锁模光纤激光器性能提升的新机理新技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文详细推导了广义非线性薛定谔方程,以该方程为理论工具,采用分步傅里叶方法数值模拟了全固光子带隙锁模光纤激光器的多种运转方式和腔型结构,并讨论了其相关运转特性。对全正色散锁模光纤激光器的滤波机制展开了一系列的理论与数值研究,在实验上搭建了线型腔和环形腔的全正色散被动锁模光纤激光器,验证了数值模拟的结果。为提升锁模光纤激光器的性能提供了一种新的机理和新的技术。主要研究内容包括以下几个部分:
     第一,针对全固光子带隙增益光纤集增益、负色散、非线性于一体的特性,数值构建了几种不同腔型结构和运转机制的被动锁模光纤激光器,通过数值模拟详细讨论了各激光器运转特性以及其与各种控制参量的关联特性:1.采用单根光子带隙增益光纤构建一个线型腔的锁模激光器,腔内没有采用任何提供正色散的光纤器件,通过缩短光纤的长度,可以获得重复频率高达500MHz的孤子锁模序列。2.构建了环形腔的锁模激光器,采用NPE锁模,得到了脉冲宽度为224 fs的傅里叶变换极限的孤子脉冲,重复频率约200 MHz。3.构建了一种环形腔的自相似锁模激光器。数值模拟发现,在该激光器中,单模光纤长度的改变对脉冲特性的影响较大,通过选择合适的单模光纤长度,可以得到近似抛物线的脉冲和频谱,即实现自相似锁模运转。4.提出了一种弱呼吸型的环形腔锁模激光器。为了使激拱题茉诟哌毕略俗?在模型中采用了一种高斯型的滤波元件,并讨论了滤波带宽对激光器运转特性的影响,获得了维持最佳脉冲特性的滤波带宽??。5.色散管理型孤子激光器内较高的三阶色散会使脉冲形状严重畸变,通过将滤波器引入该类激光器使脉冲质量得到了明显的改善,同时也窄化了脉冲宽度。6.在10 nm增益带宽的限制条件下,讨论了全固光子带隙增益光纤中三阶色散对提高脉冲能量、窄化脉冲宽度的“正面作用”。
     第二,重点讨论了频谱滤波带宽和滤波位置对全正色散光纤激光器中高啁啾脉冲整形过程的影响,并系统研究了滤波带宽、滤波位置、输出位置及输出耦合比四个参数对激光器运转特性的综合影响,给出了激光器中最佳的滤波位置和输出位置,同时优化了滤波带宽和输出耦合比,使激光器在给定泵浦条件下可以得到最高的脉冲能量和峰值功率。在全正色散光纤激光器中,对四个结构参数的综合作用,特别是关于滤波器位置效应的系统研究还未见报道。这项工作对构建高能量和高峰值功率的全正色散光纤激光器具有指导意义。
     第三,实验搭建了一种线型腔的全正色散锁模光纤激光器。采用SESAM作为锁模元件和端镜,采用高反射率、窄带宽的光纤布拉格光栅作另外一个端镜和输出端。得到了重复频率为17.5 MHz的单脉冲序列,输出平均功率为7.4 mW,单脉冲能量为423 pJ。再将该激光器中50%耦合输出的信号放大后得到了平均功率140 mW,单脉冲能量10.4 nJ,脉冲宽度5.53 ps,峰值功率~1.57 kW的脉冲序列。
     第四,实验搭建了一种环形腔的全正色散锁模光纤激光器。激光器中接入一个10 nm带宽的光纤滤波器,通过改变滤波器在腔内的位置,发现了最佳滤波位置是位于增益光纤前面,这与数值模拟的结果相吻合,从而验证了在该类激光器中滤波器位置选取的必要性。在320 mW泵浦功率下,获得的最大功率是92.2 mW,单脉冲能量可达3.5 nJ,脉冲宽度为~6.2ps。光谱的中心波长在1065 nm处,3 dB带宽约4.2 nm。测量得到该光纤激光器稳定性较高,信噪比可达80 dB。振幅噪声扰动只有0.06%,在6Hz~30kHz频率范围内的时间抖动约200 fs。
In this dissertation, the extended nonlinear Schr?dinger equation is derived, based on which several operation mechanisms and cavity structures of mode-locked fiber lasers based on all-solid Yb-doped photonic bandgap fiber (AS-Yb-PBGF) have been simulated numerically by split-step Fourier method and their relative characteristics also have been discussed. Additionally, spectral filtering regimes of all-normal-dispersion (ANDi) mode-locked fiber lasers have been investigated theoretically and numerically. In order to verify the simulation results, we constructed ANDi mode-locked fiber lasers with linear cavity and ring cavity, respectively, in experiments. The detailed contents can be classified as follows.
