贵金属及半导体纳米粒子的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
(1)合成了不同代数的PAMAM树状大分子,作为制备贵金属纳米粒子的保护剂,高代数的PAMAM大分子比低代数的PAMAM保护效果好,制得的纳米粒子颗粒更均匀,粒径也更小。改变PAMAM的代数,或者改变其与纳米粒子的摩尔比,均可以在水溶液中制得不同粒径的Au、Ag和Pt贵金属纳米粒子。
     (2)用1,8-萘二甲酸酐修饰1.0G PAMAM,得到了化合物1GN。以1GN做保护剂,制备了稳定的Au、Ag纳米粒子;与1.0G PAMAM相比,1GN作保护剂制备的纳米粒子分散性更好,粒子也更均匀;Au、Ag纳米粒子的存在对1GN的荧光有淬灭的作用。
     (3)合成了易溶于水且具有很强荧光特性的4GN树状大分子。pH的变化对4GN荧光强度影响很大;Cu~(2+)的存在会导致4GN荧光淬灭,而Ce~(3+)的存在会导致4GN荧光增强。4GN同样可以用来制备稳定的Ag纳米粒子,Ag纳米粒子也会引起4GN荧光强度改变。
     (4)以PAMAM树状大分子为保护剂,在水溶液中制备了不同粒径的CdS纳米粒子。分别考察了PAMAM的代数以及保护剂与CdS物质的量比对CdS纳米粒子大小及荧光性能的影响。
     (5)用溶胶-凝胶法制备了易于固液分离的TiO_2-Fe_3O_4/AC磁性光催化剂。通过在紫外光照射下降解亚甲基蓝评价其光催化降解能力。结果表明:负载22% Fe3O4的光催化剂(含20 % TiO_2和58 % AC)的光催化活性最强(120 min时亚甲基蓝的降解率达到87 %,是纯TiO_2的2.7倍);磁性光催化剂通过磁分离回收具有较高的循环使用效率。
(1) Different generations of PAMAM were firstly synthesized and employed to stabilize noble mental nonaparticles (Au、Ag and Pt) in an aqueous-solution. The sizes of nonaparticles were effected by the generations of PAMAM dendrimers and the molar ratio of PAMAM to noble mental nonaparticles.
     (2) 1,8-naphthalimide-labelled polyamidoamine dendrimer (1GN) was synthesized and employed to stabilize Au and Ag nanoparticles. Compared with the first generations polyamidoamine dendrimer (1.0G PAMAM), Au and Ag nanoparticles protected by 1GN had smaller size and distributed more evenly. Owing to the chromophore of 1, 8-naphthalimide, Au and Ag nanoparticles were marked via fluorescence.
     (3) 1,8-naphthalimide-labelled polyamidoamine dendrimer (4GN) whose has good solubility in water and fluorescence character was synthesized and employed to stabilize Ag nanoparticles and design for ionic detection. The results have shown clearly that Ag nanoparticles could be effect the fluoresence intensity. Its ability to detect ions has been evaluated in an aqueous-solution by monitoring the quenching and enhancement of different metal ions have been tested: Cu~(2+) and Ce~(3+). In addition, it has been shown that for 4GN in an aqueous-solution, the fluoresence intensity is pH dependant, hence could find application as a detector of harmful pH changes in the environment.
     (4) CdS nanoparticles capped with PAMAM dendrimer have been prepared in an aqueous-solution. The sizes and fluorescence properties of CdS nanoparticles were effected by the generations of PAMAM dendrimers and the molar ratio of PAMAM to CdS.
     (5) Active carbon(AC) loaded magnetic photocatalyst, TiO_2-Fe_3O_4/AC, were prepared by sol-gel method. The photocatalytic activity was evaluated by degradation of methylene blue in aqueous solution under the irradiation of UV light. The results indicated that the magnetic photocatalyst(loading 20 % TiO_2 and 58 % AC)loading 22% Fe3O4 in mass ratio showed the highest photocatalytic activity ( The photo-degradation yield upon methylene blue after 2 h reached 87 %, being 2.7 times higher than that of pure TiO_2 ). The magnetic photocatalyst can be separated from the system and cycled utilization by applying magnetic field.
