应用类转录激活因子效应物核酸酶(TALEN)定点修饰猪基因组
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪80年代基因打靶技术的兴起极大地推动了发育生物学的研究和生物医药的开发,基因研究从最初的测序和图谱绘制逐渐发展为基因功能研究与基因致病机制解析,使现代生物学及医学研究取得了突破性进展。长期以来基因打靶技术主要在小鼠上完成,这是因为小鼠的胚胎干细胞能在体外培养并无限增殖,同时保持生殖系嵌合能力。但是利用小鼠制备的人类疾病模型往往不能真实反映人类疾病的发生和发展,甚至在诸多疾病中其症状与人类截然不同,人们一直在寻找与人的解剖和生理更为接近的大动物作为人类疾病的动物模型。
     在大动物中,猪在生理结构、生化特征以及营养代谢等方面与人更为接近,被认为是目前比较理想的大动物基因修饰模型。自2000年PPL公司成功利用体细胞核移植技术制备克隆猪以来,基因修饰猪在异种器官移植研究、人类疾病模型以及农业品种改良中取得了一系列突破性成果。但是由于猪胚胎干细胞的缺乏,目前只能对体细胞进行基因打靶修饰结合核移植技术来制备基因修饰猪。而体细胞在体外培养增殖速度慢而且增殖能力有限,常规同源重组进行基因打靶的效率极低。目前,只有少量文章报道了基因修饰猪的研究。因此,基因打靶技术的研发和改进是加快基因修饰猪研究发展的关键。
     近年来ZFN、TALEN以及CRISPR/Cas9技术的出现,极大的推动了基因靶向修饰技术的广泛应用,也为基因修饰猪的研究提供了更高效的工具。但在实际研究中发现,ZFN制备复杂、打靶效率低、成本高昂限制了其在基因修饰猪研究中的应用。CRISPR/Cas9虽然打靶效率高,却存在脱靶效应,不利于通过体细胞核移植制备基因修饰猪。而TALEN成本低、制备简单、打靶效率高且低脱靶效应,是目前比较理想的基因组靶向修饰工具。
     TALEN是由TALE蛋白DNA结合结构域与FokI核酸酶结构域融合而成的人工核酸酶,通过单元组装法可以快速的构建针对任何靶序列的TALEN,并高效地实现对基因组特定位点的识别和切割,诱导靶序列产生双链断裂,细胞通过同源重组修复或非同源重组的末端连接实现基因靶向敲除、敲入、以及定点突变等,从而大幅度地提高基因靶向修饰的效率。目前TALEN技术已经广泛应用于真核细胞、小鼠、大鼠、斑马鱼、猪、牛等多种模式生物中,为使TALEN技术成功应用于基因修饰猪的研发,开展以下实验研究。
     根据哺乳动物密码子偏好性构建哺乳动物细胞TALEN表达载体,结合已报道的Golden Gate构建体系建立适用于哺乳动物细胞的TALEN构建体系。利用DNA单链复性技术构建基于EGFP荧光蛋白的TALEN体外活性检测SSA体系,可简单、快速的对已构建TALEN的活性进行验证。利用T7内切酶可识别并切割异源二聚体DNA的特性建立了细胞内活性验证体系。为验证TALEN构建体系,选择猪pROSA26的一个靶位点设计并构建6条TALEN质粒,两两组合对TALEN在体外和细胞内的活性进行了验证。在此基础上,利用建立的TALEN体系对中国小型猪基因组进行高效且精确的定点修饰,包括基因靶向敲除、靶向敲入以及定点突变。
     在基因靶向敲除实验中,针对猪DMD基因第7号外显子和猪WRN基因第3号外显子分别设计了位点特异性TALENs,转染猪胎儿成纤维细胞后经过G418筛选,成功获得猪DMD基因和WRN基因的敲除细胞株,为建立杜氏肌萎缩症和早衰症基因修饰猪模型奠定了基础;在基因靶向敲入实验中,针对猪ISL1基因设计了位点特异性TALENs,构建了基因打靶载体pFlexibleDT-ISL1-CreTd,共转染猪胎儿成纤维细胞后经过嘌呤霉素筛选,成功获得猪ISL1基因定点敲入细胞株,效率高达24%;在基因定点突变实验中,由于人胰岛素与猪胰岛素只有一个氨基酸的差别,针对猪胰岛素基因第二外显子设计了位点特异性TALENs,合成了一条具有同源性的89bp单链DNA,共转染猪胎儿成纤维细胞后经过G418筛选,成功获得将猪胰岛素B链的丙氨酸替换成苏氨酸的细胞株,并通过核移植的方式得到人源化胰岛素猪模型。
     本实验首次采用TALEN技术对猪基因组内源性基因进行定点修饰,成功且高效率地实现了基因敲除、基因敲入以及定点突变等精确修饰,为大动物实现高效的基因靶向修饰提供了有力工具,也为建立各种具有重要经济价值、农业育种和医学模型的基因定点修饰猪奠定了基础。
Gene targeting technology emerged in the1980s, and has greatly advancedbiomedical research and development biology. Over the past decades, geneticresearch has developed from initial sequencing and mapping to analyzing genefunction and pathogenic mechanism. This development has resulted in tremendousbreakthroughs in modern biology and medical research. Gene targeting technologyhas been conducted in mice for a long time because their embryonic stem cells canproliferate infinitely in vitro and they can form chimeric progeny. However, mousemodels cannot accurately reflect real pathological processes and diseasedevelopment when used to mimic human diseases. These models even show oppositeresults. Thus, researchers have been investigating large animals with similaranatomy and physiology to humans for use as disease models in future studies.