     1. Based on AS-Yb-PBGF providing laser gain, negative dispersion and nonlinearity, we numerically constructed several passively mode-locked fiber lasers with different cavity structures and operation regimes, and discussed their operation characteristics and relationships with some laser parameters, which is specialized as follows. (a) Employing a single segment of AS-Yb-PB疤?o build a linear cavity mode-locked fiber laser model, there is not any fiber elements with norma??spersion in the cavity, thus the laser operates in negative dispersion region resulting in the generation of conventional soliton pulse trains. By shortening the length of the AS-Yb-PBGF, 500 MHz soliton pulse repetition rate was obtained. (b) A passively mode-locked fiber ring laser model was constructed, in which NPE was used to initiate and sustain mode-locking operation. The output soliton pulse which is nearly transform-limited pulse has the width of 224 fs, and repetition rate is ~ 200 MHz. (c) By lengthening SMF in the cavity, self-similar mode-locked fiber ring laser was built. Simulation results show that the pulse characteristics are dependent on the length of the SMF in the cavity, and appropriate SMF length could lead to the generation of the parabolic pulse. (d) A weak-breathing mode-locked fiber ring laser model was presented. In order to make the laser operate in high normal dispersion region, a spectral filter was introduced in the cavity. By the investigation of the effects of the filtering bandwidth on the laser performances, an optimal filtering bandwidth was achieved. (e) It is a general knowledge that large third-order dispersion (TOD) will lead to pulse distortion in dispersion-managed soliton lasers. By introducing a spectral filter in a dispersion-managed soliton fiber laser model, the resulting pulse quality was improved, and the pulse duration was narrowed. (f) Under the condition of 10 nm gain bandwidth, the effects of TOD in AS-Yb-PBGF on the output pulse energy enhancement and pulse duration narrowing were discussed.
     2. The effects of spectral filtering bandwidth and filtering position on pulse shaping regimes of highly chirped pulses in ANDi fiber lasers were discussed with emphasis. Furthermore, integrated impacts of four structural parameters, such as filtering bandwidth, filtering position, output position and output coupling ratio, on the laser operation performances have been studied systematically. The optimized filtering position and output position were obtained. At the same time, we got the optimal filtering bandwidth and output coupling ratio for achieving higher pulse energy and stronger pulse peak power. In ANDi fiber lasers, the integrated impacts of the four structural parameters, especially the filtering position effect, have not been reported in earlier studies, thus our work is of importance for constructing high energy, high peak power ANDi mode-locked fiber lase疤?
     3. An ANDi mode-locked fiber laser with linear cavity was built in experiment, in which SESAM w??sed as mode-locking element and end mirror. Another end mirror was to use high reflectivity, narrow bandwidth fiber Bragg grating. The output pulse energy is 423 pJ, with average power of 7.4 mW. The pulse repetition rate is 17.5 MHz. As using the output pulse from a 50% fiber coupler as seed pulse, amplified pulse average power is up to 140 mW. The energy per pulse is 10.4 nJ, with pulse width of 5.53 ps and peak power of 1.57 kW.
