掺镱大模场面积光子晶体光纤锁模激光器的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用二极管激光器直接泵浦掺杂稀土元素的光子晶体光纤激光器产生超短、超强的激光脉冲是实现低成本、集成化的飞秒激光脉冲技术的新手段,在工业、科研等领域有广泛的应用前景。光子晶体光纤的无截止单模特性使得光纤纤芯尺寸增加的同时保持单模,从而有效地降低了光纤的非线性,非常适合于高能量超短激光脉冲的传输。本论文利用偏振型掺镱大模场面积光子晶体光纤作为增益介质,通过半导体可饱和吸收镜引入被动调制,实现了自启动锁模,获得了高能量的飞秒激光脉冲输出,并进一步系统研究了不同谐振腔色散的情况下,锁模的动力学过程。本论文的工作可以概括为以下几部分:
     1.阐述了飞秒激光的产生原理、飞秒激光技术的发展及光子晶体光纤的导光机制,介绍了超短激光脉冲在非线性介质中传输的基本理论。
     2.建立了光子晶体光纤锁模激光器的数值模型,对这种激光器的锁模动力学过程进行了数值模拟,模拟的结果与实验很好的吻合。
     3.实验研究了孤子锁模的光子晶体光纤激光器,获得了900 mW的高平均功率脉冲输出,其单脉冲能量为19 nJ,脉冲宽度为570 fs。分析了光子晶体光纤的偏振消光比对输出脉冲质量的影响,并精确测量了激光器输出的锁模脉冲序列的能量波动与时间抖动等噪声特性。
     4.实验研究了呼吸孤子锁模的光子晶体光纤激光器,最窄获得了78 fs的超短激光脉冲输出,观察到束缚态孤子的产生,并对其产生机理进行了理论分析。
     5.实验研究了全正色散锁模的光子晶体光纤激光器,获得了平均功率为2 W,单脉冲能量为40 nJ,脉冲宽度为3.6 ps的超短激光脉冲,经腔外色散补偿,脉冲宽度压缩至410 fs。利用多通长腔加长光路,谐振腔的重复频率从50 MHz降至11 MHz,得到了高达97 nJ的单脉冲能量输出。
     6.基于光子晶体光纤振荡级与放大级,开发了紧凑型的太赫兹时域光谱系统,获得了高平均功率的近单周期太赫兹脉冲。
Intense ultrashort laser pulse generation from diode-pumped rare-earth-doped photonic crystal fiber lasers is a novel approach to achieve low-cost and compact femtosecond laser source, which is a promising work-horse on industry and scientific research. The photonic crystal fiber can scale up the mode area while keeping a single guided mode due to the endless single mode property, which effectively scale down the fiber nonlinearity, and is ideal for high power laser pulse propagation. A high energy mode-locked fiber laser is developed in this thesis. A segment of single polarization Ytterbium doped large mode area photonic crystal fiber laser serves as the gain media, while a piece of semiconductor saturable absorber mirror is used for self-started mode locking operation. The mode locking dynamics under various cavity dispersion is systematically investigated. The thesis can be divided into the following 6 parts:
     1. The fundamentals of femtosecond generation, the development of femtosecond laser technology as well as the waveguide mechanism of photonic crystal fiber are presented. The theory of nonlinear propagation of ultrashort laser pulses in media is introduced.
     2. A numerical model of mode-locked photonic crystal fiber laser is built, which is used to simulate the pulse dynamics in the fiber laser. The simulated results fit the experimental results very well.
     3. Soliton mode-locked photonic crystal fiber laser is experimentally investigated. Laser pulses with 900 mW of average power, 19 nJ of single pulse energy and 570 fs of pulse duration are achieved from the fiber laser. The influence of polarization extinction ratio of photonic crystal fiber on output pulse quality is analyzed. The noise of the laser, including energy fluctuation and timing jitter is also measured.
     4. Stretched soliton mode-locked photonic crystal fiber laser is experimentally investigated, pulse duration as short as 78 fs is achieved from the laser. The bounded solution pairs are also observed in the fiber laser.
     5. All normal dispersion mode-locked photonic crystal fiber laser is experimentally investigated, laser pulses with 2 W of average power, 40 nJ of single pulse energy(corresponding to 51 MHz of repetition rate) and 3.6 ps of pulse duration are achieved, which can be dechirped to 410 fs by extra-cavity dispersion compensation. 97 nJ laser pulses at a repetition rate of 11 MHz are achieved by adding a multi-pass cavity to lengthen the cavity path.