     Large animal models, particularly pig models, have similar physiological,biochemical, metabolic, and nutrient characteristics to human beings. Therefore, pigis regarded as one of the most ideal genetically modified animal models. Since thesuccess of cloning pigs using somatic cell nuclear transfer by PPL Company in2000,many breakthroughs have been achieved by genetically modified pigs inxenotransplantation research, human disease models, and agricultural breedimprovement. However, researchers mainly generate genetically modified pigsthrough gene targeting and nuclear transfer of somatic cells because of the lack ofporcine embryonic stem cells. Somatic cells have limited reproducibility in vitro,and conventional gene targeting using homologous recombination is inefficient.Thus, few gene targeting pig models have been reported. Improving gene targetingtechnology is the key to develop research on genetically modified pigs.
     Gene targeting technology, such as zinc-finger nucleases (ZFNs), transcriptionactivator-like effector nucleases (TALENs), and clustered-regularly interspaced shortpalindromic repeat (CRISPR)/CRISPR-associated (CRISPR/Cas9) system, has obtainedsignificant breakthroughs in gene targeting. Thus, efficient tools have been developed forgene targeting research in pigs. However, ZFN is inefficient and expensive, which hinder itsapplication in pig gene targeting research. CRISPR/Cas9produces severe off-targetingeffects, which limit its applications in somatic cell targeting and nuclear transfer. Therefore,TALEN is an ideal gene targeting technology because of its high targeting efficiency, lowprice, and absence of off-target effects.
     TALEN is an artificial nuclease that is fused by the binding domain of theTALE protein and nuclease domain of the Fokl protein. TALENs targeting any DNAsequence can be constructed using unit assembly. TALENs recognize and cut thespecific gene locus, and induce the double-strand break of the targeting DNAsequence. Thus, we can achieve gene knockout, knock-in, or specific point mutationusing homologous recombination repair or end connection of non-homologousrecombination. Gene targeting modification can be efficiently improved. TALEN hasbeen widely used in eukaryotic cells, mice, rats, zebrafish, pigs, cattles, and otheranimal models. TALEN is a simple method with high targeting efficiency and nooff-target effects. This study aimed to use TALEN in genetically modified pigs.
     In this study, we first constructed TALEN vectors based on the preference ofmammalian codon, and built TALEN systems based on the reported Golden GateTALEN construction suitable for mammals. We developed a single-strand annealing(SSA) system using EGFP fluorescent protein and DNA single-strand renaturationtechnology. This system can validate easily and rapidly the activity of theconstructed TALENs. Simultaneously, we generated an in vivo activity detectionsystem using a T7endonuclease, which can recognize and cleave a DNAheterodimer. To validate the TALEN system established in this study, six TALENtargets targeting the pROSA26locus were designed and tested using an SSA assayand T7endonuclease I assay. Results show that the targeting efficiency mediated by TALENs in mammalian cells significantly improved. We applied this targetingmethod, including gene knockout, gene knock-in, and point mutation, to modifyefficiently and accurately the genome of Chinese mini pig.
