全光子晶体光纤飞秒激光放大系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文详细阐述了光子晶体光纤的传输特性,并对其可控色散特性、非线性特性、带隙特性进行了理论和实验的研究。基于掺Yb3+单偏振双包层光子晶体光纤搭建了全光子晶体光纤飞秒激光放大系统,系统研究了多个参数对输出的影响,得到高重复频率,高平均功率的飞秒脉冲输出。论文的工作包括以下主要内容:
     第一,利用有限元方法设计了具有特殊色散特性的孔助实芯光子晶体光纤。通过控制纤芯空气孔的大小得到了具有两个零色散点的色散曲线,并优化了该光纤的二阶和三阶色散,使其满足光纤展宽器的色散匹配要求。同时基于白光干涉法搭建了色散测量系统,测量了多种光子晶体光纤的色散曲线。
     第二,在非线性实验中,由于孔助实芯光子晶体光纤具有两个零色散波长,实现了自频移孤子的稳定输出,消除了仅有一个零色散点光纤中孤子频移对入射脉冲能量的敏感性。
     第三,利用空气纤芯光子带隙光纤的低非线性和反常色散特性对光子晶体光纤飞秒激光器输出的脉冲进行了压缩。利用全固带隙光纤和布拉格型光纤的弯曲损耗特性制作了带通滤波器,其滤波窗口的中心波长和宽度皆可调谐。
     第四,数值模拟研究了Yb3+光纤的增益特性,结合实验分析了放大级参数对输出脉冲能量的影响。利用分步傅立叶方法研究了放大过程中的自相位调制效应的影响,进一步数值模拟了非线性脉冲放大和压缩的过程,分析了三阶色散和非线性啁啾之间的相互补偿。
     第五,实验搭建了全光子晶体光纤飞秒激光放大系统,系统中的增益光纤全部采用掺Yb3+单偏振双包层光子晶体光纤,利用非线性放大,得到比种子光更窄的脉冲输出。实验中详细分析了振荡级的锁模状态、振荡级输出脉冲光谱调制、放大级泵浦功率、放大级增益光纤长度等参数对系统输出的影响,得到了39 fs的最短脉冲输出和平均功率为23 W,重复频率为50 MHz,对应单脉冲能量460 nJ,脉冲宽度为109 fs的稳定高质量脉冲输出。并以此输出为光源对光子晶体光纤飞秒激光器在高功率非线性、高功率紫外倍频、高速飞秒激光加工等领域的应用进行了探索。
This dissertation can be summarized mainly in two parts. Firstly, it demonstrates the propagation characteristics of laser in photonic crystal fibers (PCFs) as well as the theoretical and experimental research of the controllable dispersion, nonlinearity, and photonic bandgap properties in PCFs; Secondly, it reports the construction of all PCF femtosecond laser amplifier based on Yb3+-doped single-polarization large mode area (LMA) PCFs. The impact of system parameters on output is analyzed, and the high power ultrafast pulses with high repetition rate are obtained. The detailed contents can be classified as follows:
     1. The dispersion characteristics of the air-hole-assistant solid-core PCF is designed with finite element method. Two zero dispersion points are obtained through controlling the size of the air holes in fiber core. The properties of the group velocity dispersion (GVD) and third-order dispersion (TOD) are optimized to fulfill the need of dispersion match when applying the fiber to the fiber stretcher. The dispersion measurement system is constructed based on the method of white light interferometry, and the dispersion property of the air-hole-assistant solid-core PCF is measured.
     2. The stable soliton self-frequency shift is obtained in the experiment with the help of the two zero dispersion points in air-hole-assistant solid-core PCF. Compared to the PCFs with only one zero dispersion point, the sensitivity of the self-frequency shift depending on input pulse energy is greatly canceled.
     3. The output pulses from PCF laser are compressed by the anomalous dispersion property and low nonlinear characteristic of the air core photonic band gap fiber. The achievement realizes the preparing step for the band gap fiber to be further used in PCF femtosecond chirp pulse amplifiers. A unique band-pass filter is invented based on the bend loss properties of the all solid photonic band gap fibers and Bragg-type fibers.