     6. A compact teraherz time domain spectral system is developed based on photonic crystal fiber laser and amplifier, nearly single cycle high power teraherz pulses are generated.
引文
[1] K. Yamanouchi(Editor), K, A. Becker(Editor), R. Li(Editor), et al., Progress in Ultrafast Intense Laser Science IV, Springer, 2009
    [2] G. P. Agrawal, Nonlinear Fiber Optics, 3rd edition, New York: Academic Press, 2001
    [3] G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd edition, New York: Academic Press, 2008
    [4]张克潜,李德杰,微波与光电子学中的电磁理论(第二版),北京:电子工业出版社,2002
    [5]章若冰,王清月,激光物理导论,天津:天津大学出版社,1988
    [6]张志刚,飞秒激光脉冲技术与应用,北京:科学出版社,2005
    [7] A. J. D. Maria, D. A. Stetser, H. Heynau, Self mode-locking of lasers with Saturable absorbers, Appl. Phys. Lett., 1966, 8: 174-176
    [8] R. L. Fork, Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking, Appl. Phys. Lett., 1981, 38: 671-673
    [9] E. Matsubara, K. Yamane, T. Sekikawa, et al., Generation of 2.6 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber, J. Opt. Soc. Am. B., 2007, 24(4): 985-989
    [10] M. Drescher, M. Hentschel, R. Kienberger, et al., X-ray pulses approaching the attosecond frontier, Science, 2001, 291, 1923-1927
    [11] U. Keller, Recent developments in compact ultrafast lasers, Nature, 2003, 424: 831-838
    [12] Chen S Y, et al., Shanghai synchrotron radiation facility, Proceedings of the 1997 Particle Accelerator Conference, New York, 1999.
    [13] H. A. Haus, Mode-Locking of Lasers, IEEE J. Sel. Top. Quantum Electron., 2000, 6(6): 1173-1185
    [14] U. Keller, K. J. Weingarten, F. X. K?rtner, et al., Semiconductor Saturable Absorber Mirrors (SESAM’s) for Femtosecond to Nanosecond Pulse Generation in Solid-State Lasers, IEEE J. Sel. Top. Quantum Electron., 1996, 2(3): 435-451
    [15] Y. Sakakibara, A. G. Rozhin, H. Kataura, et al, Carbon nanotube-poly (vinylalcohol) nanocomposite film devices: Applications for femtosecond fiber laser mode lockers and optical amplifier noise suppressors, Jpn. J. Appl. Phys., 2005, 44(4A): 1621-1625
    [16] J. A. Valdmanis, R. L. Fork, Design considerations for a femtosecond pulse laser balancing self phase modulation, group velocity dispersion, saturable absorption, and saturable gain, IEEE J. Quantum Electron., 1986, 22(1): 112-118
    [17] D. E. Spence, P. N. Kean, andW. Sibbett, 60-fsec pulse generation from a self-mode-locked Ti : Sapphire laser, Opt. Lett., 1991, 16(1): 42–44
    [18]谢旭东,四个光学周期脉冲钛宝石振荡器的实验研究:[硕士学位论文],天津;天津大学,2005
    [19] U. Morgner, F. X. Kartner, F. X. Cho, et al., Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser: addenda, Opt. Lett., 1999, 24(13): 920-922
    [20] S. V. Marchese, C. R. E. Baer, A. G. Engqvist, et al., Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level, Opt. Express, 2008, 16(9): 6397-6407
    [21] P. Wagenblast, R. Ell, and U. Morgner, et al., Diode-pumped 10-fs Cr31:LiCAF laser, Opt. Lett., 2003, 28(18): 1713-1715
    [22] C. K. Nielsen, Mode Locked Fiber Lasers: Theoretical and Experimental Developments: [PhD Thesis], Denmark; University of Aarhus, 2006
    [23] M. Hofer, M. E. Fermann, F. Haberl, et al., Mode locking with cross-phase and self-phase modulation, Opt. Lett., 1991,16(7): 502-504
    [24] K. Tamura, L. E. Nelson, H. A. Haus, et al., Soliton versus nonsoliton operation of fiber ring lasers, Appl. Phys. Lett. 1994, 64(2): 149-151