     In gene knockout, we designed TALENs targeting the seventh exon of theporcine DMD gene and third exon of the porcine WRN gene. After transfection intoporcine fetal fibroblasts with G418selection, we successfully obtained DMDknockout cells and WRN knockout cells. These cells lay the foundation to establishthe Duchenne and progeria gene-modified porcine models in the future. In geneknock-in, we designed TALENs targeting the porcine ISL1gene, and alsoconstructed the gene-targeting vector pFlexibleDT-ISL1-CreTd. Afterco-transfection into porcine fetal fibroblasts with puro selection, we obtainedISL1-targeted cells with high efficiency of up to24%. In point mutation, given thatporcine insulin has only one amino acid different from human insulin, we designedTALENs targeting the A30position of the β-chain in the porcine insulin gene. Wealso synthesized a single-stranded DNA with89bp. After transfection into porcinefetal fibroblasts with G418selection, we obtained targeted cells, in which the alaninewas successfully replaced with threonine, and humanized porcine insulin modelswere generated using the somatic cell nuclear transfer approach.
     This study is the first to perform TALEN-targeting technology for the precisemodification of the porcine endogenous gene. We successfully and efficientlyachieved gene knockout, knock-in, and point mutation. The achievement of thisapproach could provide a platform for generating gene-modified porcine modelswith high efficiency. This approach could also contribute in generatinggene-modified porcine models with high economic value, improved agriculturalbreeding, and important medical applications.
引文
[1] Holliday R: A mechanism for gene conversion in fungi. Genetical Research1964,5(02):282-304.
    [2] Lederberg J, Lederberg EM: Replica plating and indirect selection ofbacterial mutants. Journal of Bacteriology1952,63(3):399.
    [3] Capecchi MR: High efficiency transformation by direct microinjection ofDNA into cultured mammalian cells. Cell1980,22(2):479-488.
    [4] Efstratiadis A, Posakony JW, Maniatis T, Lawn RM, O'Connell C, Spritz RA,Deriel JK, Forget BG, Weissman SM, Slightom JL: The structure andevolution of the human β-globin gene family. Cell1980,21(3):653-668.
    [5] Evans MJ, Kaufman MH: Establishment in culture of pluripotential cellsfrom mouse embryos. Nature1981,292(5819):154-156.
    [6] Thompson S, Clarke AR, Pow AM, Hooper ML, Melton DW: Germ linetransmission and expression of a corrected HPRT gene produced by genetargeting in embryonic stem cells. Cell1989,56(2):313-321.
    [7] Koller BH, Hagemann LJ, Doetschman T, Hagaman JR, Huang S, Williams PJ,First NL, Maeda N, Smithies O: Germ-line transmission of a plannedalteration made in a hypoxanthine phosphoribosyltransferase gene byhomologous recombination in embryonic stem cells. Proceedings of theNational Academy of Sciences1989,86(22):8927-8931.
    [8] Zijlstra M, Li E, Sajjadi F, Subramani S, Jaenisch R: Germ-line transmissionof a disrupted β2microglobulin gene produced by homologousrecombination in embryonic stem cells.1989.
    [9] Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH: Viable offspringderived from fetal and adult mammalian cells. Nature1997,385(6619):810-813.
    [10] Zakhartchenko V, Alberio R, Stojkovic M, Prelle K, Schernthaner W,Stojkovic P, Wenigerkind H, Wanke R, Düchler M, Steinborn R: Adultcloning in cattle: potential of nuclei from a permanent cell line and fromprimary cultures. Molecular reproduction and development1999,54(3):264-272.
    [11] Polejaeva IA, Chen S-H, Vaught TD, Page RL, Mullins J, Ball S, Dai Y,Boone J, Walker S, Ayares DL: Cloned pigs produced by nuclear transferfrom adult somatic cells. Nature2000,407(6800):86-90.
    [12] McCreath K, Howcroft J, Campbell K, Colman nA, Schnieke A, Kind A:Production of gene-targeted sheep by nuclear transfer from culturedsomatic cells. Nature2000,405(6790):1066-1069.
