秦川牛H-FABP、A-FABP和E-FABP基因SNPs及其与部分肉用性状关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以随机选择相同饲养条件下的146头18~20月龄秦川牛阉牛为研究对象,采用PCR-SSCP结合测序技术对秦川牛H-FABP基因、A-FABP基因和E-FABP基因部分区段的遗传变异进行检测,运用SPSS统计程序中的GLM模型分析了其中88头牛与部分肉用性能指标的关系,旨在探索H-FABP基因、A-FABP基因和E-FABP基因对秦川牛部分肉用性状的影响,以期加快秦川肉牛的选育进程。研究结果如下:
     1、秦川牛H-FABP基因多态性及其与肉用性状之间的关联分析
     对秦川牛H-FABP基因全部4个外显子进行了SNPs检测,结果只在秦川牛H-FABP基因第1外显子130 bp处检测到了SNP位点Y=T→C。对该SNP基因座具有不同基因型的个体进行肉用性状指标进行GLM分析,表明AB型个体的后腿围、背膘厚、大理石花纹等性状极显著高于AA型个体(P<0.01),AB型个体的胴体胸深和嫩度显著高于AA型个体(P<0.05),AB型个体的背膘厚极显著高于BB型个体(P<0.01);另外BB型个体的后腿围、大理石花纹等性状极显著高于AA型个体(P<0.01)。说明,秦川牛H-FABP基因第1外显子上存在SNP位点且与肉用性状有较强的关联性,揭示H-FABP基因可作为秦川牛部分肉用性状的候选基因。
     2、秦川牛A-FABP基因多态性及其与肉用性状之间的关联分析
     检测了秦川牛A-FABP基因的第Ⅰ内含子和第2、3、4外显子的多态性,结果分别在第Ⅰ内含子和第4外显子上检测到了SNPs位点,在A-FABP基因2736 bp处(第Ⅰ内含子)发生了Y=A→T的突变,4272 bp处(第4外显子)发生了Y=A→G的突变。第Ⅰ内含子共检测到了AA、AB和BB 3种基因型,分析表明,AB型个体和BB型个体的背膘厚分别显著(P<0.05)和极显著(P<0.01)高于AA型个体;BB型个体大理石花纹、嫩度和系水力均显著高于AA型个体(P<0.05),表明该SNP位点B等位基因为优势等位基因,与背膘厚、大理石花纹、嫩度和系水力等肉用性状有较高关联度。在第4外显子也检测到了基因型AA、AB和BB 3种基因型。分析表明,AA型个体的背膘厚和大理石花纹都显著(P<0.05)高于BB型个体;AA型个体的嫩度极显著高于BB型个体(P<0.01),表明该SNP位点中A等位基因具有提高背膘厚、大理石花纹和嫩度的遗传效应。从以上研究分析可以看出,在秦川牛A-FABP基因中存在可检测到的SNP位点,且与背膘厚、大理石花纹、嫩度和系水力等肉用性状间存在显著关联,提示A-FABP基因很可能是影响秦川牛部分肉用性状的主效基因或与其主效基因紧密连锁。
     3、秦川牛E-FABP基因多态性及其与肉用性状之间的关联分析
     检测了秦川牛E-FABP基因全部4外显子的遗传变异情况。结果在E-PABP基因2295 bp处(第4外显子)发生了Y=C→T的突变。经SSCP分析共检测到了AA和AB 2种基因型,未发现BB基因型。其中等位基因A和B的频率分别为0.94和0.06,多态信息含量为0.11,属于低度多态。分析表明,AA和AB基因型各肉用性状间无显著性差异。
146 18~20 month-old Qinchuan steers under similar feeding condition were selected randomly and partial section hereditary variation of H-FABP、A-FABP and E-FABP genes were analyzed by PCR-SSCP. The associations between SNPs locus and some meat traits was analyzed using the general linear model (GLM) in SPSS program. The aim was to explore association of the H-FABP, A-FABP and E-FABP variations with some meat traits of Qinchuan population, with a view to accelerating the process of Qinchuan steers breeding. The results were as follows:
     1、Study on polymorphism of H-FABP gene and its association with some meat traits in Qinchuan steers.