     4. Employing two quarter-wave plates and one half-wave plate to realize NPE mode-locking, an ANDi fiber ring laser was constructed. In the laser a 10 nm bandwidth fiber filter was spliced in the cavity. As varing the filter position the optimal filtering position has been found, namely, the location before the gain fiber. Therefore, the experimental result agrees with that of simulations, which verifies the necessary to choose the filter position in ANDi fiber lasers. Under 320 mW pump power, the output pulse with 92.2 mW average power, 3.5 nJ pulse energy and 6.2 ps pulse width has been obtained. Additionally, this fiber laser has high stability, whose SNR is up to 80 dB. The rms amplitude noise measured is ~0.06% and the rms timing-jitter is ~200 fs for the frequency range from 6 Hz to 30 kHz.
引文
[1]. A. Galvanauskas, Mode-Scalable Fiber-Based Chirped Pulse Amplification Systems, IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(4): 504-517
    [2].聂秋华,光纤激光器和放大技术,北京电子工业出版社,1997
    [3]. Snitzer E., Optical Maser Action of Nd3+ in a Barium Crown Glass, Phys. Rev. Let., 1961, 7(12): 444-447
    [4]. Kao K. C., Kockhham G. A., Dielectric-fiber surface waveguides for optical frequencies, IEE Proc., 1966, 113(7): 1151-1154
    [5]. S. B. Poole, D. N. Payne, and M. E. Fermann, Fabrication of Low-loss Optic Fiber containing Rare-earth lons, Electron. Lett., 1985, 21(17): 737-738
    [6]. I. P. Alcock, A. C. Tropper, A. I. Ferguson et al., Q-switched operation of a neodymium-doped monomode fiber laser, Electron. Lett., 1985, 21(1): 84-85
    [7]. C. A. Millar, Concentration and co-doped dependence of 4F3/2 to 4I11/2 lasing behaviour of Nd3+ silica fibers, Conference on Optical Fiber Communications, 1987, Reno. USA. January.
    [8]. I. D. Miller, D. B. Mortimore, P. Urquhart et al., High efficiency Nd-doped fiber lasers using direct-coated dielectric mirror, Electron Lett, 1987, 23(1疤?2197-2201
    [9]. Snitzer, Double clad offset core Nd??er laser, Proc. Conf. optical fiber sensors, 1988, PD5, 533-536
    [10]. D. C. Hanna, R. W. Percival, I. R. Perry et al., Continuous-wave oscillation of a mono-mode ytterbium-doped fiber laser, Electron. Lett., 1988, 24(17): 1111-1113
    [11]. J. D. Kafka, T. Baerm, and D. M. Hall, Mode-locked Erbium Fiber Laser, Opt. Lett., 1989, 21(14): 1269-1271
    [12]. H. Takara., S. Kawanishi, and M. Saruwatari. 20GHz transform-limited optical pulse generation and bit-error-free operatio nusing a tunable actively modelocked Er-doped fiber ring laser, Electron. Lett., 1993, 29(10): 1149-1150
    [13]. E. Yoshida, Y. Kimura, and M. Nakazawa, 20 GHz, 1.8 ps pulse generation from a regeneratively modelocked erbium doped fiber laser and its femtosecond pulse compression, Electron. Lett., 1995, 31(2): 377-378
    [14]. Z. Ahmed, and N. Onodera, High-repetition rated optical pulse generation by frequency multiplication in actively mode-locked fiber ring laser, Electron. Lett., 1996, 32(5): 455-457
    [15]. K. S. Abedin, N. Onodera, and M. Hyodo, Repetition-rate multiplication in actively mode-locked fiber lasers by higher-order FM mode locking using a hig-finesse Fabry-Perot filter, Appl. Phy. Lett., 1998, 73(10): 1311-1313