    [13] Lai L, Kolber-Simonds D, Park K-W, Cheong H-T, Greenstein JL, Im G-S,Samuel M, Bonk A, Rieke A, Day BN: Production of α-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science2002,295(5557):1089-1092.
    [14] Miller DG, Wang P-R, Petek LM, Hirata RK, Sands MS, Russell DW: Genetargeting in vivo by adeno-associated virus vectors. Nature biotechnology2006,24(8):1022-1026.
    [15] Carter P, Samulski R: Adeno-associated viral vectors as gene deliveryvehicles. International journal of molecular medicine2000,6(1):17-44.
    [16] Hirata R, Chamberlain J, Dong R, Russell DW: Targeted transgene insertioninto human chromosomes by adeno-associated virus vectors. Naturebiotechnology2002,20(7):735-738.
    [17] Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ,Rogan MP, Pezzulo AA, Karp PH, Itani OA: Disruption of the CFTR geneproduces a model of cystic fibrosis in newborn pigs. Science2008,321(5897):1837-1841.
    [18] Sun X, Yan Z, Yi Y, Li Z, Lei D, Rogers CS, Chen J, Zhang Y, Welsh MJ,Leno GH: Adeno-associated virus–targeted disruption of the CFTR genein cloned ferrets. The Journal of clinical investigation2008,118(4):1578.
    [19] Zhu C, Li B, Yu G, Chen J, Yu H, Chen J, Xu X, Wu Y, Zhang A, Cheng G:Production of Prnp/goats by gene targeting in adult fibroblasts.Transgenic research2009,18(2):163-171.
    [20] Zou J, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau-Beganny S, ChouB-K, Chen G, Ye Z, Park I-H, Daley GQ: Gene targeting of a disease-relatedgene in human induced pluripotent stem and embryonic stem cells. CellStem Cell2009,5(1):97-110.
    [21] Miller J, McLachlan A, Klug A: Repetitive zinc-binding domains in theprotein transcription factor IIIA from Xenopus oocytes. The EMBOjournal1985,4(6):1609.
    [22] Wolfe SA, Nekludova L, Pabo CO: DNA recognition by Cys2His2zincfinger proteins. Annual review of biophysics and biomolecular structure2000,29(1):183-212.
    [23] Pavletich NP, Pabo CO: Zinc finger-DNA recognition: crystal structure ofa Zif268-DNA complex at2.1A. Science1991,252(5007):809-817.
    [24] Wah DA, Bitinaite J, Schildkraut I, Aggarwal AK: Structure of FokI hasimplications for DNA cleavage. Proceedings of the National Academy ofSciences1998,95(18):10564-10569.
    [25] Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I: FokI dimerization isrequired for DNA cleavage. Proceedings of the National Academy ofSciences1998,95(18):10570-10575.
    [26] Segal DJ, Beerli RR, Blancafort P, Dreier B, Effertz K, Huber A, Koksch B,Lund CV, Magnenat L, Valente D: Evaluation of a modular strategy for theconstruction of novel polydactyl zinc finger DNA-binding proteins.Biochemistry2003,42(7):2137-2148.
    [27] Dreier B, Fuller RP, Segal DJ, Lund CV, Blancafort P, Huber A, Koksch B,Barbas CF: Development of zinc finger domains for recognition of the5′-CNN-3′family DNA sequences and their use in the construction ofartificial transcription factors. Journal of Biological Chemistry2005,280(42):35588-35597.
    [28] Liu Q, Xia Z, Case CC: Validated zinc finger protein designs for all16GNN DNA triplet targets. Journal of Biological Chemistry2002,277(6):3850-3856.
    [29] Miller JC, Holmes MC, Wang J, Guschin DY, Lee Y-L, Rupniewski I,Beausejour CM, Waite AJ, Wang NS, Kim KA: An improved zinc-fingernuclease architecture for highly specific genome editing. Naturebiotechnology2007,25(7):778-785.
    [30] Kim HJ, Lee HJ, Kim H, Cho SW, Kim J-S: Targeted genome editing inhuman cells with zinc finger nucleases constructed via modular assembly.Genome research2009,19(7):1279-1288.