     The polymorphism in all of 4 extron in H-FABP gene were detected .The results showed that there was a mutation(Y=T→C)at 130 th bp of H-FABP gene extron 1 in Qinchuan steers. Different genotypes of SNP locus was grouped, its relationship with meat traits of Qinchuan steers was analyzed using the general linear model. The crural girth, back- fat thickness, marbling of AB genotype were significantly different from that of AA genotype (P<0.01). The significant diference was found between the genotypes of AB and AA for carcass depth and tenderness (P<0.05). There was a difference between the genotypes of AB and BB for back-fat thickness (P<0.01),as well as between the genotypes of AA and BB for crural girth and marbling (P<0.01). SNP locus of H-FABP gene extron 1th in Qinchuan steers associated strongly with some meat traits, it indicated that H-FABP gene may be a candidate gene for the some meat traits of Qinchuan steers.
     2、Study on polymorphism of A-FABP gene and its association with some meat traits in Qinchuan steers.
     Detected the polymorphism in intron 1th, extron 2th, extron 3th and extron 4th in H-FABP gene, The results showed that there were two mutations(Y=A→T)at 2736 th bp in intron 1 and (Y=A→G)at 4272 th bp in extron 4 of H-FABP gene in Qinchuan steers. Detected there genetypes in extron 1th, Analysis of Variance showed that the back- fat thickness of AB genotype and BB genetype were respectively significantly different from that of AA genotype (P<0.01 and P<0.05). The significant diference was found between the genotypes of BB and AA for marbling, tenderness and water holding capacity (P<0.05). It indicated that B allele was favorable allele in this SNPs locus and were high associated strongly with some meat traits, such as, back- fat thickness, marbling, tenderness and water holding capacity. The genotype AA, AB and BB genotype were detected in extron 4th. Statistical analysis showed that AA-type individual backfat thickness and marbling were significantly(P<0.05) higher than the BB-type individual; AA-type individual tenderness was significantly higher than that of individual BB (P<0.01), indicating the SNPs - point of the A allele is improving backfat thickness, marbling and tenderness of the genetic effect. From the above analysis, in Qinchuan steers A-FABP gene can be detected in the presence of SNP locus, and with the backfat thickness, marbling, tenderness and hydraulic system, such as meat traits were significantly associated. The A-FABP gene may be the major gene associated with some meat traits or closely linked with major gene, so it can be used as Qinchuan steers some meat traits of the candidate gene in Qinchuan steers.
     3、Study on polymorphism of E-FABP gene and its association with some meat traits in Qinchuan steers.
     The E-FABP gene extron 4th in the Qinchuan steers of all the genetic variation were detected. There was a mutation (Y = C→T) at 2295 th bp in extron 4th of the E-PABP gene. AA and AB two genotypes were detected but BB genotypes were not detected through SSCP analysis. A and B alleles of the frequencies were 0.94 and 0.06, polymorphic information content of 0.11, a low of polymorphism. Analysis of variance showed that there is no significant difference between the genotype AA and AB meat traits.
引文
[1] Hotamisligil G S,Johnson R S,Distel R J,et al.uncoupling of obesity from insulin resistance through targeted mutation in aP2,the adipocyte fatty acid binding protein[J].Sci,1996,274 (5291):1377-1379.
    [2] Ockner R K, Manning J A,Poppenhausen R B,et a1.A binding protein for fatty acids in cytosol of intesdnal mucosa,liver,myocardium,and other tissue.Science.1972,177:56-58.
    [3] Niewold T A, Meinen M, Vander M J. Plasma intestinal fatty acid binding protein concentrations increase following in estinal ischemia in pigs[J].Res Vet Sci,2004,77(1)89-91.
    [4] Ockner R K, Manning J A.Fatty acid-binding protein in small intestine. Identification, isolation, and evidence for its role in cellular fatty acid transport[J].Lipids 1996,31:5223-5227
    [5] Veerkamp J H, Peeters R A, Maatman R J.structural and functional features of different types of cytoplasmic fatty acid-binding protein[J]. Biochem Biophys Acta,1991,1081:1-24.