     4. The gain characteristic and self-phase modulation (SPM) effect in Yb3+-doped fiber in the amplifier are studied numerically. The change of output pulse energy of the amplifier is also analyzed. The influence of SPM on output in the process of amplification is studied by using Split-step Fourier method. The amplification and compensation processes of the pulses are further studied through theoretical analysis and numerical simulation. Furthermore, the compensation between TOD and nonlinear chirp is analysed.
     5. An all PCF laser amplifier is constructed based on Yb3+-doped single-polarization double cladding LMA PCFs. To obtain the shortter pulses than the seed pulses, the method of nonlinear amplification is used. The dependence of output on certain parameters, e.g. mode-locking conditions of the oscillator, spectrum modulation of the oscillator, pump power of the amplifier, and the length of the active fiber, etc. is studied. Furthermore, the record of 39 fs shortest pulses is realized in fiber laser single stage amplifier. High energy pulses with 109 fs time duration, 23 W average power, and 50 MHz repetition rate (corresponding to 460 nJ pulse energy) are also obtained. Applying the system as laser source, the research of high power nonlinear optics, high power fourth harmonic generation, and high speed micromachining are further developed.
引文
[1] E. Goulielmakis, M. Schultze, M. Hofstetter, et. al., Single-Cycle Nonlinear Optics, Science, 2008, 320: 1614~1617
    [2] S. Baker, J.S. Robinson, C.A. Haworth, et. al., Probing Proton Dynamics in Molecules on an Attosecond Time Scale, Science, 2008, 320: 424~427
    [3] J.D. Bonlie, F. Patterson, D. Price et. al., Production of >1021W/cm2 from a large-aperture Ti:sapphire laser system, Applied Physics B, 2000, 70 (Supplement 1): S155–S160
    [4] R. Holzwarth, Th. Udem, and T.W. H?nsch, et. al., Optical frequency synthesizer for precision spectroscopy, Physical Review Letters, 2000, 85(11): 2264~2267
    [5] R. Holzwarth, M. Zimmermann, Th. Udem, et. al., Optical clockworks and the measurement of laser frequencies with a mode-locked frequency comb, IEEE Journal of Quantum Electronics, 2001, 37(12): 1493~1501
    [6] J. Stenger, T. Binnewies, G. Wilpers, et. al., Phase-coherent frequency measurement of the Ca intercombination line at 657 nm with a Kerr-lens mode-locked femtosecond laser, Physical Review A, 2001, 63(2): 021802
    [7] H.R. Telle, G. Steinmeyer, A.E. Dunlop, et. al., Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation, Applied Physics B, 1999, 69(4): 327~332
    [8] F. W. Helbing, G. Steinmeyer, J. Stenger, Carrier-envelope-offset dynamics and stabilization of femtosecond pulses, Applied Physics B, 2002, 74(Supplement 1): S35~S42
    [9] A. J. De Maria, D. A. Stetser, H. Heynau, Self mode-locking of lasers with saturable absorbers, Applied Physics Letters, 1966, 8(7): 174~176
    [10] R. L. Fork, B. I. Greene, C. V. Shank, Applied Physics Letters, 1981, 38(9): 671~673
    [11] R. L. Fork, C. H. B. Cruz, P. C. Becker et. al., Compression of optical pulses to six femtoseconds by using cubic phase compensation, Optics Letters, 1987, 12(7): 483~485
    [12] D. E. Spence, P. N. Kean, W. Sibbett, 60-fsec pulse generation from a self-modelocked Ti:sapphire laser, Optics Letters, 1991, 16(1): 42~44
