SPA-PAMAM-Au纳米复合物的制备、表征及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金纳米粒子以优越的性能在生物分析中起到了重要作用,免疫金标记(IGS:Immuno-Gold Staining Method)是一种目前普遍应用的标记方法。IGS的不足和问题在于胶体金的制备对设备洁净度要求很高,颗粒大小和分散性不易控制,制备很小粒径的金纳米颗粒相对困难,关于蛋白质吸附于胶体金颗粒表面的机理目前有争议。因此,有必要研究一种新的能解决上述问题的金纳米粒子合成体系。本论文以蛋白质作用机理明确的树枝状大分子聚酰胺胺(NH_2-PAMAM)作为模板来合成粒度可控的金纳米粒子,利用在免疫学方面有独特性能的金黄色葡萄球菌蛋白A包覆制备SPA-PAMAM-Au。
     论文主要分为三部分:1)2.0代NH_2-PAMAM(G2.0 NH_2-PAMAM)的合成和精制;2)SPA-PAMAM-Au纳米复合物的制备及表征;3)SPA-PAMAM-Au纳米复合物对典型抗原的特异性染色实验研究。
     首先,使用发散法合成了PAMAM G2.0,应用色谱法对其进行分析和分离。合成的PAMAM鉴定结果与同行所报导的理论分析及研究结果一致,色谱法分析的结果证实了发散法合成得到的PAMAM具有乙二胺等的报道,分离后得到的PAMAM G2.0纯度较高。
     其次,SPA-PAMAM-Au纳米复合物制备试验表明,在NH_2-PAMAM G2.0的水溶液中,运用硼氢化钠还原氯金酸,同时加入足量包覆的SPA,能够很好地制备粒径较小(~3nm),粒度分布均匀,稳定的,具有良好抗体结合性的SPA-PAMAM-Au纳米复合物。对合成过程中化学行为的系统研究表明,pH值是制备过程的重要影响因素,最小蛋白质包覆用量较合理。复合物光学性质的研究表明,SPA-PAMAM-Au纳米复合物体系激发后均呈现了较强的蓝色荧光发射。这表明SPA-PAMAM-Au纳米复合物具有作为优良异光学标记的特殊性能。
     最后,斑点金免疫渗滤法实验结果表明SPA-PAMAM-Au纳米复合物能够对癌胚抗原进行特异性染色,微量的抗原在膜上呈现可辨的红色斑点。荧光测试表明该纳米复合物与微量抗体作用或与抗体结合后再与微量癌胚抗原作用,荧光发生了较大的改变,其在荧光检测方面同样具有重要意义。SPA-PAMAM-Au纳米复合物粒子可望广泛用作生物分析和医学诊断高灵敏度光学探针。
Immuno-gold staining (IGS) which take advantage of the excellent properties of gold nanoparticles has been widely used in bioanalyses, in which some specific protein is used to warp colloidal gold for detecting the protein's target. The problems and shortages of IGS appear gradually along with enlargement of the marking area and requirement in improvement of detecting precision. First, the preparation of colloidal gold particles requires the equipment be very clean and the control of the size and distribution of the very small size of the gold particles is difficult. Second, the mechanism of protein adsorbing on the surface of colloidal gold is not completely elucidated at present. So it is necessary to study some new system by which the gold nanoparticles synthesized can be meet the requirements cited above. Such a system in this paper was chosen NH_2-terminated polyamidoamine (PAMAM), a water-soluble dendrimer which can adsorb on protein and the adsorbing mechanism is well elucidated to make the size of gold nanoparticles controllable. Staphylococcus aureus protein A (SPA) with excellent immunological properties was used to wrap the PAMAM-Au for preparing SPA-PAMAM-Au nanocomposites.
     This paper mainly included three parts, i.e., 1) synthesis and purification, and characterization of NH_2-terminated PAMAM; 2) synthesis and characterization of SPA-PAMAM-Au nanocomposites; and 3) staining assay of a typical antigen by SPA -PAMAM-Au nanocomposites. The main results are as following.