    [6] Sacchettini J C ,Gordon J I. Rat intestinanl fatty acid binding protein,A m odel system for analyzing the forces that can bind fatty acids to proteins. [J]Biol Chem 1993,268:18399-18402.
    [7] Kaikaus R M, Ockner N M. Functions of fatty acid binding proteins, Experientia 46 (1990) 617-630.
    [8] Veerkamp J H, Maatman R. Cytoplasmic fatty acid binding proteins: their structure and genes[J].Progressin Lipid Research,1995,34: 17-25.
    [9] Cameron N D, Enger M B. Fatty acid composition of lipid in longissimus dorsimuscle of Duroc and British Landrance pigs and its relationship with eating quality[J]. Meat Sci,1991,29: 295-307.
    [10] 曹红鹤,李宏滨,王立贤.FABPs 作为猪肌内脂肪性状候选基因的研究进展[J].国外畜牧科技,1999, 26 (6):31-33.
    [11] Gerbens F, Koning D J,Harders F L, et a1.The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan cross bred pigs[J]. Anim Sci,2000,78,552-559.
    [12] Binas B, Danneberg H, McWhir J, et al. Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilizations[J]. FASEB,1999(13): 805-812.
    [13] Schaap F G, Binas B, Danneberg H, et al. Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene [J].Circ Res,2000,85: 329-337.
    [14] Wulf D M,Tatum J D, Green R D, et al. Genetic influences on beef longissimus palatability in Charolais-and Limousin-sired steers and heifers[J].J Anim Sci 1996,74:2394-2405.
    [15] 陈志辉, 徐良梅, 单安山.脂肪酸结合蛋白及其基因[J].东北农业大学学报,2006,37(5): 689-692
    [16] Fisher R M, Eriksson P, Hoffstedt J, et al. Fatty acid binding protein expression in different adipose tissue depots from lean and obese individuals[J]. Diabetologia,2001,44(10): 1268-1273.
    [17] Hertzel A V, Bennaars E A, Bernlohr D A. Increased lipolysis in transgenic animals overexpressing the epithelial fatty acid binding protein in adipose cells[J].Lipid Res,2002,43(12):2105-2111.
    [18] Boord J B, Maeda K, Makowski L, et al.Adipocyte fatty acidbinding protein, aP2,alterslate atherosclerotic lesion formation in severe hypercholesterolemia Arterioscler Thromb[J].Vasc Biol,2002,22(10):1686- 1691.
    [19] Shaughnessy S, Smith E R, Kodukula S, et al. Adipocyte metabolism in adipocyte fatty acid bindingprotein knockout (aP2-/-)mice after short- term high fat feeding: functional compensation bythe keratinocyte fatty acid binding protein[J].Diabetes,2000,49(6): 904-911.
    [20] Coe N R, Simpson M A, Bernlohr D A. Targeted disruption of the adipocyte lipid -binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels[J].Lipid Res,1999,40:967-972.
    [21] Uysal K T, Scheja L, Wiesbrock S M, et al. Improved glucose and lipid metabolism in genetically obese mice lacking aP2[J]. Endocrinology,2000,141: 3388-3396.
    [22]Madsen P, Rasmussen H H, Leffers H.et al.Molecular cloning and expressed of a novel keratinocyte (psoriasis–associated fatty acid-binding protein,PA-FABP) that is higuly up–regulated in psoriatic skin and that shares similarity to fatty acid–binding proteins.[J]invest Dermatol,1992,99(3):299-305
    [23] Jaworski C, Wistow G.a differentiation-associated lipid-binding protein expressed in bovine lens[J].Biochem 1996,320:49-54
    [24] Masouye L, Hagens G, Van Kuppevelt et al. Endothelial cells of the human microvasculature express epidermal fatty acid – binding protein.Circ Res 1997,81:297-303
    [25] Schaap F G.van der Vusse G J,Glatz J F.Evolution of the family of intracellular lipid binding proteins in vertebrates[J]I Mol Cell Biochem,2002,239: 69-77.
    [26] 李仕新,陈赞谋.猪肉质性状基因及其定位的研究进展[J].内质与加工,2006,(3),84-86.