    [13] R. Ell, U. Morgner, F. X. K?rtner, et. al., Generation of 5-fs pulses and octavespanning spectra directly from a Ti:sapphire laser, Optics Letters, 2001, 26(6): 373~375
    [14] E. Matsubara, K. Yamane, T. Sekikawa, et. al., Generation of 2.6 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber, Journal of the Optical Society of America B, 2007, 24(4): 985~989
    [15] U. Keller, D.A.B. Miller, G.D. Boyd, et. al., Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber, Optics Letters, 1992, 17(7): 505~507
    [16] D.H. Sutter, G. Steinmeyer, L. Gallmann, et. al., Semiconductor saturable-absorber mirror–assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime, Optics Letters, 1999, 24(9): 631~633
    [17] R.L. Fork, C.V. Shank, R.T. Yen, Amplification of 70-fs optical pulses to gigawatt powers, Applied Physics Letters, 1982, 41(3): 223~225
    [18] A. Migus, C.V. Shank, E.P. Ippen, Amplification of subpicosecond optical pulses: theory and experiment, IEEE Journal of Quantum Electronics, 1982, 18(1): 101~109
    [19] D. Strickland, G. Mourou, Compression of amplified chirped optical pulses, Optics Communications, 1985, 56(3): 219~221
    [20] P. Maine, D. Strickland, P. Bado, et .al., Generation of Ultrahigh Peak Power Pulses by Chirped Pulse Amplification, IEEE Journal of Quantum Electronics, 1988, 24(2): 398~403
    [21] C. Sauteret, D. Husson, G. Thiell, et. al., Generation of 20-TW pulses of picosecond duration using chirped-pulse amplification in a Nd:glass power chain, Optics Letters, 1991, 16(4): 238~240
    [22] C. Rouyer, E. Mazataud, I. Allais, et. al., Generation of 50-TW femtosecond pulses in a Ti:sapphire/Nd:glass chain, Optics Letters, 1993, 18(3): 214~216
    [23] N. Blanchot, C. Rouyer, C. Sauteret, et. al., Amplification of sub-100TW femtosecond pulses by shifted amplifying Nd:glass amplifiers: theory and experiments, Optics Letters, 1995, 20(4): 395~397
    [24] B.C. Stuart, M.D. Perry, J. Miller, et. al., 125-TW Ti:sapphire/Nd:glass laser system, Optics Letters, 1997, 22(4): 242~244
    [25] M.D. Perry, D. Pennington, B.C. Stuart, et. al., Petawatt laser pulses, Optics Letters,1999, 24(3): 160~162
    [26]王清月,戴建明,向望华等,掺钛蓝宝石飞秒激光器实现飞秒级自聚焦锁模运转,光学学报,1993, 13(1): 93~94
    [27]张伟力,邢岐荣,王清月,TW级Ti:Al2O3飞秒激光放大器,光学学报,1996,16(4): 399~402
    [28]王勇,自启动飞秒太瓦激光放大系统的研究,天津:天津大学博士学位论文,2000
    [29] X.Y. Liang, Y.X. Leng, C. Wang, et. al., Parasitic lasing suppression in high gain femtosecond petawatt Ti:sapphire amplifier, Optics Express, 2007, 15(23): 15335~15341
    [30] A. Giesen, H. Hügel, A. Voss, et. al., Scalable Concept for Diode-Pumped High-Power Solid-State Lasers, Applied Physics B, 1994, 58(5): 365~372
    [31] E. Innerhofer, T. Südmeyer, F. Brunner, et. al., 60 W average power in 810-fs pulses from a thin-disk Yb:YAG laser, Optics Letters, 2003, 28(5): 367~369
    [32] F. Brunner, E. Innerhofer, S. V. Marchese, et. al., Powerful red-green-blue laser source pumped with a mode-locked thin disk laser, Optics Letters, 2004, 29(16): 1921~1923
    [33] E. Innerhofer, F. Brunner, S. V. Marchese, et. al., Analysis of nonlinear wavelength conversion system for a red-green-blue laserprojection source, Journal of the Optical Society of America B, 2006, 23(2): 265~275
    [34] A. Killi, A. Steinmann, J. D?rring, et. al., High-peak-power pulses from a cavity-dumped Yb:KY(WO4)2 oscillator, Optics Letters, 2005, 30(14): 1891~1893