    [31] Foley JE, Yeh J-RJ, Maeder ML, Reyon D, Sander JD, Peterson RT, Joung JK:Rapid mutation of endogenous zebrafish genes using zinc finger nucleasesmade by Oligomerized Pool ENgineering (OPEN). PloS one2009,4(2):e4348.
    [32] Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM,Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA: Rapid“open-source” engineering of customized zinc-finger nucleases for highlyefficient gene modification. Molecular cell2008,31(2):294-301.
    [33] Hurt JA, Thibodeau SA, Hirsh AS, Pabo CO, Joung JK: Highly specific zincfinger proteins obtained by directed domain shuffling and cell-basedselection. Proceedings of the National Academy of Sciences2003,100(21):12271-12276.
    [34] Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, CurtinSJ, Blackburn JS, Thibodeau-Beganny S, Qi Y: Selection-freezinc-finger-nuclease engineering by context-dependent assembly (CoDA).Nature methods2011,8(1):67-69.
    [35] Beumer KJ, Trautman JK, Bozas A, Liu J-L, Rutter J, Gall JG, Carroll D:Efficient gene targeting in Drosophila by direct embryo injection withzinc-finger nucleases. Proceedings of the National Academy of Sciences2008,105(50):19821-19826.
    [36] Gupta A, Meng X, Zhu LJ, Lawson ND, Wolfe SA: Zinc fingerprotein-dependent and-independent contributions to the in vivo off-targetactivity of zinc finger nucleases. Nucleic acids research2011,39(1):381-392.
    [37] Lloyd A, Plaisier CL, Carroll D, Drews GN: Targeted mutagenesis usingzinc-finger nucleases in Arabidopsis. Proceedings of the National Academyof Sciences of the United States of America2005,102(6):2232-2237.
    [38] Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS,Wood A, Cui X, Meng X: Knockout rats via embryo microinjection ofzinc-finger nucleases. Science2009,325(5939):433-433.
    [39] Yang D, Yang H, Li W, Zhao B, Ouyang Z, Liu Z, Zhao Y, Fan N, Song J,Tian J: Generation of PPARγ mono-allelic knockout pigs via zinc-fingernucleases and nuclear transfer cloning. Cell research2011,21(6):979.
    [40] Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, Crooks GM, KohnDB, Gregory PD, Holmes MC: Human hematopoietic stem/progenitor cellsmodified by zinc-finger nucleases targeted to CCR5control HIV-1in vivo.Nature biotechnology2010,28(8):839-847.
    [41] Bonas U, Stall RE, Staskawicz B: Genetic and structural characterizationof the avirulence gene avrBs3from Xanthomonas campestris pv.vesicatoria. Molecular and General Genetics MGG1989,218(1):127-136.
    [42] Boch J, Bonas U: Xanthomonas AvrBs3family-type III effectors:discovery and function. Annual review of phytopathology2010,48:419-436.
    [43] Moscou MJ, Bogdanove AJ: A simple cipher governs DNA recognition byTAL effectors. Science2009,326(5959):1501-1501.
    [44] Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA,Somia NV, Bogdanove AJ, Voytas DF: Efficient design and assembly ofcustom TALEN and other TAL effector-based constructs for DNAtargeting. Nucleic acids research2011,39(12):e82-e82.
    [45] Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE,Leung E, Hinkley SJ: A TALE nuclease architecture for efficient genomeediting. Nature biotechnology2011,29(2):143-148.
    [46] Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, ZhangL, Santiago Y, Miller JC: Genetic engineering of human pluripotent cellsusing TALE nucleases. Nature biotechnology2011,29(8):731-734.
    [47] Tesson L, Usal C, Ménoret S, Leung E, Niles BJ, Remy S, Santiago Y, VincentAI, Meng X, Zhang L: Knockout rats generated by embryo microinjectionof TALENs. Nature biotechnology2011,29(8):695-696.
    [48] Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh J-RJ:Targeted gene disruption in somatic zebrafish cells using engineeredTALENs. Nature biotechnology2011,29(8):697.
    [49] Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B: Heritable gene targetingin zebrafish using customized TALENs. Nature biotechnology2011,29(8):699-700.
    [50] Wood AJ, Lo T-W, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, MillerJC, Leung E, Meng X: Targeted genome editing across species using ZFNsand TALENs. Science2011,333(6040):307-307.