    [27] 高 妍,张永宏,李毅,等.脂肪酸结合蛋白研究进展.动物医学进展,2007,28(1):64-67
    [28] Gerbens F,et al .A dimorphic microsatellite in the porcine H-FABP gene at chromosome [J].Animal Genetics,1998,29:398-413.
    [29] 林万华,黄路生,任军,等.中外十个猪种 H-FABP 基因遗传变异的研究.遗传学报,2002,29(1):12-15.
    [30]李祯,曹红鹤,储明星, 等.中外 11 个猪种 H-FABP 基因 PCR-RFLP 的研究。畜牧兽医学报,2003,34(4) ,313-317。
    [31]Gerben F,Harders F,Ueerkamp J. Effect of genetic variants of the heart fatty acid binding protein gene on intramuscular fat and performance traits in pig[J]. Anim.Sci,1999,77:846-852
    [32] Gerbens F, Verburg F J, Van Moerkerk H, et al. Associations of heart and adipocyte fatty acid- binding protein gene expression with intramuscular fat content in pigs[J].Journal of Animal Science ,2001,79(2) :347-354.
    [33] 游小燕,刘益平,朱庆,等.鸡 H-FABP 基因多态性及其与屠宰性能的关联分析[J].遗传.2007,29(2): 230-234
    [34] 李武峰,许尚忠,曹红鹤,等.3 个杂交牛种 H-FABP 基因第二内含子的遗传变异与肉品质性状的相关分析[J].畜牧兽医学报, 2004,35(3):252-255.
    [35] 周国利,朱奇,郭善利,吴玉厚.鲁西黄牛 H-FABP 基因的多态性及其与肉质性状关系的分析[J].西北农业学报,2005,14(3):5-7.
    [36] 滑留帅.固原本地黄牛及其利杂群体育肥屠宰性能与相关分子标记研究[D].西北农林科技大学硕士学位论文[D].2007.
    [37] 姜延志,李学伟.猪脂肪细胞型脂肪酸结合蛋白基因 Bsm Ⅰ位点多态性与肌内脂肪含量的相关研究[J].中国畜牧杂志,2006,42(7):1-3
    [38] 王存芳,猪 H-FABP 和 A-FABP 基因的多态性及其与肌内脂肪性状关系的研究[J].山东农业大学硕士学位论文[D] .(2002).
    [39] 王启贵. 鸡 FABP 基因克隆、表达特性及功能研究[D].哈尔滨,东北农业大学,2004
    [40] 叶满红,曹红鹤,文杰等.北京油鸡和矮脚鸡心脏型、脂肪型脂肪酸结合蛋白基因多态性的研究[J].畜牧兽医学报,2003,34(5),422-426。
    [41] 陈宽维,章双杰,屠云洁,等. A-FABP在不同鸡种中遗传多态性分析[J].畜牧兽医学报,2006,37(11),1114-1117
    [42] 罗桂芬,陈继兰,文杰,等.鸡 A-FABP 基因多态性分析及其与脂肪性状的相关研究[J].遗传.2006,28 (1): 39-42
    [43] 于佳慧,王金玉,王丽云,等.两个黄鸡品种 E-FABP 基因第三内含子的多态性分析[J].上海畜牧兽医通讯.2007,5:20-22
    [44] 刘长国,罗军.标记技术研究进展[J].黄牛杂志.2001,27(6):41-45.
    [45] 赵君,苏翻身.几种常见分子标记的比较[J].2000,16(6):1-3.
    [46] 杨隽.家畜育种中的分子遗传标记[J].黑龙江八一农垦大学学报.2000,12(3):80-83.
    [47] 刘云芳,刻根强,王新峰.RFLP 技术在动物遗传育种中的应用[J].内蒙古畜牧科学.2002,2:17-19.
    [48] 苟德明,王智新.家畜遗传标记方法的进展[J].内蒙古畜牧科学.1995(3):9-11.
    [49] Zabeam M,Vos P,European patent Application,1992.
    [50] Vos P, Hongers R, Bleeker M, et al.Nucleic aids Res[J],1995,23(21):4407-4414.