     Firstly, generation 2.0 PAMAM (G2.0 PAMAM) was synthesized in a relatively simple procedure. Structural characterization showed that the G2.0 PAMAM and its precursors self-synthesized have the same basic structural characters to the data reported. Chromatographic analyses showed some unnecessary components existing in the G2.0 PAMAM synthesized, which yet can basically be purified by further column chromatographic separation.
     Secondly, the SPA-PAMAM-Au nanocomposites were synthesized by simply adding SPA into the PAMAM ( G2.0) aqueous solution where reducing HAuCl_4 into Au~0 with NaBH_4 at the same time. Characterization of the nanocomposites showed that the nanocomposites have a typical size of about 3nm and very narrow size-distribution, and were water-soluble and able to combine well with some specific antibody. The study on the solution chemistry of the formation process of the nanocomposites showed that pH is an important influencing factor, the least amount of protein to wrap PAMAM-Au is acceptable in terms of both the sensitivity and cost of the nanocomposites system. The study of optical properties of the nanocomposites showed that SPA-PAMAM-Au nanocomposites system emitted obvious bluish luminescence after excited. These specific optical properties make the nanocomposites an prosperous potential in being as an excellent optical marker.
     Finally, the application of the SPA-PAMAM-Au nanocomposites in Dot Immuno Gold Filtration Assay (DIGFA) to stain Carcinoembryonic antigen showed that the nanocomposites could be detect supersensitively carcinoembryonic antigen. We find this probe is also significant on fluorescence detecting because there is a very apparent change in fluorescence spectra after SPA-PAMAM-Au nanocomposites bind a little of CEA antibody or CEA antibody plus CEA. This suggests that SPA-PAMAM-Au nanocomposites could be used as supersensitive optical probe for bioanalyses and medical diagnoses.
引文
[1] Tomalia D A, Baker H, Dewld J, et al. A new class of polymers: starbuest-dendritic macromolecules[J]. Polymer Joumal, 1985, 17(1): 117-132
    [2] Hawker C J, Frechet J M J. Preparation of polymers with controlled molecular architecture: a new convergent approach to dendritic macromolecules[J]. J Am Chem S oc, 1990, 112: 7638-7647
    [3] Matthews O A, Shipway A N, Stoddart J F. Dendrimer-sbranching out from curiosities into new technologies[J]. Progress Polymer Science, 1998, 23(1): 1-56
    [4] Tomalia D A, Naylor A M, Goddard Ⅲ W A. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter[J]. Angew Chem Int Ed Engl, 1990, 29: 138-175
    [5] Kim Y, Zimmerman S C. Applications of dendrimers in bio-organic chemistry[J]. Current Opinion in Chemistry Biology, 1998, 2: 733-742
    [6] Esfand R, Tomalia D A. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications[J]. Research Focus, Reviews, 2001, 6(8): 427-435
    [7] Cloninger M J. Biological applications of dendrimers[J]. Current Opinion in Chemical Biology, 2002, 6: 742-748
    [8] Vogtle F, Gestermann S, Hesse R, et al. Functional dendrimers[J]. Progress Polymer Science, 2000, 25: 987-1041
    [9] Crooks R M, Lemon Ⅲ B I, Sun L, et al. Dendrimer-encapsulated metals and semiconductors: synthesis, characterization, and applications[J]. Topics in Current Chemistry, 2001, 212: 81-135