    [25] F. X. Kartner, U. Keller, Stabilization of soliton-like pulses with a slow saturable absorber, Opt. Lett., 1995, 20(1): 16-18
    [26] D. Anderson, M. Desaix, M. Lisak, et al., Wave breaking in nonlinear-optical fibers, J. Opt. Soc. Am. B, 1992, 9(8): 1358-1361
    [27] K. Tamura, E. P. Ippen, and H. A. Haus,“Pulse dynamics in stretched-pulse fiber lasers,”Appl. Phys. Lett., 1995, 67(2), 158-160
    [28] L. Lefort, J. H. V. Price, D. J. Richardson, et al., Practical low-noise stretched-pulse Yb3+-doped fiber laser, Opt. Lett., 2002, 27(5): 291-293
    [29] J. R. Buckley, F. W. Wise, F. ?. Ilday, et al., Femtosecond fiber lasers with pulse energies above 10 nJ, Opt. Lett., 2005, 30(14): 1888-1890
    [30] X. Zhou, D. Yoshitomi, Y. Kobayashi, et al., Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator, Opt. Express, 2008, 16(10): 7055-7059
    [31] M. E. Fermann, V. I. Kruglov, B. C. Thomsen, et al., Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers, Phys. Rev. Lett., 2000, 84(26): 6010-6013
    [32] F. ?. Ilday, J. R. Buckley, W. G. Clark, et al., Self-Similar Evolution of Parabolic Pulses in a Laser, Phys. Rev. Lett., 2004, 92(21): 213902
    [33] A. Chong, J. Buckley, W. Renninger, and F. Wise, All-normal-dispersion femtosecond fiber laser, Opt. Express, 2006, 14(21): 10095-10100
    [34] A. Chong, W. H. Renninger, and F. W. Wise, Route to the minimum pulse duration in normal-dispersion fiber lasers, Opt. Lett., 2008, 33(22): 2638-2640
    [35] A. Chong, W. H. Renninger, and F. W. Wise, Properties of normal-dispersion femtosecond fiber lasers, J. Opt. Soc. Am. B, 2008, 25(2): 140-148
    [36] J. An, D. Kim, J. W. Dawson, et al., Grating-less, fiber-based oscillator that generates 25 nJ pulses at 80 MHz, compressible to 150 fs, OPT. LETT., 2007, 32(14): 2010-2012
    [37] L. M. Zhao, D. Y. Tang, and J. Wu, Gain-guided soliton in a positive group-dispersion fiber laser, Opt. Lett., 2006, 31(12): 1788-1790
    [38] C. K. Nielsen, B. Ortac, T. Schreiber, et al., Self-starting self-similar all-polarization maintaining Yb-doped fiber laser, Opt. Express., 2005, 13(23): 9346-9351
    [39] A. Hideur, T. Chartier, C. Ozkul, et al., Experimental study of pulse compression in a side-pumped Yb-doped double-clad mode-locked fiber laser, Appl. Phys. B, 2002, 74: 121-124
    [40] B. Ortac, A. Hideur, C. Chedot, et al., Self-similar low-noise femtosecond ytterbium-doped double-clad fiber laser, Appl. Phys. B, 2006, 85, 63-67
    [41] K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser, Opt. Lett., 2009, 34(5): 593-595
    [42] J. C. Knight, Photonic crystal fibers and fiber lasers, J. Opt. Soc. Am. B, 2007, 24(8): 1661-1668
    [43] P. Russell, Photonic crystal fibers, Science, 2003, 299: 358-362
    [44] J. C. Knight, Photonic Crystal fibers, Nature, 2003, 424: 847-851
    [45] P. St. J. Russell, Photonic-Crystal Fibers, J. Lightw. Tech., 2006, 24(12): 4729-4747
    [46] J. C. Knight and D. V. Skryabin, Nonlinear waveguide optics and photonic crystal fibers, Opt. Express, 2007, 15(23): 15365-15376
    [47]王清月,栗岩锋,胡明列等,光子晶体光纤非线性特性的研究,物理,2005, 34(1): 43-49
    [48]胡明列,飞秒激光脉冲在光子晶体光纤中传输特性的研究:[博士学位论文],天津;天津大学,2004
    [49]栗岩峰,光子晶体光纤色散特性的理论研究:[博士学位论文],天津;天津大学,2004
    [50] www.crystal-fibre.com
    [51] J. C. Knight, T. A. Birks, P. St. J. Russell, et al., All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett., 1996, 21(19): 1547-1549