    [51] Li T, Liu B, Spalding MH, Weeks DP, Yang B: High-efficiencyTALEN-based gene editing produces disease-resistant rice. Naturebiotechnology2012,30(5):390-392.
    [52] Mahfouz MM, Li L, Piatek M, Fang X, Mansour H, Bangarusamy DK, ZhuJ-K: Targeted transcriptional repression using a chimeric TALE-SRDXrepressor protein. Plant molecular biology2012,78(3):311-321.
    [53] Liu J, Li C, Yu Z, Huang P, Wu H, Wei C, Zhu N, Shen Y, Chen Y, Zhang B:Efficient and Specific Modifications of the Drosophila Genome byMeans of an Easy TALEN Strategy. Journal of genetics and genomics2012,39(5):209-215.
    [54] Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu J-K, Shi Y, Yan N:Structural basis for sequence-specific recognition of DNA by TALeffectors. Science2012,335(6069):720-723.
    [55] Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD: Genome editingwith engineered zinc finger nucleases. Nature Reviews Genetics2010,11(9):636-646.
    [56] Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu J-K: Denovo-engineered transcription activator-like effector (TALE) hybridnuclease with novel DNA binding specificity creates double-strand breaks.Proceedings of the National Academy of Sciences2011,108(6):2623-2628.
    [57] Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P: Efficientconstruction of sequence-specific TAL effectors for modulatingmammalian transcription. Nature biotechnology2011,29(2):149-153.
    [58] Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F: Atranscription activator-like effector toolbox for genome engineering.Nature protocols2012,7(1):171-192.
    [59] Morbitzer R, Elsaesser J, Hausner J, Lahaye T: Assembly of customTALE-type DNA binding domains by modular cloning. Nucleic acidsresearch2011,39(13):5790-5799.
    [60] Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S: Assembly ofdesigner TAL effectors by Golden Gate cloning. PloS one2011,6(5):e19722.
    [61] Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK: FLASHassembly of TALENs for high-throughput genome editing. Naturebiotechnology2012,30(5):460-465.
    [62] Sun N, Liang J, Abil Z, Zhao H: Optimized TAL effector nucleases(TALENs) for use in treatment of sickle cell disease. Molecular BioSystems2012,8(4):1255-1263.
    [63] Tong C, Huang G, Ashton C, Wu H, Yan H, Ying Q-L: Rapid andcost-effective gene targeting in rat embryonic stem cells by TALENs.Journal of genetics and genomics2012,39(6):275-280.
    [64] Zu Y, Tong X, Wang Z, Liu D, Pan R, Li Z, Hu Y, Luo Z, Huang P, Wu Q:TALEN-mediated precise genome modification by homologousrecombination in zebrafish. Nature methods2013,10(4):329-331.
    [65] Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC,Katibah GE, Amora R, Boydston EA, Zeitler B et al: Efficient targeting ofexpressed and silent genes in human ESCs and iPSCs using zinc-fingernucleases. Nat Biotechnol2009,27(9):851-857.
    [66] Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M,Voytas DF, Long CR, Whitelaw CBA, Fahrenkrug SC: EfficientTALEN-mediated gene knockout in livestock. Proceedings of the NationalAcademy of Sciences2012,109(43):17382-17387.
    [67] Song J, Zhong J, Guo X, Chen Y, Zou Q, Huang J, Li X, Zhang Q, Jiang Z,Tang C et al: Generation of RAG1-and2-deficient rabbits by embryomicroinjection of TALENs. Cell Res2013,23(8):1059-1062.
    [68] Liu H, Chen Y, Niu Y, Zhang K, Kang Y, Ge W, Liu X, Zhao E, Wang C, Lin S:TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys.Cell Stem Cell2014,14(3):323-328.
    [69] Cohen J: Breakthrough of the year. Science2011,334:1628.
    [70] Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A: Nucleotidesequence of the iap gene, responsible for alkaline phosphatase isozymeconversion in Escherichia coli, and identification of the gene product.Journal of Bacteriology1987,169(12):5429-5433.
    [71] Jansen R, van Embden JD, Gaastra W, Schouls LM: Identification of a novelfamily of sequence repeats among prokaryotes. Omics: a journal ofintegrative biology2002,6(1):23-33.