    [16]. J. D. Moores, W. S. Wong, and K. L. Hall, 50-Gbit/s optical pules storage ring using novel rational-harmonic modulation, Opt. Lett., 1995, 20(13): 2547-2549
    [17]. M. Y. Jeon, H. K. Lee, J. T. Ahn et al., Externall fiber laser based pulse amplitude equalization scheme for rational harmonic modelocking in a ring-type fiber laser, Electron. Lett., 1998, 34(2): 182-184
    [18]. Sorensen, M. P. Shore, K. A. et al., Dynamics of additive-pulse mode-locked fiber lasers, Optics Communication, 1992, 90(1-3): 65-69
    [19]. H. A. Haus, E. P. Ippen, and K. Tamura, Additive-pulse modelocking in fiber lasers, IEEE J. Quant. Electron., 1994, 30(1): 200-208
    [20]. J. Dorring, L. Yan, Injection locking of an ad疤?ve-pulse mode-locked fiber laser, IEEE Photon. Te?? Lett., 2002, 14(11): 1497-1499
    [21]. I. N. Duling III, All fiber ring solution laser mode locked with a nonlinear mirror, Opt. Lett., 1991, 16(4):539-541
    [22]. D. J. Richardson, R. I. Laming et al., Self starting, passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch. Electron. Lett., 1991, 27(6): 542-544
    [23]. C. Chang, and C. Sien, Passive mode-locking through nonlinear polarization rotation in low-birefringence fibers, Optics Communications, 1997, 134(1-6): 218-222
    [24]. P. Shum, Y. D. Gong, and D. Y. Tang, 158 fs ultrashort soliton pulse from NPR fiber laser, Proc. SPIE-The International Society for Optical Engineering, 2002, 4906: 208-211
    [25]. V. J. Matsas, T. P. Newson, D. J. Richardson et al., Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarization rotation, Electron. Lett., 1992, 28(15): 1391-1393
    [26]. B. C. Collings, K. Bergman, S. T. Cundiff et al., Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector, Selected Topics in IEEE J. Quant. Electron., 1997, 3(4): 1065-1075
    [27]. A. G. Deryagin, D. V. Kuksenkov, V. I. Kuchinskii et al., Generation of high repetition frequency subpicosecond pulses at 1.535 um by passive mode-locking of InGaAsP/InP laser diode with saturable absorber regionscreated by ion implantation, 14th IEEE International Semiconductor Laser Conference, 1994, 107-108
    [28]. N. H. Seong, and D. Y. Kim, A new figure-eight fiber laser based on a dispersion-imbalanced nonlinear optical loop mirror with lumped dispersive elements, IEEE Photon. Techn. Lett., 2002, 14(4): 459-461
    [29]. J. W. Lou, T. F. Carruthers, and M. Currie, Mode-locked multiple-wavelength erbium-doped fiber laser in a sigma configuration, IEEE Photon. Techn. Lett., 2002, 14(3): 281-283
    [30]. J. Peng, X. Liu, P. Tang et al., Bi-directional simultaneous single-longitudinal model lasing of a Er3+-doped all-fiber ring laser using composite cavity, Acta Optica Sinica, 1998, 18(10): 1412-1416
    [31]. V. Cautaertzs, D. J. Richardson, R. Paschotta et al., Stretched pulse Yb3+: silica fiber laser, Opt. Lett., 1997, 22(5): 316-318
    [32]. K. Tamura, E. P. Ippen, H. A. Haus et al., 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser, Opt. Lett., 1993, 18(13): 1080-1082
    [33]. J. R. Buckley, F. W. Wise, F. ?. Ilday et al. Femtosecond fiber lasers with pulse energies above 10 nJ, Opt. Lett., 200疤?0(14): 1888-1890
    [34]. J. An, D. Kim, J. W. D??n et al. Grating-less, fiber-based oscillator that generates 25 nJ pulses at 80 MHz, compressible to 150 fs, Opt. Lett., 2007, 32(14): 2010-2012