    [52] T.A. Birks, J.C. Knight, and P.S.J. Russell, Endlessly single-mode photonic crystal fiber Opt. Lett., 1997, 22(13): 961-963
    [53] N. Mortensen, J. Folkenberg, M. Nielsen, et al., Modal cutoff and the V parameter in photonic crystal fibers, Opt. Lett., 2003, 28 (20): 1879-1881
    [54] J. Limpert, O. Schmidt, J. Rothhardt, et al., Extended single-mode photonic crystal fiber lasers, Opt. Express, 2006, 14(7): 2715-2720
    [55] J. Limpert, T. Schreiber, S. Nolte, et al., High-power air-clad large-mode-area photonic crystal fiber laser, Opt. Express, 2003, 11(7): 818-823
    [56] W. H. Reeves, J. C. Knight, P. St. J. Russell, et al., Demonstration of ultraflattened dispersion in photonic crystal fibers, Opt. Express, 2002, 10(14): 609-613
    [57] J. M. Dudley, G. Genty S. Coen, Supercontinuum generation in photonic crystal fiber, Rev. Mod. Phys. 2006, 78(4): 1135-1184
    [58] H. Hundertmark, S. Rammler, T. Wilken, et al., Octave-spanning supercontinuum generated in SF6-glass PCF by a 1060?nm mode-locked fibre laser delivering 20pJ per pulse, Opt. Express, 2009, 17 (3): 1919-1924
    [59] M. L. Hu, C. Y. Wang, Y. F. Li, et al., Supercontinuum Generation and Transmission in a Random Distributed Microstructure Fiber, Laser Phys., 2004, 14(5): 776-779
    [60] W. J. Washburn, J. C. Knight, A. Ortigosa-Blanch, et al., Soliton effects in photonic crystal fibres at 850nm, Electron. Lett., 2000, 36(1): 53-55
    [61] A. M. Zheltikov, Microstructure-fiber frequency converters, Laser Phys. Lett., 2004, 1(5): 220-233
    [62] M. L. Hu, C. Y. Wang, Y. F. Li, et al., An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarization of the pump field, Appl. Phys. B, 2004, 79(7): 805-809
    [63] P. J. Roberts, D. P. Williams, H. Sabert, et al., Design of low-loss and highly birefringent hollow-core photonic crystal fiber, Opt. Express, 2006, 14(16): 7329–7341
    [64] D. Kim and J. U. Kang, Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity, Opt. Express, 2004, 12(19): 4490–4495
    [65] J. C. Knight, J. Broeng, T. A. Birks, et al., Photonic Band Gap Guidance in Optical Fibers, Science, 1998, 282: 1476-1478
    [66] R. F. Cregan, B. J. Mangan, J. C. Knight, et al., Single-Mode Photonic Band Gap Guidance of Light in Air, Science, 1999, 285: 1537-1539
    [67] D. G. Ouzounov, F. R. Ahmad, D. Müller, et al., Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers, Science, 2003, 301: 1702-1704
    [68] F. Luan, A. K. George, T. D. Hedley, et al., All-solid photnic bandgap fiber, Opt. Lett., 2004, 29(20): 2369-2371
    [69] N. M. Litchinitser, A. K. Abeeluck, C. Headley, et al., Antiresonant reflecting photonic crystal optical waveguides, Opt. Lett., 2002, 27(18): 1592-1594
    [70] B. W. Liu, M. L. Hu, X. H. Fang, et al., Tunable Bandpass Filter With Solid-Core Photonic Bandgap Fiber and Bragg Fiber, IEEE Photon. Tech. Lett., 2008, 20(8): 581-583
    [71] Michael Schultz, Heike Karow, Oliver Prochnow, et al., All-fiber ytterbium femtosecond laser without dispersion compensation, Opt. Express., 2008, 16(24): 19562-19567
    [72] K. Furusawa, T.M. Monro, P. Petropoulos, et al., Mode locked laser based on ytterbium doped holey fibre, Electron. Lett., 2001, 37 (9): 560-561
    [73] M. Moenster, P. Glas, Günter Steinmeyer, et al., Mode-locked Nd-doped microstructured fiber laser, Opt. Lett., 2004, 12(19): 4523-4528