引文
[1] Esumi K, Ichikawa M, Yoshimura T. Adsorption characteristics of poly(amidoamine) and poly(propylene imine) dendrimers on gold. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 232: 249-252
    [2] Okuda T, Kawakami S, Maeie T, et al. Biodistribution characteristics of amino acid dendrimers and their PEGylated derivatives after intravenous administration. Journal of Controlled Release, 2006, 114: 69-77
    [3] Kradtap S, Wijayawardhana C A, Schlueter K T, et al.“Bugbead”: an artificial microorganism model used as a harmless simulant for pathogenic microorganisms. Analytica Chimica Acta, 2001, 444: 13-26
    [4] Szalai M L, Kevwitch R M and McGrath D V. Geometric Disassembly of Dendrimers: Dendritic Amplification. J. Am. Chem. Soc, 2003, 125(51): 15688-15689
    [5] Enoki O, Imaoka T and Yamamoto K. Synthesis of Novel Phenylazomethine Dendrimers Having a Cyclam Core and Their Zinc Complex. Org. Lett., 2003, 5(14): 2547-2549
    [6] Domanski D M, Bryszewska M and Salamonczyk G. Preliminary Evaluation of the Behavior of Fifth-Generation Thiophosphate Dendrimer in Biological Systems. Biomacromolecules, 2004, 5(5): 2007-2012
    [7] Wang X M, Yang T S, Yang P, et al. Synthesis of New Multibranch Chromophores with Strong Light-emitting in Solution and in PMMA Film. Chinese Chemistry Letter, 2003, 14(11): 1135-1138
    [8] Dykes G M. J. Chem. Dendrimers: a review of their appeal and applications. Technol. Biot, 2001, 76(9): 903-918
    [9] Astruc D, Chardac F. Dendritic catalysts and dendrimers in catalysis. Chem. Rev, 2001, 101(9): 2991-3023
    [10] Mourey T H, Turner S R, Rubinstein M, et al. Unique behavior of dendritic macromolecules: intrinsic viscosity of polyether dendrimers. Macromolecules, 1992, 25(9): 2401-2406
    [11] Hawker C J, Malmstrom E, Frank C W, et al. Exact Linear Analogs of Dendritic Polyether Macromolecules: Design, Synthesis, and Unique Properties. J. Am. Chem. Soc, 1997, 119(41): 9903-9904
    [12] Beijer F H, Sijbesma R P, Vekemans J A J M, et al. Hydrogen-Bonded Complexes of Diaminopyridines and Diaminotriazines: Opposite Effect of Acylation on Complex Stabilities. J. Org. Chem, 1996, 61(18): 6371-6380
    [13] Hudson R H E, Damka M J. Nucleic acid dendrimers: novel biopolymer structures. J. Am. Chem. Soc, 1993, 115(6): 2119-2124
    [14] Lochmann L, Fréchet J M J. Controlled Functionalization of Polystyrene: Introduction of Reactive Groups by Multisite Metalation with Superbase and Reaction with Electrophiles. Macromolecules, 1996, 29(5): 1767-1771
    [15] Hawker C J, Farrington P J, Mackay M E, et al. Molecular Ball Bearings: The Unusual Melt Viscosity Behavior of Dendritic Macromolecules. J. Am. Chem. Soc, 1995, 117(15): 4409-4410
    [16] Adronov A, Fréchet J M J, Light-harvesting dendrimers. Chem. Commun, 2000, 56: 1701-1710
    [17] Liu Kono K, Fréchet J M J. Water-soluble dendritic unimolecular micelles: Their potential as drug delivery agents. J. Controlled Release, 2000, 65: 121-131
    [18] Qian L, Yang X R. Dendrimer films as matrices for electrochemical fabrication of novel gold/palladium bimetallic nanostructures. Talanta, 2008, 74(5): 1649-1653
    [19] Tomalia D A, Baker H, Dewald J, et al. A new class of polymers: Starburst-dendritic macromolecules. Polym. J, 1985, 17: 117-132
    [20] Tomalia D A, Naylor A M, Goddard W A, Starburst dendrimers : Molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. Engl, 1990, 29: 138-175
    [21] Hobson L J, Feast W J. Poly (amidoamine) hyperbranched systems: synthesis, structure and characterization. Polymer, 1999, 40: 1279-1297
    [22] Buhleier E, Wehner W, Vogtle F.“Cascade”- and“nonskid-chain-like”syntheses of molecular cavity topologies. Synthesis, 1978, 155-158
    [23] Padias A B, Hall Jr H K, Tomalia D A, et al. Starburst polyether dendrimers. J. Org.Chem., 1987, 52(24): 5305-5312
    [24] Uhrich K E, Boegeman S, Fréchet J M J, et al. The solid-phase synthesis of dendritic polyamides. Polym. Bull, 1991, 25: 551-558
    [25] Hawker C J, Fréchet J M J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc, 1990, 112: 7638-7647
    [26] Miller T M, Neenan T X. Convergent Synthesis of Monodisperse Dendrimers Based upon 1,3,5,trisubstituted Benzenes. Chem Mater., 1990, 2(4): 346-349
    [27] Wang D, Kopeckova P, Tamara, et al. Synthesis of star-like poly [N-(2-hydroxypropyl) methacrylamide] using PAMAM dendrimer as the core. Division of Polymer Chemistry, 2000, 41(1): 994-995
    [28] Tansey W, Ke S, Cao X Y, et al. Synthesis and characterization of branched poly(L-glutamic acid) as a biodegradable drug carrier. J. Controlled Release, 2004, 94: 39-51
    [29] V?gtle F, Gestermann S, Kauffmann C, et al. Coordination of Co2+ Ions in the Interior of Poly(propylene amine) Dendrimers Containing Fluorescent Dansyl Units in the Periphery. J. Am. Chem. Soc., 2000, 122(42): 10398-10404
    [30] Galia M, Svec F , Fréchet J. Monodisperse polymer beads as packing material for high-performance liquid chromatography: effect of divinylbenzene content on the porous andchromatographic properties of poly(styrene-co-divinylbenzene) be prepared in presence of linear polystyrene as a porogen. Journal of Polymer Science Part A: Polymer Chemistry, 1994, 32: 2169-2175
    [31] Hu Y, Joseph J M, Stephanie T L. Polyethylene glycol–polyamidoamine dendritic micelle as solubility enhancer and the effect of the length of polyethylene glycol arms on the solubility of pyrene in water. J. Colloid Interface Sci., 2004, 273: 148-154
    [32]周贵忠,谭惠民,罗运军等.一种稠油原油污水处理破乳剂的合成及性能研究.工业用水与废水, 2004, 35(2): 79-81
    [33] Auten B J, Lang H F, Chandler B D. Dendrimer templates for heterogeneous catalysts: Bimetallic Pt–Au nanoparticles on oxide supports. Appl. Catal. B:Environmental, 2008, 81: 225–235
    [34] Niu Y H, Crooks R M. Dendrimer-encapsulated metal nanoparticles and their applications to catalysis. C. R. Chimie, 2003, 6: 1049-1059
    [35] Lee J J, Ford W T. Acceleration of o-Iodosobenzoate-Catalyzed Hydrolysis of p-Nitrophenyl Diphenyl Phosphate by Cationic Polymer Colloids. J Am Chem Soc, 1994, 116(9): 3753-3759
    [36] Zhao M Q, Sun L, Crooks R M. Preparation of Cu Nanoclusters within Dendrimer Templates. J. Am. Chem. Soc., 1998, 120: 4877-4878
    [37] Roy R, Komarneni S, Roy D M. Cation-exchange properties of hydrated cements. Mater Res Soc Symp Proc, 1984, 32: 347
    [38]李国平,李杰,罗运军. AgBr纳米簇:PAMAM树形分子模板法制备及光催化性能研究.无机化学学报, 2007, 23(2): 253-257
    [39] Li N B, Park J H, Park K, et al. Characterization and electrocatalytic properties of Prussian blue electrochemically deposited on nano-Au/PAMAM dendrimer-modified gold electrode. Biosensors and Bioelectronics, 2008, 23: 1519-1526
    [40]凌剑,丛日敏.以CdS-ZnS核-壳量子点/聚酰胺-胺(PAMAM)树形分子纳米复合材料自组装制备发光超薄膜.化学学报, 2008, 66(18): 2070-2074
    [41] Qian L, Yang X R, Dendrimers as "controllers" for modulation of electrodeposited silver nanostructures. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 317: 528-534
    [42] He J A, Valluzzi R, Yang K, et al. Electrostatic Multilayer Deposition of a Gold Dendrimer Nanocomposite. Chem. Mater., 1999, 11(11): 3268-3274
    [43] Sooklal K, Huang J, Murphy C J, et al. Inorganic Quantum Dot-Organic Dendrimer Nanocomposite Materials. Mater Res Symp Proc, 1999, 576: 439
    [44]周贵忠,谭惠民,罗运军等. TNT红水处理新方法.工业水处理, 2002, 22(6): 14-16
    [45]张崇淼,张大伦,罗运军.聚酰胺胺(PAMAM)树形分子在洗煤废水处理中的应用研究.能源环境保护, 2003, 17(4): 20-24
    [46] Li L C, Wang B G, Tan H M, et al. A novel nanofiltration membrane prepared withPAMAM and TMC by in situ interfacial polymerization on PEK-C ultrafiltration membrane. Journal of Membrane Science, 2006, 269: 84-93
    [47] Siqueira J J R, Crespilho F N, Zucolotto V, et al. Bifunctional electroactive nanostructured membranes. Electrochem. Commun., 2007, 9: 2676-2680
    [48] Watanabe S, Regen S L. Dendrimers as Building Blocks for Multilayer Construction. J Am Chem Soc, 1994, 116: 8855-8856
    [49] Tsukruk V V, Rinderspacher F, Bliznyuk V N, et al. Self-assembled multilayer films from dendrimers. Langmuir, 1997, 13(8): 2171-2176
    [50] Bhadra D, Bhadra S, Jain S, et al. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int. J. Pharm., 2003, 257: 111-124
    [51] Wiwattanapatapee R, Lomlim L, Saramunee K. Dendrimers conjugates for colonic delivery of 5-aminosalicylic acid. J. Controlled Release, 2003, 88(1): 1-9
    [52] Tripathi P K, Khopade A J, Nagaich S, et al. Original articles-Dendrimergrafts for delivery of 5-flurouracil. Pharmazie, 2002, 57(4): 261-264
    [53]吕继平,刘再满,缪利杰.硅胶表面上聚酰胺-胺的合成及其对Fe(Ⅲ)的吸附.应用化学, 2008, 25(2): 229-232
    [54]杨慧,唐建国,王瑶等.萘修饰的树枝形聚酰胺-胺的合成与荧光性质研究.应用化工, 2008, 37(5): 465-468
    [55]高敏,王冰冰,贾欣茹等.外端为偶氮苯基团的聚酰胺-胺树枝状分子对光和H+的响应行为.高分子学报, 2008, 1: 32-40
    [56] Grabchev I, Chovelon J M, Petkov C. An iron(III) selective dendrite chelator basedon polyamidoamine dendrimer modified with 4-bromo-1,8-naphthalimide. Spectrochimica Acta Part A, 2008, 69: 100-104
    [57] Grabchev I,Chovelon J M, Nedelcheva A. Green fluorescence poly(amidoamine) dendrimer functionalized with 1,8-naphthalimide units as potential sensor for metal cations. J. Photochem. Photobiol., A: Chemistry, 2006, 183: 9-14
    [58] Grabchev I, Chovelon J M. Photodegradation of poly (amidoamine) dendrimers peripherally modified with 1, 8-naphthalimide units. Polymer Degradation and Stability. 2007, 92: 1911-1915
    [59] Sali S, Grabchev I, Chovelon J M, et al. Selective sensors for Zn2+ cations based onnew green fluorescent poly(amidoamine) dendrimers peripherally modified with 1,8-naphthalimides. Spectrochimica Acta Part A, 2006, 65: 591-597
    [60] Yang S P, Lin L, Yang L Z, et al. The fluorescence of polyamidoamine dendrimers peripherally modified with 1,8-naphthalimide groups: Effect of the rare earth ions and protons. Journal of Luminescence, 2007, 126: 515-530
    [61] Pan B F, Gao F, Ao L M, et al. Controlled self-assembly of thiol-terminated poly(amidoamine) dendrimer and gold nanoparticles. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2005, 259: 89-94
    [62] Gao H, Carlson J, Heineman W R, Separation of aromatic acids, DOPA, and methyl-DOPA by capillary electrophoresis with dendrimers as buffer additives. et al. J Chromatogr Sci, 1998, 36(3): 146-154
    [63] Palmer C P, Terabe S. Micelle Polymers as Pseudostationary Phases in MEKC: Chromatographic Performance and Chemical Selectivity. Anal Chem, 1997, 69(10): 1852-1860
    [64] Kim J W, Park S M. Electrochemical Preparation of Ru-Ni Binary Nanoparticles and Their Applications to Electro-oxidation of Ethanol. Electrochem Solid-State Lett., 2000, 3(8): 385-388
    [65]王金凤,贾欣茹,金钟.聚酰胺-胺型树枝状化合物与四氯化钛的配合及其催化作用初步研究.高等学校化学学报, 2001, 22: 709-711
    [66] Diallo M S, Balogh L, Shafagati A, et al. Poly(amidoamine) Dendrimers: A New Class of High Capacity Chelating Agents for Cu(II) Ions. Environ Sci. Technol., 1999, 33(5): 820-824
    [67] Bulgan G,宗瑞隆,梁淑惠等. Pt负载复合氧化物催化剂的CO催化发光性能.物理化学学报, 2008, 24(9): 1147-1152
    [68]王红霞,张法玲,曹媛等.多核超顺磁性Ni0.5Zn0.5Fe2O4/SiO2催化载体的制备与表征.高等学校化学学报, 2008, 7(29): 1428-143l
    [69] Lignier P, Comotti M, Schüth F, et al. Effect of the titania morphology on the Au/TiO2-catalyzed aerobic epoxidation of stilbene. Catalysis Today, 2009, 141: 355-360
    [70] Laugel G, Arichi J, Molière M, et al. Metal oxides nanoparticles on SBA-15:Efficient catalyst for methane combustion. Catalysis Today, 2008, 138(1-2): 38-42
    [71]白璐,项项,李峰.杂化复合前驱体制备高分散金属镍纳米粒子的研究.工业催化, 2008, 16(10): 66-70
    [72] Pal A, Shaha S, Belochapkineb S, et al. Room temperature synthesis of platinum nanoparticles in water-in-oil microemulsion. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009, 337: 205-207
    [73] Cao H Q, Xu Y, Hong J M, et al. Sol-Gel template synthesis of an array of single crystal CdS nanowires on a porous alumina template. Advanced Materials, 2001, 13(18): 1393-1394
    [74] Kimura K, Sunagawa T, Applications of sol-gel-derived membranes to neutral carrier-type ion-sensitive field-effect transistors, Anal. Chem., 1997, 69(13): 2379-2383
    [75] Saxena A, Kumar A, Mozumdar S. Ni-nanoparticles: An efficient green catalyst for chemo-selective oxidative coupling of thiols. Journal of Molecular Catalysis A: Chemical, 2007, 269(1-2): 35-40
    [76]牟志刚,杨平,杜玉扣等.高分子保护的Pt金属簇催化加氢制备高纯间苯氧基苯甲醇.石油化工, 2002, 31(10): 795-798
    [77]李磊,程满环,杜玉扣等. Pt/三苯胺酸卟啉酯纳米复合物的制备及光催化加氢反应.无机化学学报,2008, 24(2): 229-234
    [78]潘高峰,李越湘,彭绍琴等.铍,氮共掺杂TiO2的制备及其可见光下光解水制氢性能研究.功能材料, 2008, 4(39): 632-635
    [79]李泽全,李静,张云怀等.材料导报, 2008, 22: 92-95
    [80]娄骁,翁文剑,程逵等.湿化学法制备生物标识用纳米CdSe材料.稀有金属材料与工程, 2008, 37: 347-350
    [81]高倩,洪广言,陈凤华等.铁基纳米粒子的制备及其在生物医学中的应用.功能材料, 2008, 2(39): 181-185
    [82] Mirkin C A, Letsinger R l, Mucic R C, et al. A DNA-basedmethod for rationally assembling nanoparticles into macroscopicmaterials. Nature, 1996, 382: 607-609
    [83] Taton T A, Mucic R C, Mirkin C A, et al. The DNA-mediated formation of supramolecular mono-and multilayered nanoparticle structures. J. Am. Chem. Soc,2000, 122: 6305-6306
    [84] Alivisatos A P, Johnson K P, Peng X G, et al. Organization of nanocrystal molecules using DNA. Nature, 1996, 382: 609-611
    [85] Jia J B, Wang B Q, Wu A G. A Method to Construct a Third-Generation Horseradish Peroxidase Biosensor: Self-Assembling Gold Nanoparticles to Three-Dimensional Sol?Gel Network. Anal. Chem., 2002, 74: 2217-2223
    [86]张天翼,许军,王莹等. CdS纳米粒子掺杂的液晶显示器件的低开启电压和频率调制特性.电子器件, 2008, 31(1): 96-99
    [87]方彩云,王胜,刘清萍等.固定Fe3+的磁性微球分离富集鼠肝中铁结合蛋白的初步研究.化学学报, 2008, 66(19): 2174-2177
    [88] Xie T H, Lin J. Origin of Photocatalytic Deactivation of TiO2 Film Coated on Ceramic Substrate. J. Phys. Chem. C. 2007, 111(27): 9968-9974
    [89] Nosaka Y, Yamashita Y, Fukuyama H. Application of Chemiluminescent Probe to Monitoring Superoxide Radicals and Hydrogen Peroxide in TiO2 Photocatalysis. J. Phys. Chem. B., 1997, 101(30): 5822-5827
    [90] Fujishima A, Honda K. Hectrochemical photolysis of water at a semiconcuctor electrocle. Nature, 1972, 238: 37-38
    [91] Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J Phys Chem, 1977, 81: 1484-1488
    [92] Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J Am Chem Soc, 1977, 99: 303-304
    [93] Pruden A L, Ollis D F. Photoassisted heterogeneous catalysis: The degradation of trichloroethylene in water. J Catal., 1983, 82: 404-417
    [94] Fujishima A, Ohtsuki J, Yamashita T, et al. Behavior of Tumor Cells on Photoexcited Semiconductor Surface. Photomed Photobiol, 1986, 8: 45-46
    [95] Brillas E, Mur E, Sauleda R, et al. Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Appl Catal. B: Environ, 1998, 16: 31-42
    [96] Alberici R M, Jardim W F. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Appl Catal. B: Environ, 1997, 14: 55-68
    [97] Pardey A J, Fernández M, Alvarez J, et al. Catalysis of the water–gas shift reaction by [Rh(COD)(4-picoline)2]PF6 immobilized on poly(4-vinylpyridine): Characterization of the catalyst and the effect of temperature under continuous-flow conditions. Applied Catalysis A, 2000, 199(2): 275-283
    [98] Subramanian V, Wolf E E, Kamat P V. Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J. Phys. Chem. B, 2001, 105(46): 11439-11446
    [99] Sha J, Fumihide S. Photocatalytic activities enhance for de compositions of organic compounds over metal-photodepositing titanium dioxide. Chemical Engineering Journal, 2004, 97: 203-211
    [100] Dawson A and Kamat P V. Semiconductor?Metal Nanocomposites. Photoinduced Fusion and Photocatalysis of Gold-Capped TiO2(TiO2/Gold) Nanoparticles. J. Phys. Chem. B, 2001, 105 (5): 960-966
    [101] Lo S C, Lin C F,Wu C H, et al. Capability of coupled CdSe/TiO2 for photocatalytic degradation of 4-chlorophenol. Journal of Hazardous Materials B, 2004, 114: 183-190
    [102]李昱昊,毛立群,张顺利等. CdS/TiO2复合半导体的表面态及光催化性能.河南大学学报, 2004, 34(2): 28-32
    [103]张长远,张金龙.液相沉积法制备光催化TiO2/SiO2复合薄膜及其表征.感光科学与光化学, 2004, 22(2): 108-113
    [104]李芳柏,古国榜,李新军等.纳米复合Y2O3/TiO2的制备、表征及其光催化性能研究.中国稀土学报, 2001, 19(3): 225-228
    [105] Choi W., Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem., 1994, 98(5): 13669-13679
    [106] Qi X H, Wang Z H, Zhuang Y Y, et al. Study on the photocatalysis performance and degradation kinetics of X-3B over modified titanium dioxide. Journal of Hazardous Materials B, 2005, 118: 219-225
    [107] Arabatzis I M, Stergiopoulos T, Bernard M C, et al. Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange. AppliedCatalysis B: Environmental, 2003, 42: 187-201
    [108] Xu J C, Lu M, Guo X Y, et al. Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation. Journal of Molecular Catalusis A: Chemical, 2005, 226: 123-127
    [109]吴树新,马智,秦永宁等.掺杂纳米TiO2光催化性能的研究.物理化学学报, 2004, 20(2): 138-143
    [110] Du Y K, Gan Y Q, Yang P, et al. Improvement in the heat-induced hydrophilicity of TiO2 thin films by doping Mo(VI) ions. Thin Solid Films, 2005, 491(1-2): 133-136
    [111] Du Y K, Gan Y Q, Yang P, et al. Cyclic voltammetry and contact angle measurement studies of the Mo(VI) ions doped TiO2 thin films. Materials Chemistry and Physics, 2007, 103(2-3): 446-449
    [112] Yang P, Lu C, Hua N P, et al. Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis. Materials Letters, 2002, 57: 794-801
    [113] Shen M,Wu Z Y, Huang H, et al. Carbon-doped anatase TiO2 obtained from TiC for photocatalysis under visible light irradiation. Materials Letters, 2006, 60(5): 693-697
    [114]陆诚,杨平,杜玉扣等.载体对负载型TiO2催化剂光催化性能的影响.催化学报, 2003, 24(4): 248-252
    [115]董国利,施利毅,李春忠等.高温气相应合成金红石型纳米TiO2颗粒的研究.金属学报, 2000, 36(3): 295-299
    [116] Tatsuma T, Tachibana S, Fujishima A. Remote oxidation of organic compounds by UV-irradiated TiO2 via the gas phase. J. Phys. Chem. B., 2001, 105: 6987-6992.
    [117] Yoshihisa O, Isao A, Chisa N, et al. Degradation of Bisphenol A in water by TiO2 photocatalyst. Environ. Sci. Technol., 2001, 35: 2365-2368
    [118] Tennakone K, Wijayantha K G U. Photocatalysis of CFC degradation by titanium dioxide. Applied Catalysis B: Environmental, 2005, 57: 9-12
    [119] Blount M C, John L F. Steady-state surface species during toluene photocatalysis. Appi. Cata. B: Environ., 2002, 39: 39-50
    [1] Toshima N, Teranishi T, Asaauma H, et al. Platinum cluster catalysts supported on porous chelate resin-metal complexes: effect of resin porosity on catalytic activity. J. Phys. Chem, 1992, 96: 3796-3799
    [2] Du Y K, Xu J Z, Yang P, et al. Influence of 1-butanethiol and metal ions on hydrogenation of trans,trans-2,4-hexadienal at platinum nanocatalysts. Colloids and Surfaces A, 2005, 257-258: 75-78
    [3] Du Y K, Xu J Z, Shen M, et al. Alkanethiol-stabilized decahedron of gold nanoparticles. Colloids and Surfaces A, 2005, 257-258: 535-537
    [4] Fu X Y, Wang Y, Wu N Z, et al. Shape-Selective Preparation and Properties of Oxalate-Stabilized Pt Colloid. Langmuir, 2002, 18(2): 4619-4624
    [5] Wiley B J, Im S H, Li Z Y, et al. Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis. J. Phys. Chem. B, 2006, 110 :15666-15675
    [6] Tian N, Zhou Z Y, Sun S G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316: 732-735
    [7] Tano T, Esumi K, Meguro K, Preparation of organopalladium sols by thermal decomposition of palladium acetate. J Colloid Interface Sci,l989, 133(22): 530-533
    [8] Wang Y, Ren J W, Deng K, et al. Preparation of Tractable Platinum, Rhodium, and Ruthenium Nanoclusters with Small Particle Size in Organic Media. Chem Mater,2000,12(6): l622-1627
    [9]乔燕,杜明春,杨平等.微波法制备3.5 G PAMAM树状大分子保护的金纳米粒子,感光科学与光化学, 2007, 3: 214-222
    [10] Qian L , Liu Y, Song Y, el a1. Electrodeposition of Pt nanoclusters on the surface modified by monolayer poly(amidoamine) dendrimer film. Electrochemistry Communications, 2005, 7:1209-1212
    [11] Hawker C J, Farrington P J, Mackay M E, et al. J. Am. Chem. Soc, 1995, 117: 4409-4410
    [12] Kéki S, T?r?k J, Deák G, et al. Silver Nanoparticles by PAMAM-AssistedPhotochemical Reduction of Ag+. Journal of Colloid and Interface Science, 2000, 229: 550-553
    [13] Endo T, Yoshimura T, Esumi K. Synthesis and catalytic activity of gold–silver binary nanoparticles stabilized by PAMAM dendrimer. Journal of Colloid and Interface Science, 2005, 286: 602-609
    [14] Li G P, Luo Y J, Tan H M. PVP and G1.5 PAMAM dendrimer co-mediated synthesis of silver nanoparticles. Journal of Solid State Chemistry, 2005, 178: 1038-1043
    [15] Tomalia D A, Baker H, Dewald J, et al. A new class of polymers: Starburst-dendritic macromolecules. Polym J, 1985, 17 (1): 117-132
    [16] Crooks R M, Zhao M, Sun L, et al. Dendrimer-Encapsulated Metal Nanoparticles: Synthesis, Characterization, and Applications to Catalysis. Acc. Chem. Res. 2001, 34(3): 181-190
    [17] Scott R W J, Datye A K, Crooks R M, Bimetallic Palladium?Platinum Dendrimer-Encapsulated Catalysts. J. Am. Chem. Soc., 2003, 125(13): 3708-3709
    [18]章昌华,涂伟萍,胡剑青.聚酰胺胺-1,2-环氧辛烷树状大分子的合成及其作为乳化液膜载体的性能.化工学报, 2006, 57(10): 2491-2496
    [19]吕继平,刘再满,缪利杰.硅胶表面上聚酰胺-胺的合成及其对Fe(Ⅲ)的吸附.应用化学, 2008, 25(2): 229-232
    [20]杨慧,唐建国,王瑶等.萘修饰的树枝形聚酰胺-胺的合成与荧光性质研究.应用化工, 2008, 37(5): 465-468
    [21]高敏,王冰冰,贾欣茹等.外端为偶氮苯基团的聚酰胺-胺树枝状分子对光和H+的响应行为.高分子学报, 2008, 1: 32-40
    [22] Bojinov V B, Georgiev N I and Nikolov P S. Design and synthesis of core and peripherally functionalized with 1,8-naphthalimide units ?uorescent PAMAM dendron as light harvesting antenna. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 197(2-3): 281-289
    [23] Tang L H, Zhu Y H , Xu L H, et al. Amperometric glutamate biosensor based on self-assembling glutamate dehydrogenase and dendrimer-encapsulated platinum nanoparticles onto carbon nanotubes. Talanta, 2007, 73: 438-443
    [24] Grabchev I, Staneva D, Betcheva R. Sensor activity, photodegradation and photostabilisation of a PAMAM dendrimer comprising 1,8-naphthalimide functional groups in its periphery. Polymer Degradation and Stability, 2006, 91: 2257-2264
    [25] Twyman L J, Beezer A E, Esfand R, et al. The Synthesis of Water Soluble Dendrimers, and their Application as Possible Drug Delivery Systems. Tetrahedron Lett, 1999, 40(9): 1743-1746
    [26] Pan B F, Gao F, Ao L M, et al. Controlled self-assembly of thiol-terminated poly(amidoamine) dendrimer and gold nanoparticles. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2005, 259: 89-94
    [27] Gao H, Carlson J, Heineman W R. Separation of aromatic acids, DOPA, and methyl-DOPA by capillary electrophoresis with dendrimers as buffer additives. et al. J Chromatogr Sci, 1998, 36(3): 146-154
    [28] Palmer C P, Terabe S. Micelle Polymers as Pseudostationary Phases in MEKC: Chromatographic Performance and Chemical Selectivity. Anal Chem, 1997, 69(10): 1852-1860
    [29] Kim J W, Park S M. Electrochemical Preparation of Ru-Ni Binary Nanoparticles and Their Applications to Electro-oxidation of Ethanol. Electrochem Solid-State Lett., 2000, 3(8): 385-388
    [30]王金凤,贾欣茹,金钟.聚酰胺-胺型树枝状化合物与四氯化钛的配合及其催化作用初步研究.高等学校化学学报, 2001, 22: 709-711
    [31] Grabchev I, Chovelon J M,Petkov C. An iron(III) selective dendrite chelator based on polyamidoamine dendrimer modified with 4-bromo-1,8-naphthalimide. Spectrochimica Acta Part A, 2008, 69: 100-104
    [32] Niu Y H, Crooks R M. Dendrimer-encapsulated metal nanoparticles and their applications to catalysis. C. R. Chimie, 2003, 6: 1049-1059
    [1] Yu W W, Qu L, Guo W, et al. Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals. Chem Mater, 2004, 16(3): 560-560
    [2]张兵波,刘旭辉,李德娜等.复色量子点的制备与免疫分析应用.科学通报, 2007, 52(24): 2846-2851
    [3] Dai Q Q, Li D M, Chen HY, et al. Colloidal CdSe nanocrystals synthesized in noncoordinating solvents with the addition of a secondary ligand: Exceptional growth kinetics. J Phys Chem B, 2006, 110(45): 22951-22951
    [4] Kanie K, Muramatsu A. Organic-inorganic hybrid liquid crystals: thermotropic mesophases formed by hybridization of liquid-crystalline phosphates and monodispersedα?Fe2O3 particles. J. Am. Chem. Soc., 2005, 127(33): 11578-11579
    [5] Du M C, Wang Y, Xu J K, et al. PbSe quantum dots: preparation in the high boiling point solvent and characterization. Colloid J., 2008, 70(6): 720-725
    [6] Liu S M, Gan L M, Liu L H, et al. Synthesis of single-crystalline TiO2 nanotubes. Chem. Mater, 2002, 14(5): 2427-2327
    [7] Yanagishita T, Tomabechi Y, Nishio K, et al. Preparation of Monodisperse SiO2 Nanoparticles by Membrane Emulsification Using Ideally Ordered Anodic Porous Alumina. Langmuir, 2004, 20(3): 554-555
    [8] Sergey K P, Dmitri V T, Elena V S, et al. Quantum Dot Chemiluminescence. Nano Letters, 2004, 49 (4): 693-698
    [9] Kowshik M, Deshmukh N, Vogel W, et al. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnology and Bioengineering, 2002, 78(5): 583-585
    [10] Jie G F, Liu B, Miao J J, et al. Electrogenerated chemiluminescence from CdS nanotubes and its sensing application in aqueous solution. Talanta, 2007, 71(4): 1476-1480
    [11]黄风华,彭亦如.表面修饰的CdS纳米荧光探针的研究.光谱学与光谱分析, 2006, 26 (6): 1102-1105
    [12] Amir B, Deborah C. Uniaxial Alignment of Cadmium Sulfide on PolymerizedFilms Electron Microscopy and Different Study. Adv Mater, 1999, 11(4): 296-300
    [13] Hofmann D M, Hofstaetter A, Leib U, et al. EPR and ENDOR Investigations on CdS: Mn Nanocrystals. J Crystal Growth, 1998, 185: 383-387
    [14] Tomalia D A, Baker H, Dewald J, et al. A new class of polymers: Starburst-dendritic macromolecules. Polym J, 1985, 17 (1): 117-132
    [15] Twyman S, King A, Burnett, et al. Synthesis of armomatic hyperbranched PAMAM polymers. Tetrahedron Letts, 2004, 45: 433-435
    [16]李国平,罗运军.紫外光辐照下以PAMAM树形分子为模板制备Ag纳米簇及光致发光性能研究.感光科学与光化学, 2007, 25 (4): 249-256
    [17] Tomalia D A, Naylor A M, Goddard W A, et al. Starburst dendrimers: Molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl, 1990, 29: 138-175
    [18] Wang D J, Toyoko I, Masao M. Reprint of“Fluorescence emission from PAMAM and PPI dendrimers. J Colloid Interf Sci, 2007, 312: 8-13
    [1] Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972, 238: 37-38
    [2] Ao C H, Lee S C, Yu J Z, et al. Photodegradation of formaldehyde by photocatalyst TiO2: effects on the presences of NO, SO2 and VOCs. Applied Catalysis B: Environmental, 2004, 54: 41-50
    [3]杨平,吴遵义,华南平等.高效光催化剂TiO2/AC-M的制备及其对Cl3CCOOH降解的研究.石油化工, 2004, 33(5) : 464-466
    [4] Sharma G D, Sharma S K, Roy M S. Charge transfer and photogeneration process in device consisting of safranine O dye and TiO2 nano-particles. Materials Science and Engineering B, 2003, 100: 13-17
    [5] Bekbolet M, Lindner M, Weichgrebe D, et al. Photocatalytic detoxification with the thin-film fixedbed feactor(tffbr): clean-up of highly pollyted landfill effluents using a novel TiO2-photocatalyst. Solar Energy, 1996, 56: 455-469
    [6]甘玉琴,邹翠娥,杨平等.Au纳米粒子大小对Au/TiO2薄膜光催化活性的影响.石油化工,2005, 34(6): 578-581
    [7]杜玉扣,甘玉琴,华南平等.钼掺杂二氧化钛复合膜的光催化及光电性质.化学研究与应用, 2004, 16(6): 802-804
    [8]姚平平,甘玉琴,徐景坤等.银纳米颗粒负载复合薄膜的光催化活性及其光电流性质.感光科学与光化学, 2006, 24(1): 44-49
    [9]华南平,甘玉琴,徐娇珍等.铂颗粒粒径效应:负载铂纳米颗粒的TiO2薄膜性质研究.光谱学与光谱分析, 2005, 25(11): 1861-1864
    [10]陆诚,杨平,杜玉扣等. Fe3+/V5+/TiO2复合纳米微粒光催化性能的研究.化学研究与应用, 2002, 14(1): 265-268
    [11] Yang P, Lu C, Hua N P, et al. Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis. Materials Letters, 2002, 57: 794-801
    [12] Du Y K, Gan Y Q, Yang P, et al. Cyclic voltammetry and contact angle measurement studies of the Mo(VI) ions doped TiO2 thin films. Materials Chemistry and Physics, 2007, 103: 446-449
    [13] Du Y K, Du M C, Qiao Y, et al. Ce (IV) doped TiO2 thin films:characterization and photocatalysis. J Colliel Joural, 2007, 69: 695-699
    [14] Du Y K, Gan Y Q, Yang P, et al. Improvement in the heat-induced hydrophilicity of TiO2 thin films by doping Mo(VI) ions. Thin Solid Films, 2005, 491(1-2): 133-136
    [15] Shen M, Wu Z Y, Huang H, et al. Carbon-doped anatase TiO2 obtained from TiC for photocatalysis under visible light irradiation. Materials Letters, 2006, 60: 693-697
    [16]王贤亲,张国亮,张凤宝.Cu2+/TiO2-SiO2催化剂的制备及其光催化降解气相间二甲苯的性能.石油化工, 2006, 35(3): 277-280
    [17]陆诚,杨平,杜玉扣等.载体对负载型TiO2催化剂光催化性能的影响.催化学报, 2003, 24(4): 248-252
    [18] Yin J, Bie L J, Yuan Z H. Photoelectrochemical property of ZnFe2O4/TiO2 double- layered films. Materials Research Bulletin, 2007, 42: 1402-1406
    [19] Fu W Y, Yang H B, Li M H, et al. Anatase TiO2 nanolayer coating on cobalt ferrite nanoparticles for magnetic photocatalyst. Materials Letters, 2005, 59: 3530-3534
    [20] Ye F X and Ohmori A. The photocatalytic activity and photo absorption of plasma sprayed TiO2/Fe3O4 binary oxide coatings. Surf Coat Tech, 2002, 160: 62-67
    [21] Rana S, Srivastava R S, Sorensson M M, et al. Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: Anatase TiO2-NiFe2O4 system. Materials Science and Engineering, 2005, 119: 144-151
    [22] He Q, Zhang Z, Xiong J, et al. A novel biomaterial-Fe3O4: TiO2 core-shell nano particle with magnetic performance and high visible light photocatalytic activity. Opt, Mater., 2008, 31: 380-384