    [10] Haensler J, Szoka F C Jr. Polyamidoamine cascade Polymers mediate efficient transfection of cells in culture[J]. Bioconjug Chem, 1993, 4(5): 372-379
    [11] Denning J, Dtmcan E. Gene transfer into eukaryotic cells using activated polyamidoamine dendrimers[J]. Molecular Biotechnology, 2002, 90: 339-347
    [12] Bielinska A U, Yen A, Wu H L, et al. Application of membrane-based dendrimer/DNA complexes for solid phase transfection in vitro and in vivo[J]. Biomaterials, 2000, 21: 877-887
    [13] 康文英.聚酰胺—胺型树枝状聚合物介导的基因治疗[J].国外医学输血及 血液学分册,2003,26(1):36-38
    [14] 郭晨莹,王恒.纳米材料在基因转染中的应用—Starburst PAMAM dendrimers研究现状[J].基础医学与临床,2002,22(2):103-107
    [15] Kukowska Latallo J F, Bielinska A U, Johnson J, et al. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers[J]. Proc Natl Acad Sci USA, 1996, 93(10):4897-4902
    [16] 郭晨莹,王恒,蔺亚晖,等.应用PAMAM dendrimers作为DNA运送载体的体外研究[J].生物化学与生物物理进展,2004,31(9):804-811
    [17] Beezer A E, King A S H, Martin I K, et al. Dendrimers as potential drug carders-encapsulation of acidic hydrophobes within water soluble PAMAM derivatives[J]. Tetrahedron, 2003, 59:3873-3880
    [18] Wells M, Crooks R M. Interactions between Organized, Surface-Confined Monolayers and Vapor-Pha-se Probe. Molecules 10.Preparation and Properties of Chemically Sensitive Dendrimer Surfaces[J]. Am.Chem. Soc. 1996,118: 3988-3989
    [19] 朱鸣岗,张其震,侯昭升.树枝状聚合物合成方法的新进展[J].高分子通报.2002,5(4):32-40
    [20] Kojima C, Kono K, Mamyama K, et al. Synthesis ofpolyamidoamine dendrimers having poly(ethyleneglycol) grafts and ability to encapsulate anticancer drugs[J]. Bioconjug Chem, 2000, 11(6):910-917
    [21] Wiener E C, Konda S, Shadron A, et al. Targeting dendrimer-chelates to tumors and tumoreells expressing the high-affinity folate receptor[J]. Invest. Radiol., 1997, 32: 748-754.
    [22] Bulte J W, Douglas T, Witwer B, et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells[J]. Nat. Biotechnol., 2001, 19(12): 1141-1147.
    [23] Torigoe K, Suzuki A, Esumi K. Au (Ⅲ)-PAMAM interaction and formation of Au-PAMAM nanocomposites in ethyl acetate[J]. Journal of Colloid and Interface Science, 2001, 241:346-356.
    [24] Balogh L, Valluzzi R, Laverdure K S, et al. Formation of silver and gold dendrimer nanocomposites[J]. Journal of Nanoparticle Research, 1999, 1:353-368
    [25] Esumi K, Suzuki A, Yamahira A,Torigoe K. Role of poly(amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver[J]. Langmuir, 2000, 16(6):2604-2608
    [26] Zhao M., Sun L., Crooks R. An unique function of dendrimer[J].Chem. Soc. 1998,120,4877-4778.
    [27] Zhao M., Crooks R. M. The mechanism of synthesizing metal nanoparticles with dendfimer [J]Adv. Mater. 1999, 11,217-220
    [28] Zhao M., Crooks R. M.Modifying function groups of dendrimer[J].Chem. Int. Ed. 1999, 38, 364-366.
    [29] Crooks R. M., Zhao M., Sun L., et al. Semiconductor clusters, nanocrystals, and quantum dots [J].Ace. Chem. Res. 2001, 34(3),181-190.
    [30] Ispasoiu R. G, Balogh L., Varnavski O. P, et al. Templating of inorganic nanoparticles by PAMAM/PEG dendrimer-star polymers.[J]J. Am. Chem. Soc. 2000,122,11005-11006.
    [31] Garcia M. E., Baker L. A., CrooksM. A noble metal nanoparticle synthesized with dendrimer.[J] Anal. Chem. 1999, 71,256-258.
    [32] Esumi K., Suzuki A., Aihara N., et al. Applications of dendrimers in inorganic chemistry[J].Langmuir 1998, 14, 3157-159.