    [35]. Andy Chong, William H. Renninger, and Frank W. Wise, All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ, Opt. Lett., 2007, 32(6): 2408-2410
    [36]. K. Kieu, W. H. Renninger, A. Chong et al., Sub-100fs pulses at watt-level powers from a dissipative-soliton fiber laser, Opt. Lett., 2009, 34(5): 593-595
    [37]. J.C. Knight, T.A. Birks, P.St.J. Russell, et al., All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett., 1996, 21(19): 1547-1549
    [38]. T.A. Birks, J.C. Knight, and P.St.J. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett., 1997, 22(13): 961-963
    [39]. J.C. Knight, J. Broeng, T.A. Birks, et al., Photonic band gap guidance in optical fibers, Science, 1998, 282(5393): 1476-1478
    [40]. J.C. Knight, T.A. Birks, R.F. Cregan, et al., Photonic crystals as optical fibres -physics and applications, Optical Materials, 1999, 11(2-3): 143-151
    [41]. P.St.J. Russell, Photonic crystal fibers, Science, 2003, 299(5605): 358-362
    [42]. J.C. Knight, Photonic crystal fibres, Nature, 2003, 424(6950): 847-851
    [43]. J.M. Dudley, G. Genty, St. Coen, Supercontinuum generation in photonic crystal fiber, Reviews of Modern Physics, 2006, 78(4): 1135-1184
    [44]. P.St.J. Russell, Photonic-Crystal Fibers, Journal of Lightwave Technology, 2006, 24(12): 4729-4749
    [45]. N. G. R. Broderick, T. M. Monro, P. J. Bennett et al., Nonlinearity in holey optical fibers: measurement and future opportunities, Opt. Lett., 1999, 24(20): 1395-1397
    [46]. W. J. Wadsworth, R. M. Percival, G. Bouwmans et al., Very high numerical aperture fibers, IEEE Photon. Tech. Lett., 2004, 16(3): 843-845
    [47]. A. Argyros, I. Bassett, M. A. van Ejikelenborg et al., Analysis of ring-structured Bragg fibers for single TE mode guidance, Opt. Express, 2004, 12(12): 2688-2698
    [48]. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, Group-velocity dispersion in photonic crystal fibers, Opt. Lett., 1998, 23(21): 1662-1664
    [49]. J. C. Knight, J. Arriaga, T.A. Birks et al., Anomalous dispersion in photonic crystal fiber, IEEE Photon. Tech. Lett., 2000, 12(7): 807-809
    [50]. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Optical properties of high-delta air-silica microstructure optical fibers, Opt. Lett., 2000, 25(11): 796-798
    [51]. W. G?bel, A. Nimmerjahn, F. Helmchen et al., Distortion-fr疤?elivery of nanojoule femtosecond pulses from a Ti:sa??re laser through a hollow-core photonic crystal fiber, Opt. Lett., 2004, 29(11): 1285-1287
    [52]. F. Luan, J. K. Knight, P. St. J. Russell et al., Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers, Opt. Express, 2004, 12(5): 835-840
    [53]. F. Gér?me, K. Cook, A. K. George et al., Delivery of sub-100 fs pulses through 8m of hollow-core fiber using soliton compression, Opt. Express, 2007, 15(12): 7126-7131
    [54]. J. S. Skibina, R. Iliew, J. Bethge et al., A chirped photonic-crystal fibre, Nature Photonics, 2008, 2(11): 679-683
    [55]. K. Furusawa, T. M. Monro, P. Petropoulos et al., Modelocked laser based on ytterbium doped holey fibre, Electron. Lett., 2001, 37(9): 560-561
    [56]. M. Moenster, P. Glas, G. Steinmeyer et al., Mode-locked Nd-doped microstructured fiber laser, Opt. Express, 2004, 12(19): 4523-4528
    [57].王清月,胡明列,宋有建等,用大模场光子晶体光纤获得高功率飞秒激光,中国激光,2007,34(12): 1603-1606
