自凝固磷酸钙/纤维蛋白协同诱导成骨机制的研究及成骨材料的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
寻找理想的生物填充材料来治疗和修复大段骨缺损,一直是骨科临床医生和材料学者共同努力的目标。理想的生物填充材料应该具备以下特点:1具有良好的生物相容性,该材料在体内没有细胞毒性和明显的炎性反应。2可吸收、可降解,且材料的降解速度与骨再生的速度相适应。3有良好的机械强度。4常温下易加工。5有合适的孔径和孔隙率,使得细胞能够长入等。自固化磷酸钙骨水泥(CPC)由于其良好的生物相容性、良好的骨传导和骨诱导作用而被材料学者所关注,然而,CPC因其脆性较强,无法应用于受力部位的骨缺损的修复和治疗。因此,改良和提高CPC的生物力学性状同时又保持其良好的促进骨再生的能力,也成为广大学者研究的热点。在CPC中引入不同的物质在某种程度上解决了CPC力学性状差的现象,生物蛋白胶(FS)是临床上应用广泛的一种生物粘合剂,对创伤止血、组织粘连以及促进组织再生方面有良好的作用。生物蛋白胶的引入是否能改良CPC的脆性,同时和周围骨组织又具有良好的生物相容性,且能刺激周围骨组织再生,仍需要进一步的研究探索。本研究旨在探寻复合材料CPC/FG的成骨效应以及寻求两者的最佳配比浓度。
     1、不同配比浓度的复合材料CPC/FG材料性状的研究以及对成骨细胞生物学行为的影响
     本实验拟通过构建不同配比的纳微米复合材料CPC/FG,探索不同配比复合材料的材料学特性,继而通过细胞学等技术和方法,研究CPC/FG诱导成骨的细胞学依据。
     本实验拟通过对配比浓度为1:1、3:1、5:1(ml/g)的CPC/FG进行初凝和终凝时间的测定、电镜扫描以及体外生物力学测试,单纯的CPC作为实验对照组,来判断不同配比浓度的CPC/FG在材料学性能上的差异。以及通过研究成骨细胞在不同配比浓度的材料表面的黏附、增殖以及功能表达,评价不同材料在骨与材料界面的体外模型中促进成骨能力上的差异。初凝和终凝时间的测定结果(min):1:1、3:1、5:1组的初凝时间分别为20.41±1.21、15.37±1.1、8.33±0.62;终凝时间分别为24.33±1.36、17.26±1.04、9.63±0.79,均能满足临床需要。从电镜扫描结果可以发现,CPC/FG的表面较单纯的CPC组致密而光滑,孔径也随着FG浓度的增加而降低,单纯的CPC表面颗粒直径悬殊较大,且有较大的孔洞存在。体外生物力学测试发现,任意配比浓度的CPC/FG,其压缩强度和弹性模量均较单纯的CPC组有显著的提高(p<0.05),有效的提高和改善了CPC的机械性能。在体外细胞学实验中,成骨细胞贴附1h、2h后,四组细胞贴附数量无统计学差异,但细胞均完全展开且细胞骨架清晰可见,且均较完全空白对照组高(p<0.05)。细胞增殖1d、3d、7d后,四组材料增殖能力以及ALP(碱性磷酸酶活性)无明显差异,但均较完全空白对照组高(p<0.05)。由此可见,CPC中引入FG,提高了CPC的材料学性能,同时在体外细胞培养中也表现出良好的相容性。
     2、不同配比浓度的复合材料CPC/FG在兔子体内促进骨组织再生的对比研究
     为了研究CPC/FG在体内的成骨效应以及在体内促进骨组织再生的最佳配比浓度,该实验将配比浓度为1:1、3:1、5:1(ml/g)的CPC/FG模块分别植入新西兰大白兔的股骨髁部缺损中,单纯的CPC作为实验对照组,在术后4周、8周和12周进行micro-CT扫描、体内生物力学检测和组织学染色来判断刺激骨组织再生的最佳配比浓度。Micro-CT扫描结果显示,CPC/FG配比浓度为1:1时在体内代谢速度最快,成骨效果最佳。RMVF在配比浓度为1:1时,其数值为四组中最低(p<0.05),术后4周为87.01±1.96%,8周为76.90±2.34%,12周为63.21±2.89%。BV/TV在术后4周、8周以及12周分别达到1.45±0.42%,7.35±1.45%,和29.10±1.67%,均为四组中最高(p<0.05)。体内生物力学测试中,任意配比浓度的CPC/FG,其压缩强度和弹性模量均较单纯的CPC组有显著的提高(p<0.05),且CPC/FG配比浓度为1:1时,其机械性能最接近体内松质骨。组织学V-G染色在形态学上更直接的反应出CPC/FG配比浓度为1:1时在体内新生骨的成骨量最佳。术后12周,1:1组可见材料周边和中心部位被大量的骨组织所替代,且为成熟的骨小梁结构。由此可见,CPC/FG在配比浓度为1:1(ml/g)时,在体内促进骨组织再生方面,无论是机械性能还是生物学性能效果最佳。
     3、模块型CPC/FG和注射型CPC/FG在兔子体内促进骨组织再生能力的对比研究
     生物材料的制备方法不同,往往会致其有不同的超微结构,从而影响其机械性能和生物学性能。本实验拟通过对配比浓度为1:1(ml/g)的模块型CPC/FG和注射型CPC/FG在新西兰大白兔的股骨髁部缺损模型中刺激骨再生能力的对比,来寻找较优的材料制备方法。该实验同样用micro-CT扫描、体内生物力学检测和组织学染色的方法在术后6周和12周取材检测。Micro-CT扫描结果显示,注射型CPC/FG组体内降解速度较快,成骨能力较强。改组RMVF在术后6周和12周都低于模块型CPC/FG(p<0.05),分别为70.63±2.38%和58.39±4.09%。改组BV/TV则较高(p<0.05),分别为10.56±0.83%和39.73±4.47%。体内生物力学结果表明注射型CPC/FG的压缩强度和弹性模量在术后都较稳定,于周围松质骨形成较平衡的力学组合。该实验的组织学V-G染色支持micro-CT的数据,可见注射型CPC/FG在术后12周,材料被大量的网状骨小梁结构所替代,材料大量降解,残存的少量材料存在于骨组织网状空隙中间,材料和骨的生物相容性较佳。由此可见,相比模块型CPC/FG,注射型CPC/FG不仅实现了微创条件下的操作,同时在体内还表现出较优良的机械性能和生物学性能,有巨大的应用潜能。