    [33] Esumi K., Suzuki A., Yamahira A., et al. Dendrimer Templates for the Formation of Gold [J]. Langmuir. 2000,16, 2604-2608
    [34] Balogh L, Swanson D R, Tomalia D A, et al. Dendrimer-silver complexes and nanocomposites as antimicrobial agents[J]. Nano Lett, 2001, 1(1): 18-21
    [35] Zhao M, Sun L, Crooks R M. Preparation of Cu nanoclusters within dendrimer templates[J]. J. Am. Chem. Soc., 1998, 120(19):4877-4878
    [36] Beck Tan N C, Balogh L, Trevino S F, et al. A small angle scattering study of dendrimer-copper sulfide nanocomposites[J]. Polymer, 1999, 40:2537-2545
    [37] Esumi K, Isono R, Yoshimura T. Preparation of PAMAM- and PPI-Metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol[J]. Langmuir, 2004, 20:237-243
    [38] Ottaviani M F, Montalti F, Romanelli M, et al. Characterization of starburst dendrimers by EPR. 4. Mn(Ⅱ) as a probe of interphase properties[J]. J. Phys. Chem., 1996, 100:11033
    [39] Zhao M, Crooks R M. Intradendrimer exchange of metal nanoparticles[J]. Chem Mater, 1999, 11:3379-3385
    [40] Esumi K, Kameo A, Suzuki A, Torigoe K. Preparation of gold nanoparticles in formamide and N,N-dimethylformamide in the presence of poly(amidoamine) dendrimers with surface methyl ester groups[J]. Colloids and Surfaces A, 2001, 189:155-161
    [41] Esumi K, Hosoya T, Suzuki A, Torigoe K. Preparation of hydrophobically modified poly(amidoamine) dendrimer-encapsulated gold nanoparticles in organic solvents. Journal of Colloid and Interface Science, 2000, 229:303-306
    [42] Kim Y-G, Oh S-K, Crooks R M. Preparation and characterization of 1-2 nm dendrimer-encapsulated gold nanoparticles having very narrow size distributions[J]. Chem. Mater., 2004, 16:167-172
    [43]Lemon B I, Crooks R M. Preparation and characterization of dendrimer-encapsulated CdS semiconductor quantum dots[J]. J Am Chem Soc, 2000, 122:12886-12887
    [44] Niu Y., Yeung L. K., Crooks R. M. J. Nanoclusters Nanoparticles for bioanalysis [J]. Am. Chem. Soc. 2001, 123, 6840.
    [45] Bosman A. W., Janssen H. M., Meijer E. W. Dense Star Polymers and Denddmers [J]. Chem. Rev. 1999,99, 1665-1688.
    [46] Niu Yanhui, Crooks R M. Dendrimer-encapsulated metal nanoparticles and their applications to catalysis[J]. C R Chimie, 2003, 6:1049-1059
    [47] 李国平,李杰,罗运军.AgBr纳米簇:PAMAM树形分子模板法制备及光催化性能研究[J].2007,23(2):253-257
    [48] Balogh L, Swanson D R, Tomalia D A, et al. Dendrimer-silver complexes and nanocomposites as antimicrobial agents[J]. Nano Lett, 2001, 1 (1): 18-21
    [49] Zheng Jie, Petty J T, Dickson R M. High quantum yield blue emission from water-soluble Au_8 nanodots[J]. J Am Chem Soc, 2003, 125:7780-7781
    [50] Zheng J, Dickson R M. Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence[J]. J Am Chem Soc, 2002, 124:13982-13983
    [51] Bielinska A, Eichman J D, Lee I, et al. Imaging {Au0-PAMAM} gold-dendrimer nanocomposites in cells. [J]. Journal of Nanoparticle Research, 2002, 4:395-403
    [52] 成群,刘忠玲,田光.应用金黄色葡萄球菌协同凝集试验检测大便中O157:H大肠杆菌的实验研究[J].预防医学文献信息,2001,7(6):668-669
    [53] 易奇珍,韦庆昌,周国基,等.SPA协同凝集试验检测猪布鲁氏杆菌病抗原的实验[J].中国兽医杂志,1996,22(9):6-8
    [54] 王春晓,王起振.SPA等特殊蛋白在抗体纯化上的应用进展[J].沈阳药科大学学报,1997,14(1):61-66
    [55] 高云朝,吴洪芳,秦成生.SPA固化抗体技术及其在放射免疫分析中的应用[J] 泰山医学院学报,2000,21(4):283-284
    [56] 高云涛,吴立生.胶体金—SPA复合物的制备[J].黄金,2003,24(7):4-6
    [57] 郁毅刚 徐如祥 蔡颖谦 动态成像模式下蛋白A胶体金单分子三维构象原子 力显微镜研究[J].第一军医大学学报,2006,25(2):139-142
    [58] 朱鸣岗,张其震,侯昭升等.树枝状聚合物合成方法的新进展[J].高分子通报,2002,8(4):32~34
    [59] 周玉兰,刘永利,杨华,等.聚酰胺-胺型树状大分子化合物的合成研究[J].首都医科大学学报,2001,22(4):322-326.