    [58]. B. Ortac, O. Schmidt, T. Schreiber et al., High-energy femtosecond Yb-doped dispersion compensation free fiber laser, Opt. Express, 2007, 15(17): 10725-10732
    [59]. B. Ortac, C. Lecaplain, A. Hideur et al., Passively mode-locked single-polarization microstructure fiber laser, Opt. Express, 2008, 16(3): 2122-2128
    [60].宋有建,胡明列,张弛等,高脉冲能量大模场面积光子晶体光纤飞秒激光器,科学通报,2008,53(13): 1511-1515
    [61]. Govind P. Agrawal, Nonlinear Fiber Optics, Third Edition & Application of Nonlinear Fiber Optics, Publishing House of Electronics Industry, Beijing, 2002: Chap. 2
    [62]. Robert A. Fisher and W. Bischel, The role of linear dispersion in plan-wave self-phase modulation, Appl. Phy. Lett., 1973, 23(12): 661-663
    [63]. Knight J, Birks T, Russell P et al., All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett., 1996, 21(19): 1547-1549
    [64]. Zhou Bing, Jiang Yongliang, Chen Xiaowei et al., Numerical Simulation on Propagation of Ultra-Short Laser Pulse in Photonic Crystal Fibers with Different Group Velocity Dispersion Parameters, Acta Optica Sinca, 2007, 27(2): 324-329
    [65]. Ren Guobin, Lou Shuqin, Wang Zhi et al., Study on Dispersion Propersities of Photonic Crystal Fiber by Equivalent-Index Model, Acta Optica Sinca, 2004, 24疤? 320-324
    [66]. Lim H, Ilday F ?, Wise F W. Fem??cond ytterbium fiber laser with photonic crystal fiber for dispersion control, Opt. Express, 2002, 10(25): 1497-1502
    [67]. WANG Qing-yue, HU Ming-lie, CHAI Lu. Progress in Nonlinear Optics with Photonic Crystal Fibers, Chinese J. Laser, 2006, 33(1): 57-66
    [68]. Lim H, Wise F W. Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber, Opt. Express, 2004, 12(10): 2231-2235
    [69]. A. Argyros, T. Birks, S. Leon-Saval et al., Photonic bandgap with an index step of one percent, Opt. Express, 2005, 13(1):309-314
    [70]. Nielsen C K, Jesperen K G, Keiding S R. A 158fs 5.3nJ fiber-laser system at 1μm using photonic bandgap fibers for dispersion control and pulse compression, Opt. Express, 2006, 14(13): 6063-6068
    [71]. Isom?ki A, and Okhotnikov O G. All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber, Opt. Express, 2006, 14(10): 4368-4373
    [72]. Isom?ki A, and Okhotnikov O G. Femotsecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber, Opt. Express, 2006, 14(20): 9238-9243
    [73]. U. Keller, Recent developments in compact ultrafast lasers, Nature, 2003, 424 (14): 831-838
    [74]. U. Keller, K. J. Weingarten, F. X. Kratner, et al., Semiconductor Saturable Absorber Mirrors (SESAM's) for Femtosecond to Nanosecond Pulse Generation in Solid-State Lasers, IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 435-452
    [75]. H. A. Haus, Mode-Locking of Lasers, IEEE J. Selected Top. in Quantum Electron., 2000, 6(6): 1173-1185
    [76]. F. X. K?rtner, J. A. der Au, and U. Keller, Mode-Locking with Slow and Fast Saturable Absorbers - What's the Difference?, IEEE J. Selected Top. In Quantum Electron., 1998, 4(2): 159-168
    [77]. Mathias Moenster, Peter Glas, and Gunter Steinmeyer, Femtosecond Neodymium-doped microstructure fiber laser, Opt. Express, 2005, 13(21): 8671-8677
    [78]. Spielmann C, Curley P F, Brabec T et al., Ultrabroadband femtosecond lasers , IEEE J Quantum Electron. , 1994, 30(4): 1100-1114