    [35] G. Palmer, M. Siegel, A. Steinmann, et. al., Microjoule pulses from a passively mode-locked Yb:KY(WO4)2 thin-disk oscillator with cavity dumping, Optics Letters, 2007, 32(11): 1593-1595
    [36] S. V. Marchese, C. R. E. Baer, A. G. Engqvist, et. al., Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level, Optics Express, 2008, 16(9): 6397~6407
    [37] M.K. Davis, M.J.F. Digonnet, R.H. Pantell, et. al., Thermal effects in doped fibers, Journal of Lightwave Technology, 1998, 16(6): 1013~1023
    [38] A. Galvanauskas, Mode-Scalable Fiber-Based Chirped Pulse Amplification Systems, IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(4): 504~517
    [39]聂秋华,光纤激光器和放大器技术,北京电子工业出版社,1997
    [40] C. J. Koester, E. Snitzer, Amplification in a Fiber Laser, Applied Optics, 1964, 3(10): 1182~1186
    [41] S. B. Poole, D. N. Payne, R. J. Mears, et. al., Fabrication and Characterization of Low-Loss Optical Fibers Containing Rare-Earth Ions, Journal of Lightwave Technology, 1986, LT-4(7): 870~876
    [42] M.E. Fermann, M. Hofer, F. Haberl, et. al., Femtosecond fibre laser, Electronics Letters, 1990, 26(20): 1737~1738
    [43] M.E. Fermann, M. Hofer, F. Haberl, et. al., Additive-pulse-compression mode locking of a neodymium fiber laser, Optics Letters, 1991, 16(4): 244~246
    [44] D.C. Hanna, R.W. Percival, I.R. Perry, et al., Continuous-wave oscillation of a mono-mode ytterbium-doped fiber laser, Electronics Letters, 1988, 24(17): 1111~1113
    [45] E. Snitzer, H. Po, F. Hakimi, et. al. Double clad, offset core Nd fiber laser, Optical Fiber Sensors, 1988, PD5
    [46] H.M. Pask, J.L. Archambault, D.C. Hanna, et. al. Operation of Cladding-pumped Yb3+-doped silicate fiber lasers in 1.1μm region, Electronics Letters, 1994, 30(11): 863~866
    [47] D.T. Walton, J. Nees, G. Mourou, Broad-bandwidth pulse amplification to the 10-μJ level in an ytterbium-doped germanosilicate fiber, Optics Letters, 1996, 21(14): 1061~1063
    [48] A. Galvanauskas, M.E. Fermann, P. Blixt, et. al. Hybrid diode-laser fiber-amplifier source of high-energy ultrashort pulses, Optics Letters, 1994, 19(14): 1043~1045
    [49] V. Cautaerts, D.J. Richardson, R. Paschotta, et. al. Stretched pulse Yb3+:silica fiber laser, Optics Letters, 1997, 22(5): 316~318
    [50] A. Galvanauskas, M.E. Fermann, 13-W average power ultrafast fiber laser, CLEO, 2000, CDP3
    [51] G.C. Cho, A. Galvanauskas, M.E. Fermann, 100μJ and 5.5 W Yb-fiber femtosecond chirped pulse amplifier system, CLEO, 2000, CMW2
    [52] A. Galvanauskas, Z. Sartania, M. Bischoff, Millijoule femtosecond all-fiber system, CLEO, 2001, CMA1
    [53] A. Bjarklev, J. Broeng, A.S. Bjarklev, Photonic Crystal Fibres, Boston: Kluwer Academic Publishers, 2003
    [54] J.C. Knight, T.A. Birks, P.St.J. Russell, et. al., All-silica single-mode optical fiber with photonic crystal cladding, Optics Letters, 1996, 21(19): 1547~1549
    [55] J.C. Knight, T.A. Birks, R.F. Cregan, et. al., Photonic crystals as optical fibres -physics and applications, Optical Materials, 1999, 11(2-3): 143~151
    [56] P.St.J. Russell, Photonic crystal fibers, Science, 2003, 299(5605): 358~362
    [57] J.C. Knight, Photonic crystal fibres, Nature, 2003, 424(6950): 847~851
    [58] J.M. Dudley, G. Genty, St. Coen, Supercontinuum generation in photonic crystal fiber, Reviews of Modern Physics, 2006, 78(4): 1135~1184