    [51] Yong Gu Cho, Matthew W B, Oliver P. Cloning and mapping of variety-specific rice genomic DNA sequences: amplified fragment length polymorphisms (AFLP) from silver polyacrylamide gels[J].genome,1996,39:373-378.
    [52] Otsen M,Bieman M D. Amplified fragment length polymorphisms used for the genetic characterization of rat inbred stains[C].Proceedings 24th International society for animal genetics.1994.
    [53] Nanadal I, Zischler H, EPPlen C,et al. Chromosomal organization of simple repeated DNA sequence used for DNA sequences[J]. Electrophoresis,1991,12:193-203.
    [54] Skinner D M,Beattie W G,Blattner F R,et al. The sequence of a herm it crab satellite DNA in (-TAGG)n-(TAGG-)n[J].Biochemistry. 1974 13:3930-3937.
    [55] Tautz D, Hypervariability of simple sequence as a general source for polymorphic DNA markers[J].Nucleic Acid Res.1989,17:6463-6471.
    [56] BeberJL.Informativenessofhuman(dC-dAn)(dG-dTn)polymorphisma[J].Genomics,1990.17:524-530.
    [57] 王昕. 微卫星标记在畜禽育种中的应用[J].黄牛杂志.2002.1:39-41.
    [58] Ma.Isolation and characterization of 45 polymorphic microsatellite from the bovine genome[J]. Animal Genet,1996,27:43-47.
    [59] Ranajit C. Relative mutation rates at di-,tri-,and tetra nucleotide microsatellite loci[J].Proc.Natl.Acad.Sci. USA,1997,94:1041-1046.
    [60] 张细权.动物遗传标记[M].北京.中国农业大学出版社.1997.
    [61] 张吉清.微卫星标记及其在牛遗传育种中的应用[J]. 黄牛杂志;2001.6:1-5.
    [62] 张谊,朱砺.遗传标记的研究进展[J].畜牧兽医杂志,2001,20(3):18-22.
    [63] 孙伟.微卫星的研究与应用[J].黑龙江畜牧兽医. 2001.3:10-12.
    [64] 梁宏伟,昝林森.微卫星标记与牛的遗传育种[J]. 黄牛杂志;2004,29(4):24-26.
    [65] 杨昭庆,洪坤学.单核苷酸多态性的研究进展[J].国外遗传学分册,2000,23(l):4-8.
    [66] Alain V. et al. A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Se1. Evol, 2002(34):275~305.
    [67] Graig V. The sequence of the Human Genome[J]. Science,2001,291:1304-1351.
    [68] 欧阳建华,黄建安. PCR-SSCP 技术的研究进展[J].上海畜牧兽医通讯,2002,4:10-11.
    [69] 袁峥嵘.分子标记辅助选择及其在畜禽抗病育种中的应用[J].广东畜牧兽医科技.2007,32(2)6-9
    [70] 王重龙,陶立,张东红,等.DNA 标记辅助选择在猪育种的应用[J].安徽农业,2004,11:46-47.
    [71] 李宁,吴常信,陈永福.畜禽基因图谱[J]. 高技术通讯.1996,5:59-62.
    [72] 戴如娟,吴常信.DNA 标记及其在家畜遗传育种中的应用[J].中国畜牧杂志.1996,32(5):55-57.
    [73] 欧江涛. DNA 分子标记与动物育种. 西南民族学院学报(自然科学版)[J].2002,28(4):524-529.
    [74] Bishop M D. A genetics linkage map for cattle[J].Genetics,1994,136:619-639.
    [75] 龙继蓉. RAPD 技术及其在动物遗传育种中的应用及前景[J]. 四川畜牧兽医. 1999 ,26 (5 月增刊):60-62.
    [76] 王学峰,经荣斌,宋成义. RAPD 技术及其在动物遗传育种中的应用[J].畜牧兽医杂志.2002,21(1):18-21.
    [77] 宋九洲,张沅. DNA 片段多态性与标记基因辅助选择(MAS)[J].中国畜牧杂.1994,30(5):49-51.
    [78] Lande R, Thompson R. Efficiency of marker-assisted in the improvement of quantitative traits[J].Genetics,1990,124:743-765.