    [79]. Nelson L E, Jones D J, Tamura K. et al., Ultrashort-pulse fiber ring lasers, Appl. Phys. B, 1997, 65(2): 277-294
    [80]. Thomas Schreiber, Bulend Ortac, Jens Limpert疤?l., On the study of pulse evolution in ultra-short pu??mode-locked fiber lasers by numerical simulation, Opt. Express, 2007, 15(13): 8252-8262
    [81]. F. ?. Ilday, J. R. Buckley, H. Lim et al., Generation of 50-fs, 5-nJ pulses at 1.03μm from a wave-breaking-free fiber laser, Opt. Lett., 2003, 28(15): 1365-1367
    [82]. B. Ortac, M. Pl?tner, T, Schreiber et al., Experimental and numerical study of pulse dynamics in positive net-cavity dispersion mode-locked Yb-doped fiber lasers, Opt. Express, 2007, 15(23): 15595-15602
    [83]. F. ?. Ilday, J. R. Buckley, W. G. Clark et al., Self-Similar Evolution of Parabolic Pulses in a Laser, F. ?. Ilday, J. R. Buckley, Phys. Rev. Lett., 2004, 92(21): 213902(1-4)
    [84]. A. Ruehl, O. Prochnow, D. Wandt et al., Dynamics of parabolic pulses in an ultrafast fiber laser, Opt. Lett., 2006, 31(18): 2734-2736
    [85]. V.I. Kruglov, A.C. Peacock, and J.D. Harvey, Exact self-similar solutions of the generalized nonlinear Schr?dinger equation with distributed coefficients, Phys. Rev. Lett., 2003, 90(11): 113902(1-4)
    [86]. Joel Buckley, Andy Chong, Shian Zhou et al., Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter, J. Opt. Soc. Am. B, 2007, 24(8): 1803-1806
    [87]. A. Chong, W. H. Renninger, and F. W. Wise, Properties of normal-dispersion femtosecond fiber lasers, J. Opt. Soc. Am. B, 2008, 25(2): 140-148
    [88]. H. A. Haus, J. D. Moores, and L. E. Nelson, Effect of third-order dispersion on passive mode-locking, Opt. Lett., 1993, 18(1): 51-53
    [89]. S. Zhou, L. Kuznetsova, A. Chong et al., Compression of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers, Opt. Express, 2005, 13(13): 4869-4877
    [90]. Yury Logvin, V. P. Kalosha, and Hanan Anis, Third-order dispersion impact on mode-locking regimes of Yb-doped fiber laser with photonic bandgap fiber for dispersion compensation, Opt. Express, 2007, 15(3): 985-991
    [91]. Andy Chong, Joel Buckley, Will Renninger et al., All-normal-dispersion femtosecond fiber laser, Opt. Express, 2006, 14(21): 10095-10100
    [92]. K. Tamura, L. E. Nelson, H. A. Haus et al., Soliton versus nonsoliton operation of fiber ring lasers, Appl. Phys. Lett., 1993, 64(2): 149-151
    [93]. V. Cautaerts, D. J. Richardson, R. Paschotta et al., Stretched pulse Yb3+silica fiber laser, Opt. Lett., 1997, 22(5): 316-318
    [95]. F. ?. Ilday, J. R. Buckley, L. Kuznetsova et al., Generation of 36-femtosecond pulses from a ytterbium fiber laser, Opt. Express, 2003, 11(26): 3550-3554
    [96]. B.Ortac, A. Hideur, C. Chedot et al., Self-similar low-noise femtosecond ytterbium-doped double-clad fiber laser, Appl. Phys. B, 2006, 85(1): 63-67
    [97]. W. H. Renninger, A. Chong and F. W. Wise, Dissipative solitons in normal-dispersion fiber lasers, Phys. Review A, 2008, 77(2): 023814(1-4)
    [98]. Michael Schultz, Heike Karow, Oliver Prochnow et al., All-fiber ytterbium femtosecond laser without dispersion compensation, Opt. Express, 2008, 16(24): 19562-19567
    [99]. K. Kieu and F. W. Wise, All-fiber normal-dispersion femtosecond laser, Opt. Express, 2008, 16(15): 11453-11458