    [60] 陈建芳.树枝状高分子聚酰胺.胺的合成研究[J].湖南工程学院学报,2005,15(1):74-76.
    [61] 李杰,王俊,王天凤,等.树枝状大分子聚酰胺-胺的合成与性能[J].化学研究,2004,15(2):31-34.
    [62] 章昌华,胡剑青,涂伟萍.聚酰胺胺(PAMAM)树状分子的合成[J].化工新型材料,2005,33(10):32-34.
    [63] 周贵忠.PAMAM树形分子合成、改性及在水处理中的应用研究[D].北京:北京理工大学,2003.
    [64] 李连超,谭惠民,马成良,等.纳滤膜纯化球状大分子的可行性研究[J].膜科学与技术,2004,24(1):66-69.
    [65] Mohammad T. Islam, Xiangyang Shi, Lajos Balogh. HPLC Separation of Different Generations of Poly(amidoamine) Dendrimers Modified with Various Terminal Groups[J]. Anal. Chem, 2005, 77 (7):(2063-2070)
    [66] Gorm Danscher, Meredin Stoltenberg. Silver enhancement of quantum dots resulting from (1) metabolism of toxic metals in animals and humans, (2) in vivo, in vitro and immersion created zinc-sulphur/zinc-selenium nanocrystals, (3) metal ions liberated from metal implants and particles[J]. Progress in Histochemistry and Cytochemistry, 2006, 41 (2):57-139
    [67] H. Bemey, J. Alderman, W. Lane, et al. Development of a generic IC compatible silicon transducer for immunoreactions[J]. Sensors and Actuators B: Chemical, 1999, 57 (1-3) :238-248
    [68] Elisabeth, Kjelds berg. Serotyping of human astrovirus strains by immunogold staining electron microscopy[J]. Journal of Virological Methods, 1994, 50(1-3) : 137-144
    [69] Karl E. Reijula, Viswanath P. Kurup, Jordan N. Fink [J].Ultrastructural demonstration of specific IgG and IgE antibodies binding to Aspergillus fumigatus from patients with aspergillosis Journal of Allergy and Clinical Immunology, 1991, 87(3):683-688
    [70] Gian Carlo Manara, Corrado Ferrari, Claudio Torresani, et al. The immunogold-silver staining approach in the study of lymphocyte subpopulations in transmission electron microscopy [J]. Journal of Immunological Methods, 1990, 128(1): 59-63
    [71] Andrew S. Bajer, Marylin Vantard. Microtubule dynamics determine chromosome lagging and transport of acentric fragments [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 1988 201(2): 271-281
    [72] 陈凤梅等 免疫胶体金技术的应用及研究进展[J].中国兽药杂志,2004,38(8):33-35
    [73] Oliver C. Conjugation of colloidal gold to proteins[J]. Methods in Molecular Biology, 1999, 115: 331-333
    [74] Roberts J C, Bhalgat M K, Zera R T. Preliminary biological evaluation of polyamidoamine (PAMAM) StarburstTM dendrimers[J]. J Biomed Mater Res, 1996, 30(1): 53-65.