     本研究通过以上三部分的实验支持CPC/FG在促进成骨方面效果显著,克服了单纯CPC生物力学性能差的缺点,同时又保留了其良好的骨传导和骨诱导作用,且在注射型CPC/FG在配比浓度为1:1(ml/g)时,刺激成骨效果最佳。
The material researchers and the doctors in clinic focused on the research to find theideal biomaterial for the bone defects. The ideal material should include:(1) the goodbiocompatibility;(2) degradable and absorbable;(3) the good biomechanical properties;(4)preparation on the room temperature;(5) optimal pore size. Nowadays, CPC is the goodosteoinductive and osteoconductive material known by material scientists and is widelyused in bone tissue engineering. However, poor mechanical property of CPC has limitedits application into the non-load bearing condition. In order to improve the mechanicalproperties of CPC, other injectable materials such as chitosan, gelatin and collagen havebeen introduced into this material. Fibrin Glue (FG) is a kind of elastomeric,biocompatible material with sufficient adhesive strength, which has been approved by theChinese State Food and Drug Administration. It is unclear that the CPC/FG compositewhether could stimulate the bone regeneration. And it is also unclear that whether different ratio of CPC and FG has different properties for the bone reconstruction.
     1、The mechanical and biological properties of an injectable calcium phosphatecement-fibrin glue composite for bone regeneration in vitro
     Calcium phosphate cement (CPC) that can be injected to form a scaffold in situ haspromise for the repair of bone defects. However, its low-strength limits the CPC to nonstress-bearing repairs. Fibrin glue (FG) with good sticking property and biocompatibilityis possible used to reinforce the CPC. The objective of this study was to investigate theeffects of FG on the mechanical and biological properties of CPC in an injectable CPC/FGcomposite. The initial setting time of this CPC/FG was delayed compared with the CPCcontrol at different powder/liquid (P/L) mass ratio (p>0.05). At a P/L of5, the strengthwas (38.4±4.32) MPa for the CPC/FG, much higher than (27.42±2.85) MPa for the CPCalone (p <0.05). Osteoblast cell adhesion and proliferation were examined by MTTmethod and alkaline phosphatase (ALP) was assessed using test kits. The data allsupported that CPC/FG at any ratio could stimulate the activity of the osteoblast cell. Theresults demonstrate that this stronger CPC/FG scaffold may be useful for osteoblastcelll-based bone regeneration in moderate load-bearing orthopedic applications.
     2、The Mechanical and Biological Studies of Calcium Phosphate Cement-Fibrin Gluefor Bone Reconstruction of Rabbit femoral defects
     In order to improve the mechanical and biological properties of calcium phosphatecement (CPC, nanometer-biomaterial) for bone reconstruction in the rabbit femoral defectmodel, fibrin glue (FG, the natural product, purified from the blood) was introduced atthree different ratios. The CPC powder and the FG solution were mixed respectively at thepower/liquid (P/L) ratios (g/ml) of1:1,3:1and5:1(g/ml), and pure CPC was used ascontrol. After being implanted into the femoral defect in rabbit, the healing process wasevaluated by micro-CT scan, biomechanical testing and histological examination. Bymicro-CT analysis the P/L ratio of1:1(g/ml) group indicated largest quantity of new boneformation at4w,8w, and12w after implantation respectively. BV/TV of1:1group was highest in the four groups, which was1.45±0.42%,7.35±1.45%, and29.10±1.67%at4w,8w, and12w after the operation respectively. In the biomechanical tests, thecompressive strength and the elastic modulus of three CPC/FG groups were much higherthan those of the pure CPC group at the determined time point (p<0.05). The histologicalevaluation also showed the best osseointegration in the1:1group at4w,8w, and12w afterthe operation respectively. In1:1group, the bone grew into the pore of cement in thelaminar arrangement and connected with the cement tightly at the12thweek after theoperation. This present study indicated that CPC/FG composite at the P/L ratio of1:1(g/ml)stimulated bone regeneration better than any other designed group, which suggested thatCPC/FG at the P/L ratio of1:1has significant potential as the bioactive material for thetreatment of bone defects.
     3、The Comparison between the remolded CPC/FG and the injectable CPC/FG forthe Reconstruction of femoral defects in a rabbit model
     The aim of this study was to compare the remolded CPC/FG composite with theinjectable CPC/FG composite at the P/L ratio of1:1(g/ml) for new bone formation.Calcium phosphate cement (CPC) is a family of injectable biomaterial made of calciumphosphate, and FG is the natural product purified from human blood. In this study, theremolded CPC/FG composite at the P/L ratio of1:1(g/ml) was defined as Group A, andthe injectable one was defined as Group B. After being implanted into the cavity defect offemur in rabbits, the healing process was evaluated by micro-CT scan, biomechanicaltesting and histological examination at6w and12w after the operation. In micro-CTanalysis, Group B indicated larger quantity of new bone formation at6week and12weekafter the operation. The compressive strength of Group B was lower than that of Group Aat12week (p<0.05), and the elastic modules of Group B was more stable after theoperation compared with Group A. The histological analysis showed the similar imagingas micro-CT analysis. This present study indicated that the injectable CPC/FG compositeat the P/L ratio of1:1(g/ml) stimulated bone regeneration better than the remolded one.
     The study showed that the CPC/FG could stimulate the bone regeneration, and the injectabla CPC/FG at the P/L ratio of1:1(ml/g) has the best activity for new boneformation.
引文
[1] Perez RA, Del Valle S, Altankov G, et al. Porous hydroxyapatite andgelatin/hydroxyapatite microspheres obtained by calcium phosphate cementemulsion. Journal of Biomedical Materials Research Part B: Applied Biomaterials.2011;97:156-66
    [2] Moreau JL, Weir MD, Xu HHK. Self‐setting collagen‐calcium phosphate bonecement: Mechanical and cellular properties. Journal of Biomedical MaterialsResearch Part A.2009;91:605-13
    [3] Wang X, Ma J, Wang Y,et al. Structural characterization of phosphorylatedchitosan and their applications as effective additives of calcium phosphate cements.Biomaterials.2001;22:2247-55
    [4]方佩雯,贾维敏。组织工程中天然支架材料的研究现状[J].医学文选,2006,25(4):901-3
    [5] Kim HK, Moran ME, Salter RB. The potential for regeneration of cartilage in defectcreated by chondral shaving and subchondral abrasion. An experimentalinvestigation in rabbits[J].J Bone Joint Surg,1991,73(9):1301-15
    [6]李立华,李红,罗芮红,等.壳聚糖及其衍生物在组织工程中的应用[J].功能高分子学报,2005,18(2):347-52
    [7]覃昱,裴国献,谢德明,等.壳聚糖海藻酸钠微球与骨髓基质细胞相容性实验研究[J].中国矫形外科杂志,2003,11(13):901-3
    [8] Chen YL,Lee HP,Chan HY,et al. Composite chondroitin-6-sulfate/dermatansulfate/chitosan scaffolds for cartilage tissue engineering[J].Biomaterials,2007,28:2294-2305
    [9] Plaas AHK,Wong-Palms S,Roughley PJ,et al. Chemical and immunological assay ofthe nonreducing terminal residues of chondroitin sulfate from hunman aggrecan [J].Biol Chem,1997,272(20):603-610
    [10] Du C, Cui FZ, Zhang W, et al. Formation of calcium phosphate/collagen compositesthrough mineralization of collagen matrix. J Biomed Mater Res200050:518-27
    [11]陈鹏,毛天球,刘冰,等.胶原基纳米骨的遗传毒性及对体外培养细胞影响的研究.口腔医学研究200521:353-6
    [12]朱菲,王影,吴燕丽,等.胶原基纳米骨结合胶原膜修复兔下颌骨缺损的研究.现代口腔医学杂志200418:503-6
    [13] LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. ClinOrthop20021:81-98
    [14] Zhang Z, Mao J, Feng X, et al. In vitro cytotoxicity of polyphosphoester as a novelinjectable alveolar replacement material. J Huazhong Univ Sci Technolog Med Sci.2008;28(5):604-7
    [15] Hesaraki S, Zamanian A, Moztarzadeh F. The influence of the acidic component ofthe gas-foaming porogen used in preparing an injectable porous calcium phosphatecement on its properties: acetic acid versus citric acid. J Biomed Mater Res B ApplBiomater.2008:86(1):208-16
    [16] Vagefi MR, McMullan TF, McCann JD, et al. Osteoplasty using calcium hydroxyl-apatite filler. Ophthal Plast Reconstr Surg.2008;24(3);190-3
    [17] Watanabe J, Kashli M, Hirao M, et al. Quick-forming hydroxyapatite/agarose gelcomposites induce bone regenerarion. J Biomed Mater Res A.2007;83(3):845-52
    [18] Laschke MW, Witt K, Pohlemann T, et al. Injectable nanocrystalline hydroxyapatitepaste for bone substitute: in vivo analysis of biocompatibility and cascularization. JBiomed Mater Res B Appl Biomater.2007;82(2):494-505
    [19] Turner TM, Urban RM, Gitelis S, et al. Resorption evaluation of a large bolus ofcalcium sulfate in a canine medullary defect. Orthopedics.2003,26(5, Suppl.):577–9
    [20] Togawa D, Reid J, Bauer TW, et al. Histological evaluation of calcium sulfateHA/TCP composites using a canine metaphyseal defect model. Trans50th AnnualMeeting of Orthopaedic Research Society.2004,10:40-50
    [21] Rohmiller MT, Schwalm D, Glattes RC, et al. Evaluation of calcium sulfate pastefor augmentation of lumbar pedicle screw pullout strength. Spine J.2002,2:255–60
    [22] Glazer PA, Spencer UM, Alkalay RN, et al. In vivo evaluation of calcium sulfate asa bone graft substitute for lumbar spinal fusion. Spine J.2001,1:395–401
    [23] Stubbs D, Deakin M, Chapman-Sheath P, et al. In vivo evaluation of resorbablebone graft substitutes in a rabbit tibial defect model. Biomaterials.2004,25:5037–44.
    [24] Thomas MV, Puleo DA. Calcium sulfate: Properties and clinical applications. JBiomed Mater Res B Appl Biomater.2009;88(2):597-610
    [25] Kennedy JG, Suero EM, O’Loughlin PF, et al. Clinical tips: retrograde drilling oftalar osteochondral defects. Foot Ankle Int.2008;29(6):616-9
    [26] Zhao W, Chang J, Zhai W. Self-setting properties and in vitro bioactivity ofCa3SiO5/CaSO4.1/2H2O composite cement. J Biomed Mater Res A.2008;85(2):336-44
    [27] Mao T, Wang C, Zhang S, et al. An experimental study on rhBMP-2composite bonesubstitute for repairing craniomaxillary bone defects. Clin J Dent Res19981:21-5
    [28]张森林,毛天球,王会信,等.重组人骨形成蛋白-2/珊瑚复合人工骨的研制及其诱导成骨的实验研究.实用口腔医学杂志199814:97-9
    [29] Fukase Y, Eanes ED, Tagagi S, et al. Setting reactions and compressive strengths ofcalcium phosphate cement. J Dent Res,1990,69(12):1852
    [30] Liu C, Shao H, Chen F, et al. Effects of the granularity of raw materials on thehydration and hardening progress of calcium phosphate cement. Biomaterials,200324:4103
    [31] Ooms EM, Wolke JG, van de Heuvel MT, et al. Histological evaluation of the boneresponse to calcium phosphate cement implanted in cortical bone. Biomaterials200324:989
    [32] Pioletti DP, Takei H, Lin T, et al. The effect of calcium phosphate cement particleson osteoblast functions. Biomaterials200021:1103
    [33] Xu HHK, Quinn JB. Calcium phosphate cement containing resorbable fibers forshort-term reinforcement and macroporosoty. Biomaterials200223:193
    [34] Bigi A, Bracci B, Panzawolta S. Effect of added gelatin on the properties of calciumphosphate cement. Biomaterials200425:2893-9
    [35] Wang XH, Ma JB, Wang YN, et al. Structural characterization of phosphorylatedchitosan and their applications as effective additives of calcium phosphate cement.Biomaterials200122:2247-55
    [36] Gbureck U, Barralet JE, Spatz K, et al. Ionic modification of calcium phosphatecement viscosity. Part Ⅰ: hypodermic injection and strength improvement ofapatite cement. Biomaterials200425:2187-95
    [37] LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates[J].Clin Orthop,2002,1:81-98
    [38] Ooms EM, Wolke JG, van der Waerden JP, et al. Trabecular bone response toinjectable calcium phosphate (Ca-P) cement[J]. J Biomed Mater Res,2002,61:9-18
    [39] Livingston T, Ducheyne P, Garino J. In vivo evaluation of a bioactive scaffold forbone tissue engineering[J]. J Biomed Mater Res.2002,62:1-13
    [40] Xu HHK, Quinn JB. Calcium phosphate cement containing resorbable fibers forshort-term reinforcement and macroporosity[J]. Biomaterials,2002,23:193-202
    [41] Zhang Y, Zhang M. Three-dimensional macroporous calcium phosphatebioceramics with nested chitosan sponges for load-bearing bone implants[J]. JBiomed Mater Res,2002,61:1-8
    [42] Barralet JE, Grover L, Gaunt T, et al. Preparation of macroporous calciumphosphate cement tissue engineering scaffold[J]. Biomaterials,2002,23:3063-72
    [43] Del Real RP, Wolke JGC, Vallet Regi M, et al. A new method to producemacropores in calcium phosphate ceramics[J]. Biomaterials,2002,23:3673-80
    [44] Xu HHK, Simon Jr CG, Self-hardening calcium phosphate composite scaffold forbone tissue engineering[J]. J Orthopaedic Research,2003,1:5-8
    [45] Xu HHK, Quinn JB, Takagi S, et al. Synergistic reinforcement of in situ hardeningcalcium phosphate composite scaffold for bone tissue engineering[J]. Biomaterials,2004,25:1029-37
    [46] Knaack D, Goad MEP, Aiolova M, et al. A fully resorbable calcium phosphate bonesubstitute. Partland bone symposium1997692
    [47] Ohura K, Hamanishi C, Tanaka S, et al. Healing of segmental bone defect in ratsinduced by a Beta-TCP-MCPM cement combinated with rhBMP-2. J Biomed MaterRes199944:168-75
    [48] Verheggen R, Merten HA. Correction of skull defects using hydroxyapatite cement(HAC)-evidence derived from animal experiments and clinical experience. ActaMaterial2001143:919-26
    [49]李展振,祝海炳,龙享国等.经皮椎体内自固化磷酸钙灌注成形治疗胸腰椎骨折.骨与关节损伤杂志200217(2):86
    [50]王双艳.对骨质疏松性脊椎骨折注入磷酸钙骨水泥的骨折修复术.日本医学介绍200324(2):87
    [51] Blom EJ, Klein Nulend J, Kliend CP, et al. Transforming growth factor-batalincorporated during setting in calcium phosphate cement stimulates bone celldifferentiation in vivo. J Biomed Mater Res200050:67
    [52] Martinowitz U, Saltz R. Fibrin sealant. Curr Opin Hematol19963(5):395-402
    [53] Brunk B. Fibrin glue. Dtsch Med Wochenschr1989114:2028-9
    [54] Cederholm-Williams SA. Fibrin glue. BMJ308:1570
    [55] Schlag G, Redl H. Fibrin sealant in orthopedic surgery. Clin Orthop1988227:269-285
    [56] Radosevich M, Goubran HI, Burnouf T. Fibrin sealant:scientific rationale, produc-tion method, properties and current clinical use. Vox Sang199772(3):133-143
    [57] Reiss RF, Oz MC. Autologous fibrin glue: production and clinical use.Transfus MedRev199610(2):85-92
    [58] Park YJ, Ku Y, Chung CP, et al. Controlled release of platelet-derived growth factorfrom porous poly (L-lactide) membranes for guided tissue regeneration. JControlled Release199851(2):201-211
    [59] Itoh O. An experimental study on effect of bone morphogenetic protein and fibrinsealant in tendon implantation into bone. Nippon Seikeigeka Gakkai Zasshi199165(8):580-90
    [60] Isogai N. Clinical outcome of digital replantation using the fibrin glue-assistedmivrovascular anastomosis technique. Journal of Hand Surgery-British.200121(5):573-5
    [61] Narakas A. The use of fibrin glue in repair of peripheral nerves. Orthop Clin NorthArn198819:187-199
    [62]王大平,陈其勋,云经平,肖建德.纤维蛋白粘合剂治疗半月板无血运区损伤的实验研究及建议.中国现代手术学杂志20008:191-193
    [63]徐青镭,吴海山,周维江.兔半月板纤维软骨组织缺损的体外修复实验.第二军医大学学报19989(6):545-7
    [64] Munir A Shah, Andrew M Ebert, William E Sanders. Fibrin glue fixation of a digitalosteochondral fracture: case report and review of the literature. The journal of handsurgery200227:464-6
    [65] Keller J,Andreassen TT,Joyce F,Knudsen VE,Jorgensen PH,Lucht U.Fixation ofosteochondral fractures: fibrin sealant tested in dogs. Acta Orthop198556:323-6
    [66] Meyers MH, Herron M. A fibrin adhesive seal for the repair of osteochondralfracture fragments. Clin Orthop1984182:258-63
    [67] Orr TE, Patel AM, Wong B, Hatzigiannis GP, Minas T, Spectou M. Attachment ofperiosteal grafts to articular cartilage with fibrin sealant. J Biomed Mater Res199944(3):308-13
    [68] Homminga GN, Buma P, Koot HW, van der Kraan PM, van den Berg WB.Chondrocytc behavior in fibrin glue in vitro. Acta Orthop Scand199364(4):441-5
    [69] LA Fortier, HO Mohanned, G lust, AJ Nixon. Insulin-like growth factor-Ⅰenhances cell-based repair of articular cartilage. Journal of bone and joint surgery200284:276-7
    [70] Kim NH, Yang KH, Lee HM. Effect of porcine bone morphogenetic protein onhealing of bone defect in the rabbit radius. Yonsei Med J199233(1):54-63
    [71]陈克明,李旭升,刘兴炎.骨形态发生蛋白复合纤维蛋白载体修复骨缺损的实验研究.中华骨科杂志199818(2):69-70
    [72] Bosch P. Aech Orthop Trauma Surg198098:177
    [73] Minamide A, Kawakami M, Hashizume H.Evaluation of carriers of bonemorphogenetic protein for spinal fusion. Spine200126:933-9
    [74]王捷.普通外学手术中应用生物蛋白胶的体会.现代临床普通外科19972(1):14
    [75] Liu YC. The use of fibrin glue in thyoid surgery. Chinese journal of biomedicalengineering20026(3):200
    [76] Rutgeerts P. Randomized trial of single and repeated fibrin glue compared withinjection of polidocanol in treatment of bleeding peptic ulcer. Lancet1997350:692-6
    [77] Lau WY. Laparoscopic repair of perforated peptic ulcer. British journal ofsurgery.199582:4-6
    [78] Ishihama H. The usefulness of fibrin glue spraying combined with CDDP for lungcancer. Japanese journal of cancer and chemotherapy199724:981-5
    [79] Baumann WR. Closure of a bronchopleural fistula using decalcified humanspongiosa and a fibrin sealant. Annals of thoracic surgery199764:230-3
    [80] Wiseman NE. Endoscopic closure of recurrent tracheoesophageal fistula usingtisseel. Journal of Pediatric surgery199530:1236-7
    [81] Li SY. The experience of fibrin glue in urological surgery. Chinese journal ofbiomedical engineering19976:208
    [82] Kiilholma P. Sutureless endoscopic colposuspension with fibrin sealant. Techniquesin urology.19951:81-3
    [83] Sawamura Y. Osteoregenerative lateral suboccipital craniectomy using fibrin glue.Acta neurochirurgica1997139:451-2
    [84] Cazelles L. Intratemporal surgery of the facial nerve. Apropos of34cases.1997114:23-8
    [85] Franchi M.Long-term results of hydroxyapatite-fibrin glue implantation in plasticand reconstructive craniofacial surgery. Journal of Cranio-Maxillo-Facial Surgery199725:124-35
    [86] Bertrand B. Triosite implants and fibrin glue in the treatment of atrophic rhinitis:technique and results. Laryngoscope1996106:652-7
    [87] Shigemitsu T. The utilization of a biological adhesive for wound treatment:comparison of suture, self-sealing sutureless and cyanoacrylate closure in the tensilestrength test. International Ophthalmology199720:323-8
    [88] Miyazaki M, Tsumura H, Wang JC, et al. An update on bone substitutes for spinalfusion. Eur Spine J.2009,18(6):783-799.
    [89] eBueno EM, Glowacki J. Cell-free and cell-based approaches for bone regeneration.Nat Rev Rheumatol.2009,5(12):685-697.
    [90] Kimelman N, Pelled G, Helm GA, et al. Review: Gene-and cell-based therapeuticsfor bone regeneration and repair. Tissue Eng.2007,13(6):1135-1150.
    [91] Awad HA, Zhang X, Reynolds DG, et al. Recent advances in gene delivery forstructural bone allografts. Tissue Eng.2007,13(8):1973-1985.
    [92] Le Guehennec L, Goyenvalle E, Aguado E, et al. Influence of calcium chloride andaprotinin in the in vivo biological performance of a composite combing biphasiccalcium phosphate granules and fibrin sealant. J Mater Sci Mater Med.2007,18(8):1489-1495.
    [93] Le Nihouannen D, Saffarzadeh A, Gauthier O, et al. Bone tissue formation in sheepmuscles induced by a biphasic calcium phosphate ceramic and fibrin gluecomposite. J Mater Sci Mater Med.2008,19(2):667-675.
    [94] Baroth S, Bourges X, Goyenvalle E, et al. Injectable biphasic calcium phosphatebioceramic: the hydros concept. Biomed Mater Eng.2009,19(1):71-76.
    [95] Matsushima A, Kotobuki N, Tadokoro M, et al. In vivo osteogenic capability ofhuman mesenchymal cell cultured on hydroxyapatite and on beta-tricalciumphosphate. Artif Organs.2009,33(6):471-481.
    [96] Schneider OD, Weber F, Brunner TJ, et al. In vivo and in vitro evaluation of flexible,cottonwool-like nanocomposites as bone substitute material for complex defects.Acta Biomater.2009,5(5):1775-1784.
    [97] Tian M, Chen F, Song W, et al. In vivo study of porous strontium-doped calciumpolyphosphate scaffolds for bone substitute applications. J Mater Sci Mater Med.2009,20(7):1505-1512.
    [98] Huang Y, Jin X, Zhang X, et al. In vitro and in vivo evaluation of akermanitebioceramics for bone regeneration. Biomaterials.2009,30(28):5041-5048.
    [99] Brown W, Chow L. A new calcium phosphate setting cement. J Dent Res.1983;62:672.
    [100] Perez RA, Del Valle S, Altankov G, et al. Porous hydroxyapatite and gelatin/hydroxyapatite microspheres obtained by calcium phosphate cement emulsion.Journal of Biomedical Materials Research Part B: Applied Biomaterials.2011;97:156-166.
    [101] Moreau JL, Weir MD, Xu HHK. Self‐s etting collagen‐calcium phosphate bonecement: Mechanical and cellular properties. Journal of Biomedical MaterialsResearch Part A.2009;91:605-613.
    [102] Wang X, Ma J, Wang Y,et al. Structural characterization of phosphorylated chitosanand their applications as effective additives of calcium phosphate cements.Biomaterials.2001;22:2247-2255.
    [103] Josee Coulombe, Helene Faure, Bruno Robin, et al. In vitro effects of strontiumranelate on extracellular calcium-sensing receptor. Biochemical and BiophysicalResearch Communications2004323:1184-90
    [104] Hench LL, Polak JM. Third-generation biomedical materials. Science,2002,295(5557):1014-1017.
    [105] Loper-Heredia MA, Pattipeilohy J, Hsu S, et al. Bulk physicochemical, interconnec-tivity, and mechanical properties and calcium phosphate cements-fibrin gluecomposites for bone substitute applications. Journal of Biomed Materials ResearchA.2013;101:478-490.
    [106] Lu J, Gallur A, Flautre B, et al. Comparative study of tissue reactions to calciumphosphate ceramics among cancellous, cortical, and medullar bone sites in rabbits.Journal of biomedical materials research.1998;42:357-367.
    [107] Lu J, Stephan G, Van Landuyt P, et al. Histological and biomechanical studies oftwo bone colonizable cements in rabbits. Bone.1999;25:41S-45S.
    [108] Jansen J A, de Ruijter J E, Janssen P T and Paquay Y G1995Histologicalevaluation of a biodegradable Polyactive/hydroxyapatite membrane Biomaterials.16819-27
    [109] Apelt D, Theiss F, El-Warrak A O, Zlinszky K, Bettschart-Wolfisberger R, BohnerM, Matter S, Auer J A and von Rechenberg B2004In vivo behavior of threedifferent injectable hydraulic calcium phosphate cements Biomaterials.251439-51
    [110] Juhan-Vague I and Hans M2003From fibrinogen to fibrin and its dissolution BullAcad Natl Med.18769-82; discussion83-4
    [111] Doolittle R F, Spraggon G and Everse S J1997Evolution of vertebrate fibrinformation and the process of its dissolution Ciba Found Symp.2124-17; discussion17-23
    [112] Sahni A, Francis CW. Vascular endothelial growth factor binds to fibrinogen andfibrin and stimulates endothelial cell proliferation. Blood.2000;96:3772-3778.
    [113] Sahni A, Odrljin T, Francis CW. Binding of basic fibroblast growth factor tofibrinogen and fibrin. Journal of Biological Chemistry.1998;273:7554-7559.
    [114] Catelas I, Dwyer JF, Helgerson S. Controlled release of bioactive transforminggrowth factor beta-1from fibrin gels in vitro. Tissue Engineering Part C: Methods.2008;14:119-128.
    [115] Campbell PG, Durham SK, Hayes JD,et al. Insulin-like growth factor-bindingprotein-3binds fibrinogen and fibrin. Journal of Biological Chemistry.1999;274:30215-30221.
    [116] Currie L J, Sharpe J R and Martin R2001The use of fibrin glue in skin grafts andtissue-engineered skin replacements: a review Plast Reconstr Surg.1081713-26
    [117] Matras H1985Fibrin seal: the state of the art J Oral Maxillofac Surg.43605-11
    [118] Greco F, Palma L, Specchia N,et al. Experimental investigation into reparativeosteogenesis with fibrin adhesive. Archives of Orthopaedic and TraumaSurgery.1988;107:99-104.
    [119] Oberg S, Kahnberg K. Combined use of hydroxy-apatite and Tisseel in experim-ental bone defects in the rabbit. Swedish dental journal.1993;17:147.
    [120] Le Nihouannen D, Guehennec L L, Rouillon T, Pilet P, Bilban M, Layrolle P andDaculsi G2006Micro-architecture of calcium phosphate granules and fibrin gluecomposites for bone tissue engineering Biomaterials.272716-22
    [121] Mosesson M W2005Fibrinogen and fibrin structure and functions J ThrombHaemost.31894-904
    [122] Wolberg A S, Monroe D M, Roberts H R and Hoffman M2003Elevatedprothrombin results in clots with an altered fiber structure: a possible mechanism ofthe increased thrombotic risk Blood.1013008-13