    [59] P.St.J. Russell, Photonic-Crystal Fibers, Journal of Lightwave Technology, 2006, 24(12): 4729~4749
    [60] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters, 1987, 58(20): 2059~2062
    [61] S. John, Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters, 1987, 58(23): 2486~2489
    [62] J.D. Joannopoulos, St.G. Johnson, J.N. Winn, et. al., Photonic Crystals: Molding the Flow of Light, (5th Edition), Princeton: Princeton University Press, 2008
    [63] P.R. Villeneuve, M. Piché, Photonic band gaps in two-dimensional square and hexagonal lattices, Physical Review B, 1992, 46(8): 4969~4972
    [64] T.A. Birks, P.J. Roberts, P.St.J. Russell, et. al., Full 2-D photonic bandgaps in silica/air structures, Electronics Letters, 1995, 31(22): 1941~1943
    [65] T.A. Birks, J.C. Knight, P.St.J. Russell, Endlessly single-mode photonic crystal fiber, Optics Letters, 1997, 22(13): 961~963
    [66] J.C. Knight, T.A. Birks, P.St.J. Russell, et. al., Properties of photonic crystal fiber and the effective index model, Journal of the Optical Society of America A, 1998, 15(3): 748~752
    [67] J. Broeng, S.E. Barkou, A. Bjarklev, et. al., Highly increased photonic band gaps in silica/air structures, Optics Communications, 1998, 156(4-6): 240~244
    [68] S.E. Barkou, J. Broeng, A. Bjarklev, Silica–air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect, Optics Letters, 1999, 24(1): 46~48
    [69] J. Broeng, T. S?ndergaard, S.E. Barkou, et. al., Waveguidance by the photonic bandgap effect in optical fibres, Journal of Optics A, 1999, 1(4): 477~482
    [70] J.C. Knight, J. Broeng, T.A. Birks, et. al., Photonic band gap guidance in optical fibers, Science, 1998, 282(5393): 1476~1478
    [71]李玉权,崔敏,光波导理论与技术,北京:人民邮电出版社,2002
    [72] J.C. Knight, T.A. Birks, R.F. Cregan, et. al., Large mode area photonic crystal fibre, Electronics Letters, 1998, 34(13): 1347~1348
    [73] N. A. Mortensen, M.D. Nielsen, J.R. Folkenberg, et. al., Improved large-mode-area endlessly single-mode photonic crystal fibers, Optics Letters, 2003, 28(6): 393~395
    [74] X. Feng, A.K. Mairaj, D.W. Hewak, et. al., Towards high-index glass based monomode holey fibre with large mode area, Electronics Letters, 2004, 40(3): 167 ~168
    [75] D.G. Ouzounov, K.D. Moll, M.A. Foster, et. al., Delivery of nanojoule femtosecond pulses through large-core microstructured fibers, Optics Letters, 2002, 27(17): 1513~1515
    [76] J. Limpert, T. Schreiber, S. Nolte, et. al., High-power air-clad large-mode-area photonic crystal fiber laser, Optics Express, 2003, 11(7): 818~823
    [77] D. Mogilevtsev, T.A. Birks, P.St.J. Russell, Group-velocity dispersion in photonic crystal fibers, Optics Letters, 1998, 23(21): 1662~1664
    [78] J.C. Knight, J. Arriaga, T.A. Birks, et. al., Anomalous dispersion in photonic crystal fiber, IEEE Photonics Technology Letters, 2000, 12(7): 807~809
    [79] J.K. Ranka, R.S. Windeler, A.J. Stentz, Optical properties of high-delta air-silica microstructure optical fibers, Optics Letters, 2000, 25(11): 796~798
    [80] A. Ferrando, E. Silvestre, P. Andrés, et. al., Designing the properties of dispersion-flattened photonic crystal fibers, Optics Express, 2001, 9(13): 687~697
    [81] K. Saitoh, N. Florous, M. Koshiba, Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses, Optics Express, 2005, 13(21): 8365~8371