    [74] M. Moenster, P. Glas, R. Iliew, et al., Microstructure Fiber Soliton Laser, IEEE PHOTON. TECH. LETT., 2006, 18(23): 2502-2504
    [75] H. Lim, F. ?. Ilday, and F. W. Wise, Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control, Opt. Express., 10(25): 1497-1502
    [76] H. Lim, and F. W. Wise, Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber, Opt. Express., 12(10): 2231-2235
    [77] H. Lim, A. Chong, F. W. Wise, Environmentally-stable femtosecond ytterbium fiber laser with birefringent photonic bandgap fiber, Opt. Express., 13(9): 3460-3464
    [78] A. V. Avdokhin, S. V. Popov and J. R. Taylor, Totally fiber integrated, figure-of-eight, femtosecond source at 1065 nm, Opt. Express., 2003, 11(3): 265-269
    [79] A. Isom?ki and O. G. Okhotnikov, All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber, Opt. Express., 2006, 14(10): 4368-4373
    [80] C. K. Nielsen, K. G. Jespersen, S. R. Keiding, A 158 fs 5.3 nJ fiber-laser system at 1 mm using photonic bandgap fibers for dispersion control and pulse compression, Opt. Express., 2006, 14(13): 6063-6068
    [81] Y. Zaouter, D. N. Papadopoulos, M. Hanna, Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers, Opt. Lett., 2008, 33(2): 107-109
    [82] B. Ortac, J. Limpert, and A. Tünnermann, High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime, 2007, Opt. Lett. 32(15): 2149-2151
    [83] B. Ortac, O. Schmidt, T. Schreiber, et al., High-energy femtosecond Yb-doped dispersion compensation free fiber laser, Opt. Express, 2007, 15(17): 10725-10732
    [84] H. M. Pask, R. J.arman, D. C. Hanna, A. C. Tropper, C. J. mackechnie, P. R. Barber, and J. M. Dawes. Ytterbium-Doped Silica Fiber Lasers: VersatileSources for the 1-1.2μm Region, IEEE J. Selected Top. in Quantum Electron., 1995, 1 (1): 2-13
    [85] O. Okotnikov, A. Grudinin, and M. Pessa, Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications, New J. Phys, 2004, 6: 177
    [86] M. Moenster, U. Griebner, W. Richter, et al., Resonant Saturable Absorber Mirrors for Dispersion Control in Ultrafast Lasers, IEEE J. Quantum Electron., 2007, 43(2): 174-181
    [87] C. H?nninger, R. Paschotta, F. Morier-Genoud, et al., Q-switching stability limits of continuous-wave passive mode locking, J. Opt. Soc. Am. B, 1999, 16(1): 46-56
    [88] G. P. Agrawal and N. A. Olsson, Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers, IEEE J. Quantum Electron., 1989, 25(11): 2297-2306
    [89] www.batop.com
    [90] A. Hasegawa and Y. Kodama, Guiding-Center soliton, Phys. Rev. Lett., 1991, 66(2): 161-164
    [91] S. M. J. Kelly, K. Smith, K. J. Blow, and N. J. Doran, Average soliton dynamics of a high-gain erbium fiber laser, Opt. Lett., 1991, 16(17): 1337-1339
    [92] L. M. Dennis and I. N. Duling III, Experimental Study of Sideband Generation in Femtosecond Fiber Lasers, IEEE J. Quantum Electron., 1994, 30(6): 1469-1477
    [93] T. Schreiber, F. R?ser, O. Schmidt, et al., Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity, 2005, Opt. Express, 13(19): 7621-7630
    [94] D. V. D. Linde, Characterization of the noise in continuously operating mode-locked lasers, Appl. Phys. B, 1986, 39: 201-217
    [95] J. Son, J. V. Rudd, and J. F. Whitaker, Noise characterization of a self-mode-locked Ti: sapphire laser, Opt. Lett., 1991, 17(10): 733-735
    [96] A. Poppe, L. Xu, F. Krausz, and C. Spielmann, Noise Characterization of Sub-10-fs Ti:Sapphire Oscillators, IEEE J. Sel. Top. Quantum Electron., 1998, 4(2): 179-184
    [97] J. P. Gordon, Dispersive perturbations of solitons of the nonlinear Schrodinger equation, J. Opt. Soc. Am. B, 1992, 9(1): 91-97
    [98] H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, Stretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experiment, IEEE J. Quantum Electron., 1995, 31(3): 591-598
    [99] Y. Chen, F. X. K?rtner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto,Dispersion-managed mode locking, J. Opt. Soc. Am. B., 1999, 16(11): 1999-2004
    [100] Y. Chen and H. A. Haus, Dispersion-managed solitons in the net positive dispersion regime, J. Opt. Soc. Am. B., 1999, 16(1): 24-30
    [101] D. J. Jones, Y. Chen, H. A. Haus, and E. P. Ippen, Resonant sideband generation in stretched-pulse fiber lasers, Opt. Lett., 1998, 23(19): 1535- 1537
    [102] J. W. Nicholson and W. Rudolph, Noise sensitivity and accuracy of femtosecond pulse retrieval by phase and intensity from correlation and spectrum only (PICASO), J. Opt. Soc. Am. B, 2002, 19(2): 330-339
    [103] N. G. Usechak, G. P. Agrawal, and J. D. Zuegel, Tunable, high-repetition-rate, harmonically mode-locked, ytterbium fiber laser, Opt. Lett., 2004, 29(12): 1360-1362
    [104] B. Ortac, A. Hideur, G. Martel, M. Brunel, 2-GHz passive harmonically mode-locked Yb-doped double-clad fiber laser, Appl. Phys. B, 2005, 81: 507-509
    [105] B. A. Malomed, Bound states of envelope solitons, Phys. Rev. E, 1993, 47(4): 2874-2880
    [106] P. Grelu, J. Béal and J. M. Soto-Crespo,Soliton pairs in a fiber laser: from anomalous to normal average dispersion regime , Opt. Express, 2003,11(18):2238-2243
    [107] D. Y. Tang, B. Zhao, D. Y. Shen, and C. Lu, Bound-soliton fiber laser, Phys. Rev. A, 2002, 66: 033806
    [108] A. Sennaroglu and J. G. Fujimoto, Design criteria for Herriott-type multi-pass cavities for ultrashort pulse lasers,Opt. Express, 2003, 11(9): 1106-1113
    [109] S. H. Cho, B. E. Bouma, E. P. Ippen, and J. G. Fujimoto, Low-repetition-rate high-peak-power Kerr-lens mode-locked Ti:Al2O3 laser with a multiple-pass cavity, Opt. Lett., 1999, 24(6): 417-419
    [110]许景周,张希成,太赫兹科学技术和应用,北京:北京大学出版社,2007
    [111] D, H, Auston, K, P, Cheung, and P. R. Smith, Picosecond photoconducting Hertzian dipoles, Appl. Phys. Lett. 1984, 45: 284–289
    [112] Jacob B. Khurgin, Optical rectification and terahertz emission in semiconductors excited above the band gap, J. Opt. Soc. Am. B, 1994, 11(12):2492-2501
    [113] Guoqing Chang, Charles J. Divin, Chi-Hung Liu, et al., Power scalable compact THz system based on an ultrafast Yb-doped fiber amplifier, Opt. Express, 2006, 14(17): 7909-7913
    [114]田震,宽带THz波的光谱整形及Kerr效应对THz波探测的影响,[硕士学位论文],天津;天津大学,2007
    [115]刘博文,全光子晶体光纤飞秒激光放大系统的研究,[博士学位论文],天津;天津大学,2009
    [116]刘博文,胡明列,宋有建,柴路,王清月,39 fs, 16 W全光子晶体光纤飞秒激光系统,中国激光,2008, 35(6): 811-814
    [117] M. Naftaly and R. Dudley, Linearity calibration of amplitude and power measurements in terahertz systens and detectors, Opt. Lett., 2009, 34(5): 674-676
    [118] B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A.M. Zheltikov, High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing, Laser Phys. Lett., 2009, 6(1): 44-48
    [119]张弛,胡明列,宋有建等,简化腔结构的大模场面积光纤锁模激光器,中国激光,2009,36(1): 98-99
    [120] Ling Fu and Min Gu, Double-clad photonic crystal fiber coupler for compact nonlinear optical microscopy imaging, Opt. Lett., 2006, 31(10): 1471-1473