    [79] 晏兆莉,张成忠.家畜育种中 MAS 的遗传标记与 QTL[J]. 西南民族学院学报(自然科学版),1996,22(2):206-210.
    [80] 朱庆.畜禽遗传标记辅助选择的研究与应用[J].四川畜牧兽医.2000,27(113):82-83.
    [81] Dierkes B, Kriegesmann B, Sila A, et al. Identification of a Mae I RFLP in the insulin-like growth factor-1(IGF1) gene of swamp buffaloes[J].Animal Genetics ,2000 ,31 :68-79.
    [82] Chung E R, Kim W T, Kim Y S, et al. PCR-SSCP genotype effects of growth prolactin and insulin-like growth factor-1 genes on milk yield in Korean cattle ( Hanwoo ) [C].Asian-Australian Journal of Animal Science,2000,Supplement :223.
    [83] Ge W, Davis M E, Hines H C, et al. Association of a genetic marker with blood serum insulin-like growth factor concentration and growth traits in Angus cattle[J].Journal of Animal Science,2001,79:1757-1762.
    [84] Du Q Y, Wang H X. Advance in Insulin2like growth factors[J].Progress of Biochemistry and Biophysiology,1998,25(2):104-158.
    [85] 孙维斌 , 陈宏 , 雷雪芹 , 等 .IGFBP3 基因多态性与秦川牛部分屠宰性状的相关性 . 遗传.2003,25(5):511-516
    [86] Weintraub H.The MyoD family and myogenesis: redundancy,networks and thresholds.Cell,1993,75: 1241-1244.
    [87] 姜运良, 李宁, 吴常信. 肌肉生成的分子生物学研究进展. 农业生物技术学报, 1999, 7(2): 201-204.
    [88] 林万华, 黄路生, 艾华水,等. 郭源梅.MyoG 基因型对二花脸猪早期生长性状及肌肉组织学特性的影响[J].农业生物技术学报, 2002, 10(4): 367-372.
    [89] Cases S, Smith SJ, Zheng YW. Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA, 1998, 95(22): 13018-13023.
    [90] 田璐,许尚忠,岳文斌,等.MyoD 基因对肉牛胴体性状影响的分析[J].遗传.2007,29(3):313-318
    [91] 黄萌,许尚忠,昝林森,等.牛 MyoD1 基因遗传变异及其对胴体性状的影响[J].中国畜牧兽医,2007,34(9):40-43
    [92] Georges M, Nielsen D, Mackinnon M, et al. Mapping quantitative trait loci controlling milk production by exploiting progeny testing. Genetics, 1995,139: 907-920.
    [93] Arranz J, Coppieters W, Berzi P, et al. a QTL affecting milk yield and composition maps. Theor Appl Genet, 1998, 93: 71-80.
    [94] Falaki M, Gengler N, Sneyers M, et al. Relationships of polymorphisms for growth hormone and growth hormone receptor genes with milk production traits for Italian Holstein-Friesian bulls. J Dairy Sci, 1996,79: 1446-1453.
    [95] Aggrey S E, Yao J, Sabour M P, et al. Markers within the regulatory region of the growth hormone receptor gene and their association with milk-related traits in Holsteins. Heredity,1999, 90(1): 148-151.
    [96] Hale C S, Herring W O, Shibuya H, et al. Decrease growth in Angus steers, with TG-microsatellite allele in P1 promoter of the growth hormone receptor gene. Animal Science, 2000, 78: 2099-2104.
    [97] Blott S, Kim JJ, Moisio S, et al. Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics, 2003, 163:253-266.
    [98] 赵高锋, 陈宏, 雷初朝,等. 秦川牛 GHR 基因 SNPs 及其与生长性状关系的研究.遗传.2007,29(3):319-323
    [99] Chung H O, Kato T, Tomizawa K, Kato Y. Molecular cloning of pit-1cDNA from porcine anterior pituitary and its involvement in pituitary stimulation by growth hormone-releasing. Experimental and Clinical Endocrinology and Diabetis, 1998, 106: 203-210.
    [100] Ingraham H A, Albert V R, Chen R, et al. a family of POU-domain and PIT1 tissue-specific transcription factors in pituitary and neuroendocrine development. Annual Review Physiology,1999, 52: 773-791.