    [82] N.G.R. Broderick, T.M. Monro, P.J. Bennett, et. al., Nonlinearity in holey optical fibers: measurement and future opportunities, Optics Letters, 1999, 24(20): 1395~1397
    [83] B.R. Washburn, S.E. Ralph, P.A. Lacourt, et. al., Tunable near-infrared femtosecond soliton generation in photonic crystal fibres, Electronics Letters, 2001, 37(25): 1510~1512
    [84] E. E. Serebryannikov, Ming-Lie Hu, Yan-Feng Li, et. al., Enhanced Soliton Self-Frequency Shift of Ultrashort Light Pulses, JETP Letters, 2005, 81(10): 487~490
    [85] W.J. Wadsworth, N. Joly, J.C. Knight, et. al., Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres, Optics Express, 2004, 12(2): 299~309
    [86] M. Hu, C.-Y.Wang, L. Chai, et. al., Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber, Optics Express, 2004, 12(9): 1932~1937
    [87] M. Hu, C.-Y. Wang, Y. Li, et. al., Multiplex frequency conversion of unamplified 30-fs Ti: sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber, Optics Express, 2004, 12(25): 1932~1937
    [88] J.K. Ranka, R.S. Windeler, A.J. Stentz, Visible continuum generation in air- silica microstructure optical fibers with anomalous dispersion at 800 nm, Optics Letters, 2000, 25(1): 25~27
    [89] A.V. Husakou, J. Herrmann, Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers, Physical Review Letters, 2001, 87(20): 203901
    [90] M. Hu, C.-Y. Wang, Y. Li, et. al., Tunable supercontinuum generation in a highindex-step photonic-crystal fiber with a commashaped core, Optics Express, 2006, 14(5): 1942~1950
    [91] T. Schreiber, J. Limpert, H. Zellmer, et. al., High average power supercontinuum generation in photonic crystal fibers, Optics Communications, 2003, 228: 71~78
    [92] A. Efimov, A.J. Taylor, F.G. Omenetto, et. al., Phase-matched third harmonic generation in microstructured fibers, Optics Express, 2003, 11(20): 2567~2576
    [93] K. Saitoh, M. Koshiba, Leakage loss and group velocity dispersion in air-core photonic bandgap fibers, Optics Express, 2003, 11(23):3100~3109
    [94] K. Nagayama, M. Kakui, M. Matsui, et. al., Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance, Electronics Letters, 2002, 38(20): 1168~1169
    [95] P.J. Roberts, F. Couny, H. Sabert, et. al., Ultimate low loss of hollow-core photonic crystal fibres, Optics Express, 2005, 13(1): 236~244
    [96] W. G?bel, A. Nimmerjahn, F. Helmchen, et. al., Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber, Optics Letters, 2004, 29(11): 1285~1287
    [97] F. Luan, J.C. Knight, P.St.J. Russell, S. Campbell, et. al., Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers, Optics Express, 2004, 12(5):835~840
    [98] F. Gér?me, K. Cook, A.K. George, et. al., Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression, Optics Express, 2007, 15(12): 7126~7131
    [99] J.S. Skibina, R. Iliew, J. Bethge, et. al., A chirped photonic-crystal fibre, Nature Photonics, 2008, 2(11): 679~683
    [100] N.M. Litchinitser, S.C. Dunn, B. Usner, et. al., Resonances in microstructured optical waveguides, Optics Express, 2003,11(10): 1243~1251
    [101] P. Steinvurzel, B.T. Kuhlmey, T.P. White, M.J. Steel, et. al., Long wavelength anti-resonant guidance in high index inclusion microstructured fibers, Optics Express, 2004, 12(22): 5424~5433
