大菱鲆(Scophthalmus maximus)4种免疫或生长相关因子的原核表达及活性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以重要的海水养殖经济鱼大菱鲆为实验材料,采用分子克隆与体外重组技术,对影响鱼类生长和抗病的重要基因胰岛素样生长因子-I(IGF-I)、抗菌肽hepcidin与IGF-I的重组基因hep-IGF、CXC趋化因子S457和CC趋化因子KC70进行了克隆和原核表达的研究,并采用不同的活性测定法对几种蛋白表达产物进行了活性研究。
     1.大菱鲆胰岛素样生长因子-I的克隆、原核表达及促生长活性分析
     通过RT-PCR方法从大菱鲆肝组织克隆了胰岛素样生长因子-I(IGF-I)成熟肽片段,分析表明此成熟肽由70个氨基酸残基组成,含有3个链内二硫键。经序列比对,发现大菱鲆IGF-I是高度保守的蛋白,其成熟肽的氨基酸序列与牙鲆、金鲈、草鱼、鸡、人的相似性分别为100%、98%、86%、79%、76%。将扩增片段克隆到原核表达载体pGEX-4T-1上,实现了IGF-I成熟肽和GST蛋白在E.coli BL21(DE3)plysS中的的融合表达。融合蛋白分子量约为34kD,诱导4h时占菌体总蛋白的59%,主要以包涵体形式存在。Western-blotting免疫印迹表明融合蛋白可以特异性地被anti-GST抗体识别。对菌体进行超声破碎,收集包涵体并用1%Triton-X100+1%DOC洗涤,经6mol/L盐酸胍变性溶解及脉冲法稀释复性(0.5 mol/L L-Arginine, 1.0 mol/L GSH,0.2 mol/LGSSG.)后,通过GSTrap FF亲和预装柱纯化,获得了电泳分析纯的融合蛋白。以细胞增殖实验检测蛋白生物活性,结果显示纯化蛋白能促进大菱鲆肾脏细胞的增殖。
     2.大菱鲆融合蛋白hepcidin-IGF的重组表达及活性分析
     以实验室构建的pMD-hep-IGF质粒为模板进行PCR,在片段上添加EcoR I和Xho I酶切位点。经过酶切、连接和转化,将扩增的hep-IGF片段克隆至pGEX-4T-1重组表达载体,并转化E.coli BL21(DE3)plysS宿主菌。阳性重组克隆用IPTG进行不同时间的诱导,结果表明hep-IGF重组蛋白在大肠杆菌中获得了高效表达。随着诱导时间的增加,重组蛋白的表达量增加,在诱导后7h时达最大,大约占大肠杆菌总蛋白的55%。western-blotting免疫印迹表明,重组菌所表达的融合蛋白可以特异性地被anti-GST抗体识别。对菌体进行超声破碎,收集上清过GSTrap FF亲和柱,获得了纯化的GST-hep-IGF重组蛋白。用液体抑制法验证hep-IGF融合蛋白的抑菌活性,结果表明大肠杆菌(ATCC25922)培养8h后,加重组蛋白的处理组与不加任何样品的处理组相比出现抑制效果。
     3.大菱鲆趋化因子S457和KC70的原核表达及趋化活性分析
     以大菱鲆肝脏cDNA为模板进行PCR,获得了S457和KC70成熟肽片段。序列比对发现这两种趋化因子与其他物种的CXC或CC趋化因子的相似性不高:大菱鲆S457与斑马鱼CXCL-C1c、鼠CXC L7、猪CXC L9、人CXC L5相似性分别为34%、39%、42%、39%;大菱鲆KC70与大黄鱼CC样趋化因子、大西洋鲑CCL19、斑马鱼CCL-C5a、鸡CCL19、人CCL19相似性分别为61%、39%、35%、45%、38%。将扩增片段克隆到原核表达载体pGEX-4T-1上,实现了融合表达。GST-S457融合蛋白分子量约为38.6kD,诱导4h时表达量最大,占菌体总蛋白的47.5%;GST-KC70融合蛋白分子量约为36.1kD,诱导4h时表达量最大,占菌体总蛋白的45.6%。Western-blotting免疫印迹表明融合蛋白可以特异性地被anti-GST抗体识别。对菌体进行超声破碎,收集上清过GSTrap FF亲和柱,纯化的蛋白进行趋化活性分析。结果显示当GST-S457重组蛋白浓度为0.1和1ug/mL时,与对照组相比具有显著差异(P<0.01),且后者趋化作用更明显;当GST-KC70重组蛋白浓度为10ug/mL时,与对照组相比具有显著差异(P<0.01)。
Based on the molecular cloning and recombination techniques, 4 immunity-related or growth-related genes (IGF-I, hep-IGF, CXC-S457 and CC-KC70) from turbot were cloned to the pGEX-4T-1 vector and then transformed into E.coli BL21(DE3)plysS. Induced by IPTG, the recombinant proteins expressed and then were purified with GSTrap FF affinity chromatograph. The biological activities of the proteins were also analyzed with different methods.
