功能性环糊精衍生物的设计合成及其分子识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超分子主体化合物环糊精以其良好的生物相容性、可修饰性,在人工主体的模拟设计中越来越受到重视。其中,β-环糊精作为目前工业化生产规模最大的环糊精,以其优良的性质、相对低廉的价格正日益受到广泛的应用与开发。但是母体β-环糊精分子本身作为主体模型在具体应用中还有一定的局限性,比如β-环糊精在紫外、荧光等光谱中则是惰性的,缺少显示电子转移、光致变色等的功能性基团,难于借助各种必要的光学仪器,研究其与客体分子相互作用等;另外,母体β-环糊精缺少酶体上的有效功能点,为增加其分子模拟识别(PatternRecognization,PR)能力,使之具有酶功能,还需要在环糊精分子上引入一定功能基团将其修饰成为功能性β-环糊精衍生物;此外,β-环糊精分子在水中的溶解度较小,也使其应用性受到一定的限制。对β-环糊精进行适当的化学修饰以获得性能优异的β-环糊精功能主体模型并拓展其应用领域是很有必要的。
     本论文的研究内容主要有4部分组成,其具体内容如下:
     一.羟烷基-β-环糊精型超分子主体化合物的合成及性能
     1.合成了一种新的水溶性环糊精衍生物6-O-(2-羟基丁基)-β-环糊精,并合成了系列环糊精衍生物,6-O-(2-羟基丙基)-β-环糊精、2-O-(2-羟基丙基)-β-环糊精、2-O-(2-羟基丙基)-β-环糊精,为新型超分子主体化合物的设计,合成,应用提供了对比研究的基础。
     2.采用紫外可见光谱法研究主客体的包结行为,采用圆二色光谱法研究主客体可能的结构,并有机地将两种手段结合起来,对主客体包结结构进行解析,为研究主客体之间的相互作用,模拟认知生命体系运转和生命过程,发展新催化体系提供较为有效的理论基础。
     3.采用结构相关的三种分子甲基橙、甲基蓝、甲基紫作为客体分子,以不同取代面的,含有同系结构基团的环糊精衍生物作为主体分子,研究主客体之间的相互作用,发现在主客体分子相互作用的过程中大小/形状匹配,亲水作用,疏水作用,空间位阻等弱的相互作用力对包结物的形成影响较大。为系统研究主客体之间的相互作用,理解超分子化学体系中的作用力,提供了具体的证据。
     二.甜菜碱基环糊精的合成及其在毛细管电泳中的应用
     1.采用两种方法将具有良好生物活性的甜菜碱通过稳定的价键结构连接到环糊精结构上,并保持了完整的内盐结构。一种方法是以对甲苯磺酰氯做基团转换剂,合成了6-脱氧-甜菜碱基环糊精。一种方法是将甜菜碱基团预先制成潜甜菜碱化合物,然后通过“合成—脱保护”一锅法将甜菜碱基团通过醚键接到环糊精结构上。
     2.合成了2-O-(2-羟基丙基-氯化三乙胺盐基)-β-环糊精和6-O-(2-羟基丙基-氯化三乙胺盐基)-β-环糊精两种不同取代位置,具有良好水溶性的阳离子环糊精,增强了环糊精的性能,扩大了环糊精的应用范围。
     3.用毛细管电泳法研究了6-脱氧-甜菜碱基-β-环糊精和6-O-(2-羟基-3-甜菜碱基-丙基)-β-环糊精,2-HB-β-CD,6-HB-β-CD,2-O-HPTEA-β-CD,6-O-HPTEA-β-CD的分子识别行为。发现:
     1) 2面修饰的环糊精能够在一定程度上扩大环糊精的空腔,使环糊精与客体分子可作用的空间加大,识别能力提高。
     2)中性修饰的HB-β-CD环糊精由于不带电荷,而中性或者酸性药物存该实验条件下也不带电荷,因此毛细管电泳的分离效果很差。
     3) HPTEA-β-CD由于带正电荷,和中性或者酸性药物形成包结物后,使包结物也能带上电荷,有利于毛细管电泳的电迁移,所以其对中性或者酸性药物的分离效果都不错。本实验中,HPTEA-β-CD对所选的五种酸性药物都有良好的分离效果。
     4) 6-脱氧-甜菜碱基环糊精由于功能修饰基团甜菜碱基团与空腔之间的距离较短,造成修饰基团对空腔的封盖,导致环糊精的识别能力降低。6-HBP-β-CD甜菜碱基团与环糊精之间的链长加大,避免了修饰基团与环糊精空腔之间的直接作用,但是甜菜碱基团的内盐结构具有一定的稳定性,需要pH值降低到2.5左右才能减弱内盐结构中的电性作用,使修饰基团的识别作用显现出来。由于甜菜碱基团修饰的位置是在一面上,对环糊精手性环境影响不大,并且中性或者酸性药物在pH=2.5时不带电荷,6-HBP-β-CD对酸性和中性药物没有识别能力。
     三.两亲环糊精衍生物2-O-(羟丙基-N,N-二甲基-N-十二烷基铵)-β-环糊精的合成及表征
     1.通过控制反应条件合成了具有良好水溶性的两亲环糊精衍生物2-O-(羟丙基-N,N-二甲基-N-十二烷基铵)-β-环糊精。以反应活性高的对甲苯磺酸酯为中间体,将羟基转化为二甲基胺基,为长链二甲基烷基胺的合成提供了一条新的思路。以小分子醇为相转移催化剂,解决了长链醚化剂水相反应中,溶解度差,易起泡等问题,为长链醚化剂在水柑制备表面活性化合物等方面的应用提供了方法。
     2.用表面张力法测定了2-HPDMDA-β-CD的临界胶束浓度cmc,该cmc比DTAC的cmc小一个数量级左右。在15℃到35℃之间,cmc随温度的变化不大,在20℃时,2-HPDMDA-β-CD的效能最高。
     3.用稳态荧光法测定了2-HPDMDA-β-CD在水中的聚集行为,表明2-HPDMDA-β-CD可以提供两种与客体分子作用的空间:一种是环糊精空腔,一种是2-HPDMDA-β-CD的烷基长链形成的疏水聚集体。
     4.用电导率法验证了cmc,并计算出胶束解离度α,表明大部分的2-HPDMDA-β-CD是以阳离子离子状态存在的。这可能是因为环糊精基团是2-HPDMDA-β-CD的亲水头基,其横截面积比N(CH_3)_3~+的横截面积大的多,可以为反离子Cl~-提供更多的空间。
     5.用动态光散射和透射电镜观察了2-HPDMDA-β-CD在水溶液中的聚集状态。发现2-HPDMDA-β-CD在水中主要以两种聚集体形式存在:一种聚集体的水动力学半径不随着2-HPDMDA-β-CD的浓度变化而变化,这可能是由2-HPDMDA-β-CD单体或低聚体形成的水动力学半径;一种聚集体的水动力学半径随着2-HPDMDA-β-CD的浓度的增大。
     四.两亲型阳离子环糊精衍生物的合成及添加剂对其聚集形态的影响
     1.以反应活性高的对甲苯磺酸酯为中间体,将羟基转化为二甲基胺基,合成了N,N-二甲基十四胺,N,N-二甲基十六胺,N,N-二甲基十八胺,并进一步合成了具有良好水溶性的两亲阳离子环糊精衍生物系列—2-O-(羟丙基-N,N-二甲基-N-十二烷基铵)-β-环糊精,2-O-(羟丙基-N,N-二甲基-N-十四烷基铵)-β-环糊精,2-O-(羟丙基-N,N-二甲基-N-十六烷基铵)-β-环糊精,2-O-(羟丙基-N,N-二甲基-N-十八烷基铵)-β-环糊精。
     2.采用动态光散射法和透射电子显微镜法研究了上述两亲型阳离子环糊精衍生物在水中的聚集形态,并研究了添加剂氯化钠,乙醇,水杨酸钠,金刚烷甲酸对上述阳离子环糊精衍生物系列在水中的聚集形态的影响:
     在阳离子环糊精衍生物的水溶液中,其聚集形态主要取决于烷基长链的长度。随着烷基长链的延长,烷基长链的疏水能力加强,环糊精衍生物的亲油亲水比加大,衍生物的单体或低聚体形成的小聚集体不稳定性增大,导致小聚集体最终消失。
     氯化钠能够提供反离子Cl~-,结合到环糊精亲水头基上,降低亲水头基水化水的数量,压缩亲水头基的体积,不利于溶液中单体或低聚体的稳定,并且削弱了正电荷的电性排斥,使烷基长链更易接近,从而使聚集体的水动力学半径增大。
     乙醇可以进入烷基长链形成的疏水部分,能够降低烷基长链间的疏水作用力,使两亲阳离子环糊精衍生物单体或低聚体形成的聚集体可以稳定下来。但随着烷基长链疏水能力的提高,乙醇进入疏水部分的量减少,大部分仍存在于水溶液中,与亲水头基上的水化水竞争,降低了亲水头基的体积,有利于水动力学半径较大的聚集体形成。
     水杨酸钠能够与两亲分子的环糊精空腔发生包结作用,并和阳离子结构相互作用,降低两亲分子之间的电性排斥,聚集体可以形成较为稳定的结构,使小的聚集体体积增大,但烷基长链的疏水作用达到一定的强度后,亲水头基简单的性质改变并不能影响聚集体的形貌。
     金刚烷甲酸加入到两亲分子溶液中,会形成结构较为规整的金刚烷甲酸的包结物,并且随着金刚烷甲酸的浓度的升高,包结物浓度增大,结构较为规整的两亲分子数目增多,聚集体的水动力学半径增大。当金刚烷甲酸的浓度超过1mM时,金刚烷甲酸开始进入到烷基长链形成的疏水结构中,引起疏水结构的改变,使聚集体的水动力学半径减少。
Cyclodextrins,as functional supermolecular host compound,have attracted more and more attention in simulation design of artificial hosts for their good biocompatibility and modifiable molecular structure.As the largest scale industrial production of cyclodextrins,β-CD has been winning more and more applications and developments for its low price and high performance.However,the inherent defects of naturalβ-CD restrict its practical applications.For instance,the lacks of chromophores and auxochromes would limit the UV-Fluorescence analysis application ofβ-CD in supramolecular chemistry(Host-Guest interaction).In addition,β-cyclodextrin is lack of effective functional point of enzymes.To increase its Pattern Recognization(PR) ability for an enzyme simulation,theβ-cyclodextrin should be modified to become functionalβ-cyclodextrin derivatives by introducing certain functional groups.Moreover,poor water-solubility also restricts the application ofβ-CD.In order to expending its application,it is necessary to modifyβ-cyclodextrin properly.
     The main content of the paper showed as follows:
     1 Series of hydroxylalkyl-β-cyclodextrin supermolecular host compounds:their preparation and application in molecular recognition
     A new water-soluble cyclodextrin derivative 6-O-(2-hydroxyibutyl)-β-cyclodextrin (6-HB-β-CD) was prepared.A serie of supermolecular host compounds 6-O-(2-hydroxylpropyl)-β-cyclodextrin(6-HP-β-CD),2-O-(2-hydroxylbutyl)-β-cycl odextrin(2-HB-β-CD),2-O-(2-hydroxylpropyl)-β-cyclodextrin(2-HP-β-CD) were also prepared for the purpose of detecting the rules of host-guest interaction.
     Ultraviolet-visible spectrophotometer was employed to detect the host-guest inclusion phenomena and circulardichroism spectrophotometer was employed to detect the possible structure of host-guest complex.The combination of the two methods could analysis the structure of host-guest complex.And this method is very helpful in understanding the vital process and in the development of new catalytic system.
     Methyl orange,methyl blue,methyl violet,which have correlated molecular structure were used as the guest probes.The series of cyclodextrin derivatives,which have homologous substituent group on different sides ofβ-cyclodextrin were used as the host compounds.It found that there were several factors affecting the interaction of host-guest,such as size/shape matching,hydrophilic property,hydrophobic property,the steric hindrance.
     2 Betainyl-β-cyclodextrins:preparation and their application in capillary electrophoresis.
     Two methods were employed to link the betaine substituent toβ-cyclodextrin with the entire inner-salt structure by stable covalent bonds.One method was that the betaine substituent linked toβ-cyclodextrin directly(mono-6-deoxy-betainyl-β-cyclodextrin) with the intermediate mono-6-O-p-toluenesulfnyl-β-cyclodextrin.The other method was that the betaine was converted to pro-betaine compound and the betaine substituent was linked toβ-cyclodextrin with ether bonds by a "synthesis-deprotection one pot" method(6-O-(2-hydroxyl-3-betainylpropyl)-β-cyclodextrin,6-HBP-β-CD).
     Two kinds of water-soluble cationicβ-cyclodextrin derivatives 2-O-(hydroxyl propyltriethylammonia)-β-cyclodextrin(2-O-HPTEA-β-CD),6-O-(hydroxypropyl triethylammonia)-β-cyclodextrin(6-O-HPTEA-β-CD) were prepared with the intention of producing useful functional models with enhanced performances characteristics.
     The molecular recognition ability ofβ-CD,2-HP-β-CD,2-HB-β-CD, 6-HB-β-CD,mono-6-deoxy-betainyl-β-cyclodextrin,6-HBP-β-CD,2-O-HPTEA -β-CD,6-O-HPTEA-β-CD was carried out by the separate results of the cappilary electrophoresis.
     The substituents on the secondary side ofβ-cyclodextrin could enlarge the cavity ofβ-cyclodextrin and accommodate guest molecules with enough space.This could enhance the molecular recognition ability of host compounds.
     HB-β-CDs with neutral substituents had little selectivity about neutral drugs and acidic drugs in our experiment conditions for there were no charge on hosts or guests.
     2-O-HPTEA-β-CD,6-O-HPTEA-β-CD had better separate ability about neutral drugs and acidic drugs for they could form inclusion compounds with charge which were propitious to electromigration in capillary electrophoresis.
     Mono-6-deoxy-betainyl-β-cyclodextrin had poor molecular recognition ability for the betainyl group could cover the cavity of the cyclodextrin derivative because of short distance between betainyl group and cyclodextrin.6-HBP-β-CD could avoid the direct interaction of the betainyl group and the cavity of 6-HBP-β-CD for the chain between betainyl groups with parent cyclodextrin was long enough,pH 2.5 was found to be the most suitable pH for 6-HBP-β-CD about the drug enantiomers.When pH increased,electrovalent interaction of the betainyl group was stable and 6-HBP-β-CD had no selectivity to the drugs.When pH decreased,electrovalent interaction of the betainyl group could be broken and the carboxylate group turned to be carboxyl group, which resulted in a decreased enantioselectivity of 6-HBP-β-CD to the drugs. 6-HBP-β-CD had no selectivity about neutral drugs and acidic drugs for neutral drugs and acidic drugs had no charge under the pH.
     3 Amphiphilic cyclodextrin derivative 2-O-(hydroxylpropyl-N,N-dimethyl-N-do decylammonio)-β-cyclodextrin:preparation and characterization
     A new water-soluble amphiphilic cyclodextrin derivative 2-O-(hydroxyl propyl-N,N-dimethyl-N-dodecylammonio)-β-cyclodextrin(2-HPDMDA-β-CD) was prepared.A useful method was employed to synthesize N,N-dimethylalkylamine with a long phobic chain.An efficient phase-transfer catalyst isopropyl alcohol was employed to resolve the problem of the low yield of 2-HPDMDA-β-CD in aqueous phase.
     2-HPDMDA-β-CD was found to be a fine surfactant with a smaller critical micelle concentration(cmc)(1.21mM) value than that of dodecyltrimethylammonium chloride.The cmc of 2-HPDMDA-β-CD was relatively stable between 15℃and 35℃.20℃was the temperature at which the highest effectiveness of 2-HPDMA-C12-CD was observed.
     The results of steady-state fluorescence measurement suggested that 2-HPDMDA-β-CD could perhaps be used as a fine host compound with two functional spaces:one is micelles and the other is the cyclodextrin cavity.
     The degree of ionization,α,of the micelle suggested that most of 2-HPDMDA-β-CD existed in aqueous solution as cationic ions.This could attributed to that the cross-sectional area of the hydrophilic head was larger than that of N(CH_3)_3~+ and could accommodate antiparticle Cl~- with enough space.
     The results of dynamic light scattering and transmission electron microscopy measurement showed that two major aggregates existed in the solution.The aggregates with a smaller size(hydrodynamic radius(R_h) of 2.4 nm) were independent of concentration,which may be attributed to the R_h of a monomer or oligomer of 2-HPDMDA-β-CD.The aggregate with a larger size shows relatively strong concentration dependence.
     4 Series of amphiphilic cationic cyclodextrin derivatives:preparation and additive effect about their microstructure
     N,N-dimethyltetrodecylamine,N,N-dimethylhexadecylamine,N,N-dimethyl octadecylamine was prepared with alkyl p-toluenesulfonate which had high reactivity. Then,series of amphiphilic cationic cyclodextrin derivatives 2-o-(hydroxypropyl-N, N-dimethyl-N-dodecylammonio)-β-cyclodextrin(2-HPDMDA-β-CD),2-o-(hydroxyl propyl-N,N-dimethyl-N-tetrodecylammonio)-β-cyclodextrin(2-HPDMTA-β-CD), 2-o-(hydroxypropyl-N,N-dimethyl-N-Hexadecylammonio)-β-cyclodextrin(2-HPDM HA-β-CD),2-o-(hydroxypropyl-N,N-dimethyl-N-octadecyl ammonio)-β-cyciodextrin (2-HPDMOA-β-CD) were prepared for the first time.
     Dynamic light scattering and transmission electron microscopy were employed to observe the aggregation of above series of the amphiphilic cyclodextrin derivatives in aqueous solution.The additive effect,such as NaCl,ethanol,sodium salicylate, 1-adamantanecarboxylic acid about the aggregation was also observed.
     The aggregation form of the amphiphilic cationic cyclodextrin dereivatives in aqueous solution related to the length of the hydrophobic alkyl chain.The hydrophobic ability of alkyl chains would enhance when the alkyl chain prolonged, and the hydrophile-lipophile balance number(HLB) of the amphiphilic cyclodextrin derivatives would decrease.Then,the aggregation stability of a monomer or oligomer would decrease and disappear in aqueous solution.
     When NaCl was the additive,counterion Cl~- could combine to the hydrophilic head and decrease the amount of the water of hydration on the hydrophilic head.This could result in that the volume of the hydrophilic head in water became small and the stability of a monomer or oligomer of 2-HPDMDA-β-CD aggregation would decrease. Counterion Cl~- could also decrease the electrovalent repulsion of the hydrophilic head and the long alkyl chains aggregated easily to form large aggregation.
     Ethanol could enter the hydrophobic parts of the aggregation and decrease the hydrophobic interaction.This could make a monomer or oligomer of 2-HPDMDA-β-CD aggregation stable in aqueous solution.The amount of ethanol in the hydrophobic parts of the aggregation would decrease when the hydrophobic ability of the long alkyl chain enhanced.Ethanol in aqueous solution would compete with the water of hydration on the hydrophilic head and decrease the volume of the hydrophilic head.This could result in the formation of large aggregation with large hydrodynamic radius.The amount of ethanol in aqueous solution could also increase when the ethanol concentration increased.This could also result in the formation of large aggregation.
     Sodium salicylate could not enter into the hydrophobic parts of the aggregation for its better solubility in water.Sodium salicylate could enter into the cavity of the amphiphilic cyclodextrin derivative to form inclusion compounds with electrovalent interaction and decrease the electrovalent repulsion of the hydrophilic head.This could make the aggregation of the amphiphilic cyclodextrin derivatives stable in water. However,sodium salicylate could not effect the aggregation of the amphiphilic cyclodextrin derivatives when the hydrophilic property of the long alkyl chain enhanced to a certain extent.
     1-adamantanecarboxylic acid could enter into the cavity of the amphiphilic cylcodextrin dereivativs and form stable inclusion compounds with simple surfactant structure when 1-adamantanecarboxylic acid added into the aqueous solution.This resulted in that there were three kinds of aggregations in the aqueous solution.When the concentration of 1-adamantanecarboxylic acid increased,the concentration of inclusion compounds with simple surfactant structure increased and the hydrodynamic radius of aggregations increased,1-adamantanecarboxylic acid began to enter into the hydrophobic parts of the aggregation when its concentration was larger than 1mM. This could change the structure of the hydrophobic parts of the aggregation and decrease the hydrodynamic radius of the aggregations.
引文
[1]Pitha,J.;Rao,C.T.Distribution of substituents in 2-hydroxypropyl ethers of cyclomaltoheptaose,Carbohydr.Res.1990,20,429-435.
    [2]Szejtli,J.Advances in Inclusion Science,D.Reidel Publishing Company,Dordrecht,1982.
    [3]Szejtli,J.Cyclodextrin Technology,Kluwer Academic,Dordrecht,1988.
    [4]James,W.J.;French,D.;Fundle,R.E.Preparation and stability of iodine/ cyclodextrin inclusion complex, Acta Ctyst. 1959, 12, 385-389.
    [5] Bender, M. L.; Komiyama, M. Cyclodextrin Chem, Springer-Verlay, Berlin, 1979.
    [6] Gillet, B.; Nicole, D. J.; Delpuech, J. J. The hydroxyl group protonation rates of a, β and γ-cyclodextrins in dimethylsulphoxide, Tetrahedron Lett. 1982, 23, 65-68.
    [7] Ress, D. A. Schardinger dextrin interaction IV. Inhibition of hydrolysis by means of molecular complexformation, J. Chem. Soc. 1970, 8, 877-882.
    [8] Saenger, W.; Noltemeyer, M.; Manor, P. C. Interaction of Pharmaceuticals with schardinger dextrins III. Interactions with mon-ohalogenated benzoic acids and aminobenzoic acids, Bioorg. Chem. 1976, 5, 187-190.
    [9] Suzuki, I.; Chen, Q.; Ueno, A. Acceleration of phenyl ester cleavage by cycloamyloses a model for enzymic specificity, Bull. Chem. Soc. 1993, 66, 1472-1476.
    [10] Lach, J. L.; Chin, T. F. Effect of cycloamyloses on apparent dissociaiton by complex formation, J. Pharm. Sci. 1964, 53, 924-927.
    [11] Lach, J. L.; Chin, T. F. Cyclodextrin in the absorptive phase after single doses of drug, J. Pharm. Sci. 1964, 53, 69-74.
    [12] Griffiths, D. W.; Bender, M. L. Modification of photochemical reactivity by cyclodextrin complexalion: product selectivity in photo-fries rearrangement, Adv. Catal. 1973,23,209-213.
    [13] Vanetten, R. L.; Sebastian, F.; Clowes, J. G. Acceleration of phenyl ester cleavage by cycloamyloses - a model for enzymic specificity, J. Am. Chem. Soc. 1967, 89, 3242-3244.
    [14] Tadanobu, U.; Fumitoshi, H.; Kaneto, U. Stereochemistry and thermal stability of diazodiketones, Chem. Soc. Perkin Trans. 1993, 2, 1791-1793.
    [15] Connors, K. A.; Lipari, J. M. Effect of cycloamyloses on apparent dissociation constants of carboxylic acids and phenols: equilibrium analytical selectivity induced by complex formation, J. Pharm. Sci. 1976,65, 379-381.
    [16] Gelb, R. A.; Schwartz, L. M.; Cardlino, B. Binding mechanisms in cyclohexaamylose complexes,J. Am. Chem. Soc.1981, 103, 1750-1757.
    [17] Szejtli, J. Cyclodextrin and their Inclusion Complexes, Akademiai Kiaeo, Budapest,1982.
    [18]Remden,R.;Carlfors Stilbs,J.P.Substrate binding to cyclodextrins in aqueous solution:a multicomponent self-diffusion study,J.Inclusion Phenomena 1983,1,159-167.
    [19]Osa,T.;Matsue,T.;Fujihira,M.Cyclodextrin,Heterocycles 1977,6,1833-1836.
    [20]Mastue,T.;Osa,T.;Evans.D.H.Determination of some physical constants of cyclodextrin complexes by electrochemical methods,J.Inclusion.Phenomena 1984,2,547-554.
    [21]Mantsui,Y.;Sawada,H.;Mochida,K.The adsorption of α-and β-cyclodextrins on the dropping mercury electrode in an aqueous solution,Bull.Chem.Soc.1975,48,3446-3449.
    [22]Lagrost,C.;Mochida,K.Binding forces contributing to the association of cyclodextrin with alcohol in an aqueous solution,Bull.Chem.Soc.1979,52,2808-2814.
    [23]Lagrost,C.;Lacroix,J.C.;Aeiyach,S.Host-guest complexation:a new strategy for electrodeposition of processable polythiophene composites from aqueous medium,Chem.Commun.1998,489-490.
    [24]Ruppert,S.;Knittael,D.Fixierung von-Cyciodextrinderivaten auf Polyesterfasermateriai,Starch/Starke 1997,49,160-164.
    [25]Vikmon,M.;Stadler-Szoke,A.;Szejtli,J.Solubilization of amphotericin B with gamma-cyclodextrin,J.Antibiot.1985,38,1822-1824.
    [26]Couthon,F.;Clottes,E.;Vial,C.Refolding of SDS- and thermally denatured MM-creatine kinase using cyclodextrins,Biochem.Biophyes.Res.Commun.1996,227,854-860.
    [27]Sukonen,P.;Javinen,T.;Lehmussaari,K.Ocular absorption and irritation of pilocarpine prodrug is modified with buffer,polymer,and cyclodextrin in the eyedrop,Pharm.Res.1995,12,529-533.
    [28]Martic,P.A.;Skochdopole,T.R.US 5340854,1994.
    [29]吴文娟;陈玉珍;谭载友.水溶性高聚物对药物-环糊精包合作用的影响,中 国药学杂志 1999, 34(2), 27-29.
    [30] Lis,W.; Purdy, C. Cyclodextrins and their applications in analytical chemistry, Chem. Rev. 1992, 92, 1457-1470.
    [31] Paleologou, M.; Purdy, W. C. Characterization of drug transport through tight-junctional pathway in caco-2 monolayer: comparison with isolated rat jejunum and colon, J. Chromatogr. Sci. 1990, 28, 331-333.
    [32] Takahashi, K.; Hattori, K. Asymmetric reactions with cyclodextrins, J. Inclusion Phenom. Mol. Recognit. Chem. 1994, 1, 1-24.
    [33] Nakanishis, J. K.; Masukawa, T.; Nadai, T. Polysaccharide of stragali radix enhances IgM antibody production in aged mice, Biol. Pharm. Bull. 1997, 20,60-65.
    [34] Fillet, M.; Becht, I.; Chip, P. A new thin-layer method for phenolic substances and coumarins, J. Chromatogr. 1995, 717, 203-309.
    [35] Chankvetadze, B.; Endresz, G.; Blaschke, G. