32,1673 (1996).
    130. V. Doya, O. Legrand, and F. Mortessagne, "Optimized absorption in a chaotic double-clad fiber amplifier," Opt. Lett.26,872 (2001).
    131. D. Kouznetsov, J. V. Moloney, and E. M. Wright, "Efficiency of pump absorption in double-clad fiber amplifiers. I. Fiber with circular symmetry," J. Opt. Soc. Am. B 18,743 (2001).
    132. D. Kouznetsov, and J. V. Moloney, “Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry,” J. Opt. Soc. Am. B 19,1259 (2002).
    133. Y. Li, S. D. Jackson, and S. Fleming, "High absorption and low splice loss properties of hexagonal double-clad fiber," IEEE Photon. Technol. Lett.16,2502 (2004).
    134. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett.25,442 (2000).
    135. A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, “All-fiber tunable ytterbium-doped double-clad fiber ring laser,” Opt. Lett.26,1054 (2001).
    136. Y. Zaouter, D. N. Papadopoulos, M. Hanna, F. Druon, E. Cormier, and P. Georges, "Third-order spectral phase compensation in parabolic pulse compression," Opt. Express 15,9372 (2007).
    137. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, Schreiber, J. Limpert, and A. Tunnermann, "Femtosecond fiber CPA system emitting 830 W average output power," Opt. Lett.35,94 (2010).
    138. W. Kochner, "Solid-State Laser Engineering (Springer Series in Optical Science)," Berlin (1999).
    139. L. D. Schearer, and P. Tin, "Tunable lasers at 1080 nm for helium optical pumping," J. Appl. Phys.68,943 (1990).
    140. Y. F. Chen, M. L. Ku, and K. W. Su, "High-power efficient tunable Nd:GdVO4 laser at 1083 nm," Opt. Lett.30,2107 (2005).
    141. J. T. Bahns, L. Lynds, W. C. Stwalley, V. Simmons, T. Robinson, and S. Bililign, "Airborne-mercury detection by resonant UV laser pumping," Opt. Lett.22,727 (1997).
    142. M. Jacquemet, F. Balembois, S. Chenais, F. Druon, P. Georges, R. gaume, and B. Ferrand, "First diodepumped Yb-doped solid-state laser continuously tunable between 1000 and 1010 nm," Appl. Phys. B 78,13 (2004).
    143. C. Lecaplain, C. Chedot, A. Hideur, B. Ortac, and J. Limpert, "High-power all-normal-dispersion femtosecond pulse generation from a Yb-doped large-mode-area microstructure fiber laser," Opt. Lett.32,2738 (2007).
    144. 宋有建,胡明列,张弛,柴路,王清月,“高脉冲能量大模场面积光子晶体光纤飞秒激光器,”科学通报53,1511(2008).
    145. B. Ortac, O. Schmidt, T. Schreiber, J. Limpert, A. Tunnermann, and A. Hideur, "High-energy femtosecond Yb-doped dispersion compensation free fiber laser," Opt. Express 15,10725 (2007).
    146. B. Ortac, J. Limpert, and A. Tunnermann, "High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime," Opt. Lett.32,2149 (2007).