    [102] A. Argyros, T.A. Birks, S.G. Leon-Saval, et. al., Photonic bandgap with an index step of one percent, Optics Express, 2005, 13(1): 309~314
    [103] G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, et. al., Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region(<20dB/km)around 1550nm, Optics Express, 2005, 13(21): 8452~8459
    [104] T.A. Birks, F. Luan, G.J. Pearce, et. al., Bend loss in all-solid bandgap fibres, Optics Express, 2006, 14(12): 5688~5698
    [105] J.M. Stone, G.J. Pearce, F. Luan, et. al., An improved photonic bandgap fiber based on an array of rings, Optics Express, 2006, 14(13): 6291~6296
    [106] A. Isom?ki, O.G. Okhotnikov, All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber, Optics Express, 2006, 14(10): 4368~4373
    [107] A. Isom?ki, O. G. Okhotnikov, Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber, Optics Express, 2006, 14(20): 9238~9243
    [108] V. Pureur, L. Bigot, G. Bouwmans, et. al., Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm, Applied Physics Letters, 2008, 92(6): 061113
    [109] W.J. Wadsworth, J.C. Knight, W.H. Reeve, et. al., Yb3+-doped photonic crystal fibre laser, Electronics Letters, 2000, 36(17): 1452~1454
    [110] P. Glas, D. Fischer, Cladding pumped large-mode-area Nd-doped holey fiber laser, Optics Express, 2002, 10(6): 286~290
    [111] H. Lim, F.?. Ilday, F.W. Wise, Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control, Optics Express, 2002, 10(25): 1497~1502
    [112] K. Furusawa, T.M. Monro, P. Petropoulos, et. al., Modelocked laser based on ytterbium doped holey fibre, Electronics Letters, 2001, 37(9): 560~561
    [113] M. Moenster, P. Glas, G. Steinmeyer, et. al., Mode-locked Nd-doped microstructured fiber laser Optics Express, 2004, 12(19): 4523~4528
    [114] M. Moenster, P. Glas, G. Steinmeyer, et. al., Femtosecond Neodymium-doped microstructure fiber laser, Optics Express, 2005, 13(19): 4523~4528
    [115] J. Limpert, F. R?ser, T. Schreiber, et. al., High-Power Ultrafast Fiber Laser Systems, IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(2): 233~244
    [116]王清月,胡明列,宋有建等,用大模场光子晶体光纤获得高功率飞秒激光,中国激光,2007, 34(12): 1603~1606
    [117] B. Orta?, O. Schmidt, T. Schreiber, et. al., High-energy femtosecond Yb-doped dispersion compensation free fiber laser, Optics Express, 2007, 15(17): 10725~10732
    [118] B. Orta?, C. Lecaplain, A. Hideur, T. Schreiber, J. Limpert, et. al., Passively mode-locked single-polarization microstructure fiber laser, Optics Express, 2008, 16(3):2122~2128
    [119]宋有建,胡明列,张弛等,高脉冲能量大模场面积光子晶体光纤飞秒激光器,科学通报,2008, 53(13): 1511~1515
    [120] J. Limpert, T. Schreiber, S. Nolte, et. al., All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber, Optics Express, 2003, 11(24): 3332~3337
    [121] J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, et. al., Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier, Optics Express, 2004, 12(7):1313~1319
    [122] L. Shah, Z. Liu, I. Hartl, et. al., High energy femtosecond Yb cubicon fiber amplifier, Optics Express, 2005, 13(12): 4717~4722
    [123] F. R?ser, J. Rothhard, B. Ortac, et. al., 131 W 220 fs fiber laser system, Optics Letters, 2005, 30(20): 2754~2756
    [124] F. R?ser, T. Eidam, J. Rothhardt, et. al., Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system, Optics Letters, 2007, 32(24): 3495~3497