    [72] Bolotin A, Quinquis B, Sorokin A, Ehrlich SD: Clustered regularlyinterspaced short palindrome repeats (CRISPRs) have spacers ofextrachromosomal origin. Microbiology2005,151(8):2551-2561.
    [73] Mojica FJ, García-Martínez J, Soria E: Intervening sequences of regularlyspaced prokaryotic repeats derive from foreign genetic elements. Journalof Molecular evolution2005,60(2):174-182.
    [74] Pourcel C, Salvignol G, Vergnaud G: CRISPR elements in Yersinia pestisacquire new repeats by preferential uptake of bacteriophage DNA, andprovide additional tools for evolutionary studies. Microbiology2005,151(3):653-663.
    [75] Makarova KS, Aravind L, Grishin NV, Rogozin IB, Koonin EV: A DNArepair system specific for thermophilic Archaea and bacteria predicted bygenomic context analysis. Nucleic acids research2002,30(2):482-496.
    [76] Wiedenheft B, Sternberg SH, Doudna JA: RNA-guided genetic silencingsystems in bacteria and archaea. Nature2012,482(7385):331-338.
    [77] DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM: Genomeengineering in Saccharomyces cerevisiae using CRISPR-Cas systems.Nucleic acids research2013,41(7):4336-4343.
    [78] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E: Aprogrammable dual-RNA–guided DNA endonuclease in adaptivebacterial immunity. Science2012,337(6096):816-821.
    [79] Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W,Marraffini LA: Multiplex genome engineering using CRISPR/Cas systems.Science2013,339(6121):819-823.
    [80] Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, JaenischR: One-step generation of mice carrying mutations in multiple genes byCRISPR/Cas-mediated genome engineering. Cell2013,153(4):910-918.
    [81] Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT,Yeh JJ, Joung JK: Efficient genome editing in zebrafish using aCRISPR-Cas system. Nature biotechnology2013,31(3):227-229.
    [82] Hai T, Teng F, Guo R, Li W, Zhou Q: One-step generation of knockout pigsby zygote injection of CRISPR/Cas system. Cell research2014.
    [83] Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W:Generation of Gene-Modified Cynomolgus Monkey viaCas9/RNA-Mediated Gene Targeting in One-Cell Embryos. Cell2014.
    [84] Sternberg N, Sauer B, Hoess R, Abremski K: Bacteriophage P1 cregene and its regulatory region: Evidence for multiple promoters and forregulation by DNA methylation. Journal of molecular biology1986,187(2):197-212.
    [85] Hoess RH, Abremski K: Interaction of the bacteriophage P1recombinaseCre with the recombining site loxP. Proceedings of the National Academy ofSciences1984,81(4):1026-1029.
    [86] Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K: Deletion of a DNApolymerase beta gene segment in T cells using cell type-specific genetargeting. Science1994,265(5168):103-106.
    [87] Ivanova A, Signore M, Caro N, Greene ND, Copp AJ, Martinez‐Barbera JP:In vivo genetic ablation by Cre‐mediated expression of diphtheria toxinfragment A. Genesis2005,43(3):129-135.
    [88] Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H:Transcriptional activation by tetracyclines in mammalian cells. Science1995,268(5218):1766-1769.
    [89] Graia F, Lespinet O, Rimbault B, Dequard‐Chablat M, Coppin E, Picard M:Genome quality control: RIP (repeat‐induced point mutation) comes toPodospora. Molecular microbiology2001,40(3):586-595.
    [90] Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K: Enhancedefficiency of human pluripotent stem cell genome editing throughreplacing TALENs with CRISPRs. Cell Stem Cell2013,12(4):393-394.
    [91] Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR:High-throughput profiling of off-target DNA cleavage revealsRNA-programmed Cas9nuclease specificity. Nature biotechnology2013,31(9):839-843.
    [92] Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH: Genetictransformation of mouse embryos by microinjection of purified DNA.Proceedings of the National Academy of Sciences1980,77(12):7380-7384.
    [93] Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG,Birnberg NC, Evans RM: Dramatic growth of mice that develop from eggsmicroinjected with metallothionein–growth hormone fusion genes.1982.
    [94] Hammer RE, Pursel VG, Rexroad CE, Wall RJ, Bolt DJ, Ebert KM, PalmiterRD, Brinster RL: Production of transgenic rabbits, sheep and pigs bymicroinjection.1985.
    [95] Roschlau K, Rommel P, Andreewa L, Zackel M, Roschlau D, Zackel B,Schwerin M, Huhn R, Gazarjan KG: Gene transfer experiments in cattle. JReprod Fertil Suppl1989,38:153-160.
    [96] Thomas KR, Capecchi MR: Site-directed mutagenesis by gene targeting inmouse embryo-derived stem cells. Cell1987,51(3):503-512.
    [97] Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson RE, Schulze EN,Song H, Hsieh C-L: Germline competent embryonic stem cells derivedfrom rat blastocysts. Cell2008,135(7):1299-1310.
    [98] Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, WilmutI, Colman A, Campbell KH: Human factor IX transgenic sheep producedby transfer of nuclei from transfected fetal fibroblasts. Science1997,278(5346):2130-2133.
    [99] Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery Jr CA,Butel JS, Bradley A: Mice deficient for p53are developmentally normalbut susceptible to spontaneous tumours. Nature1992,356(6366):215-221.
    [100] Simonelli F, Margaglione M, Testa F, Cappucci G, Manitto MP, Brancato R,Rinaldi E: Apolipoprotein E polymorphisms in age-related maculardegeneration in an Italian population. Ophthalmic research2001,33(6):325-328.
    [101] Yang D, Wang C-E, Zhao B, Li W, Ouyang Z, Liu Z, Yang H, Fan P, O'Neill A,Gu W: Expression of Huntington's disease protein results in apoptoticneurons in the brains of cloned transgenic pigs. Human molecular genetics2010,19(20):3983-3994.
    [102] Yang H, Wang G, Sun H, Shu R, Liu T, Wang C-E, Liu Z, Zhao Y, Zhao B,Ouyang Z: Species-dependent neuropathology in transgenic SOD1pigs.Cell research2014.
    [103] Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouseembryonic and adult fibroblast cultures by defined factors. Cell2006,126(4):663-676.
    [104] Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S,Nie J, Jonsdottir GA, Ruotti V, Stewart R: Induced pluripotent stem celllines derived from human somatic cells. Science2007,318(5858):1917-1920.
    [105] Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K,Yamanaka S: Induction of pluripotent stem cells from adult humanfibroblasts by defined factors. Cell2007,131(5):861-872.
    [106] Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M,Sato H, Lee Y-S, Usui J-i, Knisely A: Generation of rat pancreas in mouseby interspecific blastocyst injection of pluripotent stem cells. Cell2010,142(5):787-799.
    [107] McPherron AC, Lee S-J: Double muscling in cattle due to mutations in themyostatin gene. Proceedings of the National Academy of Sciences1997,94(23):12457-12461.
    [108] Lai L, Kang JX, Li R, Wang J, Witt WT, Yong HY, Hao Y, Wax DM, MurphyCN, Rieke A: Generation of cloned transgenic pigs rich in omega-3fattyacids. Nature biotechnology2006,24(4):435-436.
    [109] Richt JA, Kasinathan P, Hamir AN, Castilla J, Sathiyaseelan T, Vargas F,Sathiyaseelan J, Wu H, Matsushita H, Koster J: Production of cattle lackingprion protein. Nature biotechnology2007,25(1):132-138.
    [110] Rider TH, Zook CE, Boettcher TL, Wick ST, Pancoast JS, Zusman BD:Broad-spectrum antiviral therapeutics. PloS one2011,6(7):e22572.
    [111] Skuk D, Goulet M, Roy B, Chapdelaine P, Bouchard J-P, Roy R, DugréFJ,Sylvain M, Lachance J-G, Deschênes L: Dystrophin expression in musclesof duchenne muscular dystrophy patients after high-density injections ofnormal myogenic cells. Journal of Neuropathology&ExperimentalNeurology2006,65(4):371-386.
    [112] Marciniak RA, Lombard DB, Johnson FB, Guarente L: Nucleolarlocalization of the Werner syndrome protein in human cells. Proceedingsof the National Academy of Sciences1998,95(12):6887-6892.
    [113] Hasty P, Rivera-Perez J, Bradley A: The length of homology required forgene targeting in embryonic stem cells. Molecular and cellular biology1991,11(11):5586-5591.