     1. Cloning, recombinant expression and bioactivity analysis of Turbot IGF-I
     Insulin-like growth factor-I (IGF-I) is a conserved peptide expressed ubiquitously, which shows diverse effects on development, growth, and metabolism. With RT-PCR, the fragment encoding the Turbot (Scophthalmus maximus) mature IGF-I peptide was amplified. It was predicted that the mature peptide was composed of 70 amino acids including 6 cysteines which could form 3 disulfide bonds. The target fragment was successfully subcloned into the expression vector pGEX-4T-1, after induction with IPTG, the fusion proteins highly expressed in E.coli BL21(DE3)plysS. The result of SDS-PAGE showed that the fusion protein expressed in the form of inclusion bodies with molecular weight of 34 kD and maximally amounted to 59 % of the whole protein in the E.coli cell 4hours post induction. The western blotting indicated that recombinant protein had the antigenicity to anti-GST antibody. The inclusion bodies were dissolved in 6 mol/L guanidine chloride followed by pulse renaturation in refolding buffer containing 0.5 mol/L L-Arginine, 1.0 mol/L GSH and 0.2 mol/L GSSG. Then the renatured recombinant protein was purified by GSTrap FF affinity chromatography. The effect of purified GST-IGF-I on turbot kidney cells was analysised, and it indicated that the recombinant GST-IGF-I can stimulate the proliferation of the cells.
     2. Recombinant expression and bioactivity analysis of Turbot hep-IGF-I
     The hep-IGF recombinant gene was amplified using a pair of specific primers. The PCR products were cloned to pGEX-4T-1 vector and then the plasmid was transformed into E.coli BL21(DE3)plysS. After induced by IPTG for different time courses, the expression of GST-hep-IGF was determined by SDS-PAGE. The result shows that the expression amont can raised to the peak 7 hours post induction, maximally amounted to 55 % of the total protein in the E.coli cell. Western blotting indicated that recombinant protein had the antigenicity to anti-GST antibody. After ultrasonic disruption process, the supernatant was collected and pumped into GSTrap FF affinity Collumn. The antibacterial bioactivity of purified recombinant proteins to E.coli (ATCC25922) was analyzed with liquid growth inhibition method, and the different antibacterial effects were detacted in 8 hours post treatments.
     3. Recombinant expression and bioactivity analysis of CXC chemokine S457 and CC chemokine KC70 from Turbot
     The S457 and KC70 mature genes were obtained with PCR using turbot liver cDNA as template. Sequence blast showed that the two chemokines shared low identity and similarity, that is about 30~60% identities with other chemokines of several animals. The amplified segments were subcloned to the pGEX-4T-1 vector respectively. After transformation and induction, the expression of recombinant proteins were detected with SDS-PAGE and the molecular weights of GST-S47 and GST-KC70 recombinant proteins were about 38kD and 36kD. The result of time course experiment showed the amount of GST-S47 and GST-KC70 reached the maximums 4 hours post induction, accounted to 47% and 46%, respectively. The western blotting indicated that recombinant protein had the antigenicity to anti-GST antibody. After ultrasonic disruption process, the supernatant is collected and pumped into GSTrap FF affinity Column. Then a chemotaxis assay was carried out, which is the definitive assay for chemokine activity. This assay showed migration of peripheral blood leukocytes across a membrane with 5um pores towards GST-S47 and GST-KC70 at the optimal concentration of 1ug/mL and 10ug/mL respectively.
引文
[1]刘德武,杨关福,张细权.猪神经内分泌生长轴各因子及相关基因的研究进展.农业生物技术学报,2004,12(1):109~115
    [2]肖东,林浩然.利用脑-脑垂体-肝脏轴调控鱼类生长.水产科技情报,1999,26(3):99~102
    [3]秦伟.鱼类学.苏州:苏州大学出版社,2000.410~445
    [4]谢嘉华,神经内分泌因子对鱼类生长及繁殖的调控.泉州师范学院学报(自然科学),2002,20(6):71~75
    [5] C Peng, R E Peter. Neuroendocrine regulation of growth hormone secretion and growth in fish. Zoological Studies, 1997, 36(2):79~89
    [6]肖东,林浩然.利用脑-脑垂体-肝脏轴调控鱼类生长.水产科技情报,1999,26(3):99~102
    [7] Wang L, Lin H R. Effects of LHRH-A and DA on growth hormone secretion in juvenile and mature female common carp (Cyprinus carpio). Acta Zoologica Sinica, 1997, 43(3): 303~308
    [8] Wang L, Lin H R. Distributions and variation of sGnRH in discrete brain areas from common carp (Cyprinus carpioL.) of different ages and gonadal conditions. Zoological Research, 1998, 19(3):197~202
    [9] Melamed P, Eliahu N, Levavi-Sivan B, et al. Hypothalamic and thyroidal regulation of growth hormone in tilapia. Gen.Comp.Endocrinol., 1995, 97:13~30
    [10] Mclean E, Donaldson E M. Absorption of bioactive proteins by the gastrointestinal tract of fish: Areview. J Aquat Anim Health, 1990, 2: 1~11
    [11] Sire M F, Vernier J M. Intestinal absorption of protein in teleost fish. Comp Biochem Physiol, 1992, 103A: 771~781
    [12]孙颖,林浩然.几种神经内分泌因子促进草鱼鱼种生长激素分泌和生长的作用.中山大学学报,2006,45(1):86~90
    [13] Agellon LB, TT Chen. Rainbow trout growth hormone: molecular cloning of cDNA and expression in Escherichia coli. DNA, 1986, 5(6): 463~471
    [14] Lorens J, Nerland A H, Male R, et al. The nucleotide sequence of Atlantic salmon growth hormone cDNA. Nucl Acids Res., 1989, 17(6): 2352
    [15] Koren Y, S Sarid, R Ber, et al. Carp growth hormone: molecular cloning and sequence of cDNA[J].Gene, 1989, 77: 309~315.
    [16]江树勋,马鸿媚,邓文汉,等.大黄鱼生长激素基因的分离及序列测定.生物工程进展, 2002,22(2): 88~90
    [17]曹运长,李文笙,叶卫,等.蓝太阳鱼生长激素全长cDNA的克隆与序列分析.水产学报,2004,28(5):589~593
    [18]江世贵,张殿昌,苏天凤,等.鲮生长激素cDNA的克隆及其重组表达产物的促生长活性.高技术通讯,2004,6:23~27
    [19]殷雪,龙章富,等.草鱼生长激素基因的克隆及原核表达研究.四川大学学报(自然科学版),2004,41(2):399~402
    [20]匡刚桥,刘臻,鲁双庆.鱼类生长激素基因的研究现状及展望.水利渔业,2006,26(6):1~3
    [21] Benoit F, Marie P M, Pierre Y L. Effect of growth hormone on muscle protein synthesis in rainbow trout (Oncorhyncus mykiss) and Atlantic salmon (Salmo salar). Fish Physiol Biochem, 1996, 15(1):49~56
    [22] Foster A R, Houlihan D F, Gray C. The effects of ovine growth hormone on protein turnover in rainbow trout. Gen Comp Endocrinol, 1991, 82(1):110~120
    [23] Agellon L B, Emery C J, Jones J M. Promotion of rapid growth of rainbow (Salmo gairdneri) by a recombinant fish growth hormone. Can J Fisher Aquat Sci, 1988, 8:146~151
    [24] Sheridan, M.A. Effects of thyroxin, cortisol, growth hormone, and prolactin on lipid metabolism of coho salmon, Oncorhynchus kisutch, during smoltification. Gen.Comp. Endocrinol., 1986, 64: 220~238
    [25] Leung TC, Ng TB, Woo NY. Metabolic effects of bovine growth hormone in the tilapia (Oreochromis mossambicus).Comp Biochem Physiol A, 1991, 99(4):633~636.