    [101] Woollard J, Tuggle C K, Ponce F A. de Leo′n. Rapid communication: localization of POU1F1 to bovine, ovine, and caprine 1q21-22 Journal of. Animal. Science,2000, 78: 242-243.
    [102] Hendriks, Stegeman B I, Augustijn K D, et al. Combined pituitary hormone deficiency caused by compound heterozygosity for two novel mutations in the POU domain of the Pit/POU1F1 gene. Journal of Clinical Endocrinology & Metabolism, 2001, 86: 1545-1550.
    [103] 刘 波,陈 宏,蓝贤勇,等.秦川牛及其杂种牛 POU1F1 基因多态与生长性能相关性[J].中国农业科学. 2005,38(12):2520-2525
    [104] Mcpherron A C, Lee S J . Double muscling in cattle due to mutations in the myostatin gene [J]. Proceedings of the National Academy of Sciences, 1997, 94 :12 457-12 461.
    [105] Casas E , Keele J W , Fahrenkrug S C , et al. Quantitative analysis of birth , weaning , and yearling weight s and calving difficulty in Piedmontese crossbreds segregating an inactive myostatin allele [J]. Anim Sci ,1999 , 77 : 1 686-1 692.
    [106] Casas E, Bennett G L , Smith T P L , et al. Association of myostatin on early calf mortality, growth, andcarcass composition traits in crossbred cattle [J].Anim Sci,2004,82:2913-2918.
    [107] Karim L, Coppieters W, Grobet L , et al . Convenient genotyping of six myostatin mutations causing double muscling in cattle using a multiplex oligonucleotide ligation assay[J]. Anim Genet, 2000,31 : 396-399.
    [108] Grobet L, Poncelet D, Royo L J, et al. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double muscling in cattle[J]. Mammalian Genome,1998,9:210-213.
    [109] 张润锋, 陈宏,雷初朝,等.3 个黄牛品种的 myostatin 5′调控区多态与生长性状的相关分析[J]. 畜牧兽医学报, 2007 ,38 (12) :1273-1278
    [110] Kathryn D. Mai J T , Wagner N W , et al. DGAT2 Is a New Diacylglycerol Acylt ransferase Gene Family[J]. Biol Chem, 2001,276 (42):38 862-38 869.
    [111] Stone S J , Myers H M ,Watkins S M , et al. Lipopenia and skin barrier abnormalities in DGAT22deficient mice[J].Biol Chem, 2004,279 (12):11 767-11 776.
    [112] Buhman K K, Smith S J , Stone S J , et al. DGAT1 is not essential for intestinal t riacylglycerol absorption or chylomicron synthesis [J].Biol Chem ,2002 , 277(28):25 474-2 547.
    [113] Wakimoto K, Chiba H , Michibata H , et al. A novel diacylglycerol acyltransferase (DGAT2) is decreased in human psoriatic skin and increased in diabetic mice[J]. Biochem Biophys Res Commun,2003,310(2):296-302.
    [114] 张争锋, 陈宏, 李秋玲,等.南阳牛DGAT2 基因 PCR-RFLP 多态性及其与生长性状相关性研究[J].遗传.2007, 29(8):945-950
    [115] 徐秀容,高雪,许尚忠,等.牛 DGAT2 基因第 6 内含子 MspI-RFLPs 和 TaqI-RFLPs 及其与牛经济性状相关性研究[J].畜牧兽医学报.2005,36(10),981-986
    [116] Sambrook J, Fritsch E F, Maniatis T. Translated by Jin D Y,Li M F ,Hou Y D,et al.Molecular Cloning A Laboratory Manual[M].Beijing, Science Press,1999.
    [117] Ye X, Robinson J A B, Jiang Z, et al. Polymorphisms of histone deacetylase 1 and 3 genes and fatty acid binding protein 3 and 4 genes and their associations with economic traits in swine [A].7th World Congress on Genetics Applied to Livestock Production[C].2002,8: 19-23.
    [118] Nott A, Meislin S H, Moore M J. A quantitative analysis of intron effects on mammalian gene expressin[J]. RNA, 2003,9(5): 601?607.