    [125] Y. Zaouter, D.N. Papadopoulos, M. Hanna, et. al., Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers, Optics Letters, 2008, 33(1): 107~109
    [126]刘博文,胡明列,宋有建等,39 fs,16 W全光子晶体光纤飞秒激光系统,中国激光,2008, 35(6): 811~814
    [127] J.C. Knight, T.A. Birks, R.F. Cregan, et. al., Large mode area photonic crystal fibre, Electronics Letters, 1998, 34(13): 1347~1348
    [128] http://www.crystal-fibre.com/
    [129] W.J. Wadsworth, R.M. Percival, G. Bouwmans, et. al., Very High Numerical Aperture Fibers, IEEE Photonic Technology Letter, 2004, 16(3): 843~845
    [130] Y.S. Chan, C.T. Chan, Z.Y. Liu, Photonic band gaps in two dimensional photonic quasicrystals, Physical Review Letters, 1998, 80(5): 956~959
    [131] W.H. Reeves, D.V. Skryabin, F. Biancalana, et. al., Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres, Nature, 2003, 424(6948): 511~515
    [132]栗岩锋,光子晶体光纤色散特性的理论研究,天津:天津大学博士学位论文,2004
    [133]胡明列,飞秒激光脉冲在光子晶体光纤中传输特性的研究,天津:天津大学博士学位论文,2004
    [134] E.E. Serebryannikov, A.M. Zheltikov, Soliton self-frequency shift with diffraction-suppressed wavelength variance and timing jitter, Journal of the Optical Society of America B, 2006, 23(9): 1882~1887
    [135] A.M. Zheltikov, Perturbative analytical treatment of adiabatically moderated soliton self-frequency shift, Physical Review E, 2007, 75(3): 037603
    [136] C.J.S. de Matos, J.R. Taylor, T.P. Hansen, et. al., All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber, Optics Express, 2003, 11(22): 2832~2837
    [137] J. Limpert, T. Schreiber, S. Nolte, et. al., All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber, Optics Express, 2003, 11(24): 3332~3337
    [138] H.M. Pask, R.J. Carman, D.C. Hanna, et. al., Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2μm Region, IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1(1): 2~13
    [139] G.P. Agrawal, Optical pulse propagation in doped fiber amplifiers, Physical Review A, 1991, 44(11): 7493~7501
    [140] D. Anderson, M. Desaix, M. Karlsson, et. al., Wave-breaking-free pulses in nonlinear-optical fibers, Journal of the Optical Society of America B, 1993, 10(7): 1185~1190
    [141] K. Tamura, M. Nakazawa, Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers, Optics Letters, 1996, 21(1): 68~70
    [142] M. E. Fermann, Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers, Physical Review Letters, 2000, 84(26): 6010~6013
    [143] G.P. Agrawal, Applications of Nonlinear Fiber Optics, New York: Academic Publishers, 2001
    [144] Z. Liu, L. Shah, I. Hartl, et. al., High energy fiber chirped pulse amplification system based on cubicons, CLEO, 2005, paper CThG4
    [145] S. Zhou, L. Kuznetsova, A. Chong et. al., Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers, Optics Express, 2005, 13(13): 4869~4877
    [146] M. Born, E. Wolf, Principles of Optics, New York: Pergamon Press, 1980, Appendix III
    [147] G.P. Agrawal, Nonlinear Fiber Optics, (2nd Edition), New York: Academic Publishers, 2001
    [148] T. Schreiber, F. R?ser, O. Schmidt, et. al., Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity, Optics Express, 2005, 13(19): 7621~7630
    [149] C. H?nninger, R. Paschotta, F. Morier-Genoud et. al., Q-switching stability limits of continuous-wave passive mode locking, Journal of the Optical Society of America B, 1999, 16(1): 46~56
    [150] http://www.ibsen.dk/