    [26] Sakamoto T., Iwata M., Hirano T. Kinetic studies of growth hormone and prolactin during adaptation of Coho salmon, Oncorhynchus kisutch, to different salinities. Gen.Comp.Endocrinol, 1991(82):184~191
    [27]徐金先,夏东,赵茹茜等.猪下丘脑和垂体中生长激素受体、胰岛素样生长因子1型受体的发育性变化.遗传学报,2004,31(5):495~501
    [28] Kojima M, Hosoda H, Dete Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 1999, 402:656~660
    [29] Hashizume T, Horiuchi M, Tata N, et al. Effects of Ghrelin on growth hormone secretion from cultured adenohypophysial cells in pigs. Domest Anim Endocrinol,2003,24:209~218
    [30] Tsai O, Madsen SS, McCormick SD, et al. Endocrine control of cartilage in coho salmon: GH influence in vivo on the response to IGF- I in vitro. Zool Sci, 1995, 11:299~303
    [31] Ducan C, Hirano T. Effects of insulin-like growth factor-I and insulin on the in vitro uptake of sulfate by eel branchial cartilage: evidence for the presence of independent hepatic and pancreatic sulfation factors. J Endocrinol, 1992, 133: 211~219
    [32] Anthony RD, Christopher GB, Mattew P, et al. Correlation of plasma IGF-I concentrations and growth rate in aquacultured finfish: a tool for assessing the potential of new diets. Aquac, 2004, 236:583~592
    [33] Perez-Sanchez J. Ration size and protein intake affect circulating growth hormone concentration, hepatic growth hormone binding and plasma insulin like growth factor-I immunoreactivity in a marine teleost, the gilthead sea bream. J Nutr, 1995, 125:546~552
    [34]张建峰,侯加法,张皎,等.鸡类胰岛素生长因子I的克隆、表达及其表达产物的生物学活性研究.中国农业科学,2005,38(10):2129~2133
    [35] Cao QP, Duguay SJ, Plisetskaya E,et al. Nucleotide sequence and growth hormone-regulated expression of salmon insulin-like growth factor I mRNA. Molecular Endocrinology, 1989, 3:2005~2010
    [36]白俊杰,叶星,李英华,等.草鱼胰岛素样生长因子-I基因克隆及序列分析.水产学报,2001,25(1):1~4
    [37] Russell SM,Spencer EM. Local injections of human or rat growth hormone of purified human somatomedin-C stimulate unilateral tibial epiphyseal growth in hypophysectomized rats. Endocrinology, 1985, 116: 2563~2567.
    [38] Skottner A, Clark RG, Robinson IC, et al. Recombinant human IGF-I: testing the somatomedin hypothesis in hypophysectomized rats. Endocrinology, 1987, 112: 123 ~132
    [39] Lin T,Haskell J,Vinson N,et al. Characterization of insulin and insulin-like growth factor I receptors of purified Leydig cells and their role in steroidogenesis in primary culture: a comparative study. Endocrinology, 1986, 119(4):1641~1647.
    [40] Adashi EY, Resnick C E, D'Ercole A J, et al. Insulin-like growth factors as intraovarian regulators of granulose cell growth and function. Endocinol Rev, 1985, 6:400~420.