    [75] D. Shcharbin, B. Klajnert, V. "Mazhul, and M. Bryszewska, Dendrimer Interactions with Hydrophobic FluorescentProbes and Human Serum Albumin [J]. Journal of Fluorescence, 2005, 15: 21-28.
    [76] Barbara Klajnert, Lidia Stanisl Cawsk, Mafia Bryszewsk, Bartl Comiej Pal Cecz, Interactions between PAMAM dendrimers and bovine serum albumin[J]. Biochimica et Biophysica Acta, 2003, 1648: 115-126
    [77] Bi-Feng Pan, Feng Gao_, Li-Mei Ao. Investigation of interactions between dendrimer-coated magnetite nanoparticles and bovine serum albumin[J]. Journal of Magenetism and Magnetic Materials, 2005, 293: 252-258.
    [78] Esumi K, Suzuki A, Yamahira A, Torigoe K. Role of poly(amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver[J]. Langmuir, 2000, 16(6): 2604-2608.
    [79] Dongjun Wang, Toyoko Imae, Masao Miki .Fluorescence emission from PAMAM and PPI dendrimers [J]. Journal of Colloid and Interface Science, 2007, 306 (2): 222-227
    [80] Jean-Pierre Mach, Franz Buchegger, Michel Fomi. Use of radiolabelled monoclonal anti-CEA antibodies for the detection of human carcinomas by external photoscauning and tomoscintigraphy[J]. Immunology Today, 1981, 2(12): 239-249
    [81] M. L. Egan, J. T. Lauenschleger, J. E. Coligan .a Radioimmune assay of carcinoembryonic antigen [J]. Immunochemistry, 1972, 9(3): 289-299
    [82] Satoshi Hamada, Nobuyoshi Ishikawa, Toshio Imura. Detection of circulating carcinoembryonic antigen (CEA) by counter-immunoelectrophoresis [J]. Clinica Chimica Acta, 1976, 66(3):365-370
    [83] 邓光辉,姜明国,李济权.毛细管电泳免疫分析法研究癌胚抗原与抗体相互作用[J].分析实验室,2000,25(11):54-57
    [84] 庄惠生,王琼娥,陈国南.测定癌胚抗原的化学发光免疫分析新方法[J].光谱学与光谱分析,2000,20(6):889-891
    [85] Kazuko Matsumoto, Jingli Yuan, Guilan Wang .Simultaneous Determination of α-Fetoprotein and Carcinoembryonic Antigen in Human Serum by Time-Resolved Fluoroimmunoassay [J]. Analytical Biochemistry, 1999, 276 (1):81-87
    [86] 肖华龙,黄飚,朱利国.CEA时间分辨荧光免疫分析[J].标记免疫分析与临床,2000,7(1):25-28.
    [87] Jiehua Lin, Feng Yan, Huangxian Ju. Noncompetitive enzyme immunoassay for carcinoembryonic antigen by flow injection chemiluminescence[J]. Clinica Chimica Acta, 2004, 341 (1-2): 109-115
    [88] 侯惠仁,王玉肖,许文革.癌胚抗原(CEA)酶联免疫分析试剂盒的研制[J].同位素,2005,14(3-4):227-229
    [89] Jie Wu, Jinhai Tang, Zong Dai. A disposable electrochemical immunosensor for flow injection immunoassay of carcinoembryonic antigen [J]. Biosensors and Bioelectronics, 2006, 22(1): 102-108
    [90] Fang Tan, Feng Yan, Huangxian Ju. A designer ormosil gel for preparation of sensitive immunosensor for carcinoembryonic antigen based on simple direct electron transfer [J]. Electrochemistry Communications, 2006, 8(12): 1835-1839