    [41]程志安,萧劲夫.胰岛素样生长因子与骨质疏松.中国骨质疏松杂志,2001,7(1):85~87
    [42] Delany A M, Pash J M, Canalis E. Cellular and clinical perspectives on skeletal insulin-like growth factor I. Journal of Cellular Biochemistry, 1994, 55(3):328~333
    [43]叶星,白俊杰,简清,等.草鱼胰岛素样生长因子-Ⅰ基因在大肠杆菌中的表达.中国生物化学与分子生物学报,2001,17(6):725~728
    [44] Kagawa H, Gen K, Okuzawa K, et al. Effects of luteinizing hormone and follicle-stimulating hormone and insulin-like growth factor-I on aromatase activity and P450 aromatase gene expression in the ovarian follicles of red seabream, Pagrus major. Biol Reprod, 2003, 68(5):1562~1568
    [45] Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science, 1996,272: 50~54
    [46] Alvarez F, Razquin BE, Villena AJ, et al. Seasonal change in the lymphoid organs of wild brown trout, Salmo trutta L:a morphometriacl study. Vet Immunol Immunopathol, 1998, 64(3):267~278
    [47] Baba T, Imamura J, Izawak, et al. Cell-mediated protection in carp adainst Aeromonas hydrophila. J Fish Dis, 1998, 11(2):171~179
    [48]卢全章.草鱼胸腺组织学的研究.水生生物学报,1991,15(4):327~331
    [49]卢全章.草鱼头肾免疫细胞组成和数量变化.动物学研究,1998,19(1):11~16.
    [50]张永安.鱼类免疫组织和细胞的研究概况.水生生物学报,2000,24(6):648~652
    [51]钟明超,黄浙.鲇鱼淋巴样器官的发育.水产学报,1995,19(3):258~262
    [52] Sizemore RG, Miller NW, Cuchens MA, et al. Phylogeny of lymphocyte heterogeneity: The cellular requirements for in vitro mitogenic response of channel catfish leukocytes. JImmunol, 1984, 133:2920~2924.
    [53]唐玫,马广智,徐军。鱼类免疫学研究进展.免疫学杂志,2002,18(3):S112~116
    [54] Romano N, Taverne Thiele JJ, Van Maanen JC, et al. Leucocyte subpopulations in developing carp (Cyprinus carpio): immunocytochemical studies. Fish Shellfish Immunol, 1997, 7:439~453.
    [55] Arkoosh MR, Wester PW, Barreda DR, et al. Development of immunological memory in rainbow trout ( Oncorhynchus mykiss) 1.An immunochemical and cellular analysis of the B cell response. Dev Comp Immunol, 1991, 15(3):185~200
    [56] Secombes CJ, Hardie LJ, Daniels G. Cytokines in fish: an update. Fish Shellfish Immunol, 1996, 6:291~304
    [57]于健,邱芳萍,张玲.抗菌肽及其应用前景.长春工业大学学报(自然科学版),2004, 25 (1) :66~68.
    [58] Steiner H, Hultmark D, Engstrom A, et al. Sequences and specificity of two antibacterial proteins involved in insect immunity. Nature, 1981, 292:246.
    [59] Nakamura T, Furunaka H, Miyata T, et al. Tachyplesin, a class of antimicrobial peptide f rom the hemocytes of t he horseshoe crab ( Tachypleus tridentatus). Isolation and chemical structure. J Biol Chem ,1988 ,263 (32) : 16709~16713.
    [60]洪旭光,孙修勤,张进兴等.海洋抗菌肽研究进展.高技术通讯,2004 ,2 :105~110.
    [61] Oren Z, Shai Y. A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Eur J Biochem, 1996, 237:303~310.
    [62] Cole A M, Weis P, Diamond G. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. Biol Chem, 1997, 272:12008~12013.
    [63] In Yup Park, Chan Bae Park, Mi Sun Kim and Sun Chang Kim. Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Lett 1998, 437(3):258~262
    [64] Silphaduang U. and E.J. Noga. 2001. Peptide Antibiotics in Mast Cells of Fish. Nature, 414:268~269.
    [65] Lauth, X., Shike, H., Burns, J. C., Westerman, M. E., Ostland, V. E., Carlberg, J.M., Van Olst, J. C., Nizet, V., Taylor, S. W., Shimizu, C., and Bulet, P.Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass. J BiolChem ,2002, 277, 5030~5039.
    [66] Shike H, Lauth X, Westerman M E, et al. Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge. J Biochem, 2002 269:2232~2237
    [67] Fernandes JM, Smith VJ. A novel antimicrobial function for a ribosomal peptide from rainbow trout skin. Biochemical and Biophysical Research Communications, 2002(296):167~171.
    [68] Boman, H.G. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol.1995, 13:61~92
    [69]王建纲,夏乐先,刘晓辉.生物抗菌肽研究进展.生物技术通报, 2003, (2) : 26~28.
    [70] Locky TD. Formation of pors in escherichia coli cell membranes bya cecrop in isolated form bemolymph of heliothis virescens larvae. EurJ. Biochem, 1996, 236 (1) : 263~271.
    [71] Ichinose M, Asai M, Imai K, et al. Enhancement of phagocytosis by corticostatin(CSI) in cultured mouse peritoneal macrophages. Immunopharmacol, 1996, 35:103~109
    [72] Yamashita T, Saito K. Purification, primary structure, and biological activity of guinea pig neutrophil cationic peptides. Infect Immun, 1989, 57:2405~2409
    [73] Befus A.D., Mowat C, Gichrist M, et al. Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. J Immunol, 1999, 163:947~953
    [74] Van-Wetering S, Mannesse-Lazeroms S P G, Dijkman J H, et al. Effect of neutrophil serine proteinases and defensins on lung epithelial cells: modulation of cytotoxity and IL-8 production. J Leukoc Biol, 1997, 62:217~226
    [75] Van Wetering S, Mannesse-Lazeroms S P, Van Sterkenburg MA, et al. Effect of defensins on interleukin-8 synthesis in airway epithelial cells. Am J Physiol, 1997, 272:L888~896
    [76] Echtenacher B, Mannel D N, Hultner L. Critical protective role of mast cells in a model of acute aseptic peritonitis. Nature,1996,381:75~77
    [77] Malaviya R, Ikeda T, Ross E, et al. Mast cell modulation of neutrophil influx and bacterial clearance at sights of infection through TNF-α. Nature, 1996, 381:77~80
    [78] Chertov O, Michiel DF, Xu L, et al. Identification of defensin-1, defensin-2 and CAP37/azurocidin as T-cell chemoattractant proteins released from IL-8-stimulated neutrophils. J Biol Chem, 1996, 271:2935~2940
    [79] Welling M M, Hiemstra PS, van den Barselaar MT, et al. Antibacterial activity of human neutrophil defensins in experimental infections in mice is accompanied by increased leukocyte accumulation. J Clin Invest, 1998, 102: 1583~1590.
    [80] Panyutich A V, Szold O, Poon P H, et al. Identification of defensin binding to C1 complement. FEBS Lett,1994,365:169~173
    [81] Prohazka Z, Nemet K, Csermely P, et al. Defensins purified from human granulocytes bind C1q and active the classical complement pathway like the transmembrane glycoprotein gp41 of HIV-1.Mol Immunol, 1997, 34:809~816
    [82] van den Berg R H, Faber-Krol M C, van Wetering S, et al. Inhibition of activation of classical pathway of complement by human neutrophil defensins. Blood, 1998, 92:3898~3903
    [83] Yang D, Chen Q, Chertov O, et al. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol, 2000, 68:9~14
    [84] Cella M, Sallusto F, Lanzavecchia A. Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol.1997, 9:10~16
    [85] Krause A, Neitz S, Magert H J, et al. LEAP-1, a novel highly disulfide-bonded humanpeptide, exhibits anti-microbial activity. FEBS Lett.2000, 480(2-3):147~150.
    [86] Park CH, Valore EV, Waring AJ, et al. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. Biol.Chem., 2001, 276(11):7806~7810.
    [87] Douglas SE, Gallant JW, Liebscher RS, Dacanay A, Tsoi SC. Identification and expression analysis of hepcidin-like antimicrobial peptides in bony fish. Dev Comp Immunol 2003, 27:589~601.
    [88] Shike H, X Lauth, M. E. Westerman, V. E. Ostland, J. M. et al. Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge. Eur. J. Biochem.2002, 269:2232~2237
    [89] Pigeon C, Iiyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, Loreal O. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem , 2001,276:7811~7819.
    [90] Inoue S, Nam B-H, Hirono I, Aoki T. A survey of expressed genes in Japanese flounder (Paralichthys olivaceus) liver and spleen. Mol Mar Biol Biotechnol 1997, 6:376~80.
    [91] Chen SL, Xu MY, Ji XSH, et al. Cloning, Characterization, and Expression Analysis of Hepcidin Gene from Red Sea Bream (Chrysophrys major). Antimicrobial Agents and Chemotherapy, 2005, 49(4):1608~1612.
    [92] Chen SL, Li W, Meng L, et al. Molecular cloning and expression analysis of a hepcidin antimicrobial peptide gene from turbot (Scophthalmus maximus). Fish & Shellfish Immunology. 2007, 22:172~181
    [93] Michael R., Yeaman, Nannette Y.Y. Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacol Rev 2003, 55(1):27~56
    [94]蔡中华.海水养殖鱼类细胞因子基因的克隆与表达:[博士后工作报告].青岛:中科院海洋研究所,2004
    [95] Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science, 1996, 272:60~72.
    [96] McKay CR. Chemokine receptors and T cell chemotaxis. J Exp Med 1996, 184:799~812.
    [97] Roth SJ, Carr MW, Springer TA. C-C chemokines, but not the C-X-C chemokines interleukin-8 and interferon-g inducible protein-10, stimulate transendothelial chemotaxis of T lymphocytes. Eur J Immunol, 1995,25:3482~3495.
    [98] Cyster JG, Goodnow CC. Pertussis toxin inhibits migration of B and T lymphocytes into splenic white pulp cords. J Exp Med, 1995,182:581~608.
    [99] Pattison J, Nelson PJ, Huie P, von Leuttichau I, Farshid G, Sibley RK, Krensky AM. RANTES chemokine expression in cellmediated transplant rejection of the kidney. Lancet, 1994,343:209~215
    [100]Mukaida N. The roles of cytokine receptors in diseases. Japanese Journal of Clinical Pathology, 2000, 48(5 ):P409~415.
    [101]郭克泰.趋化因子及其受体的研究新进展.国外医学免疫学分册,2002,25(1):27~30
    [102] Heath H, Qin S, Rao P, et al. Chemokine receptor usage by human eosinophils. The importance of CCR3 demonstrated using an antagonistic monoclonal antibody.. J Clin Invest,1997 ,99 (2) :178~184.
    [103]Simmons G, Clapham PR, Picard L, et al. Potent Inhibition of HIV-1 Infectivity in Macrophages and Lymphocytes by a Novel CCR5 Antagonist. Science ,1997 ,276 :276~279.
    [104]Murakami T, Nakajima T, Koyanagi Y, et al. A Small Molecule CXCR4 Inhibitor that Blocks T Cell Line-tropic HIV-1 Infection. J Exp Med ,1997, 186(8) :1389~1393.
    [105] Chen JD, Bai X, Yang AG, et al. Inactivation of HIV 1 chemokine co receptor CXCR 4 by a novel intrakine strategy. Nat Med, 1997, 3(10): 1110~1116
    [106] Wang J, Huang M, Lee P, et al. Interleukin-8 inhibits non-small cell lung cancer proliferation: a possible role for regulation of tumor growth by autocrine and paracrine pathways. J Interferon Cytokine Res,1996,16:53~64.
    [107] Salcedo R, Ponce ML, Young HA, et al. Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood, 2000, 96 (1):34~40.
    [108]Martin WA, Thomas JR. Are the chemokines the third major system in the brain? J Leukoc Biol, 2005,78:1204~1209
    [109] Noriyuki Kuroda, Tatiana S, Uinuk-ool, et al. Identification of chemokines and a chemokine receptor in cichlid fish, shark, and lamprey. Immunogenetics, 2003, 54: 884~895
    [110]Laing KJ, Secombes CJ. Trout CC chemokines: comparison of their sequences and expression patterns. Mol Immunol, 2004, 41:793~808
    [111] Najakshin AM, Mechetina LV, Alabyev BY, et al. Identification of an IL-8 homolog in lamprey (Lampetra fluviatilis): early evolutionary divergence of chemokines. Eur J Immunol, 1999,29:375~382.
    [112] Chen L, He C, Baoprasertkul P, et al. Analysis of a catfish gene resembling interleukin-8: cDNA cloning, gene structure, and expression after infection with Edwardsiel laictalur. Dev Comp Immunol, 2005(29):135~142
    [113] Baoprasertkul P, He C, Peatman E, et al. Constitutive expression of three novel catfish CXC chemokines: homeostatic chemokines in teleost fish. Molecular Immunology, 2005, 42(11):1355~1366
    [114]刘洋.大菱鲆(Scophthalmus maximus)5种趋化因子的克隆、鉴定及表达分析:[博士学位论文].青岛:中国海洋大学,2007
    [115]Mantovani A, Locati M, Sozzani S. CC chemokines In the Cytokine Handbook. London: Elsevier, 2003:1083~1097.
    [116] Dixon B, Shun B,Adams E J, et al. CK-1, a putative chemokine of rainbow trout(Oncorhynchus mykiss). Immunol Rev, 1998, 166:341~348
    [117] Rutch Khattiya, Tsuyoshi Ohira, Ikuo Hirono1, et al. Identification of a novel Japanese flounder (Paralichthys olivaceus) CC chemokine gene and an analysis of its function. Immunogenetics, 2004, 55:763~769.
    [118] Chen S, Hong Y, Scherer S J, et al. Lack of ultraviolet-light inducibility of the medakafish(Oryzias latipes) tumor suppressor gene p53. Gene, 2001, 264(2):197~203
    [119]Lilie H, Schwarz E, Rudolph R. Advances in Refolding of Proteins Produced in E.coli. Current Opinion in Biotechnology, 1998, 9 (5):497~501.
    [120]靳挺,关怡新,费峥峥,等.重组人γ-干扰素包涵体稀释复性.化工学报,2004,55(5):770~774
    [121]Clark ED. Protein refolding for industrial process. Current Opinion in Biotechnology, 2001, 12(2):202~207.
    [122]王来城,王金星,赵小凡,等.家蝇防御素在大肠杆菌中的表达、纯化与抗体制备.动物学报,2005,51(2): 327~334
    [123] Yang D, Biragyn A, Kwak LW, et al. Mammalian defensins in immunity more than just microbicidal Trends. Immunol 2002, 23:291~296
    [124]Bryksa BC, MacDonald LD, Patrzykat A, et al. A C-terminal glycine suppresses production of pleurocidin as a fusion peptide in Escherichia coli. Protein Expression and Purification, 2006, 45(1):88~98
    [125]李伟.重要海水养殖鱼类抗菌肽基因重组表达的研究:[博士学位论文].青岛:中国海洋大学,2006
    [126]吴纬,陈静娴,宋宁,等.几种因素对重组大肠杆菌目标蛋白表达的影响.四川大学学报(自然科学版),2004,39:149~151
    [127] Seo J H, Bailey J E. Effects of recombinant plasmid content on growth properties and cloned gene product formation in Escherichia co1i. Biotechnol Bioeng, 1985, 27: 1668~1674
    [128] Fudu Miao, Dhinhaker S. Overexpression of Cloned genes using recombinant Escherichia coli regulated by a T7 promoter: two stage continuous cultures and model simulations. Biotechiol Bio eng, 1993, 42:74~80
    [129] MC Poznansky MC, Olszak IT, Foxall R, et al.Active movement of cells away from a chemokine. Nat Med, 2000, 6:543~548
    [130]孙荣华,王应,钟英诚,等.重组CC家族趋化因子RANTES的原核表达及趋化活性分析.中国医学科学院学报,2001,23(2):123~126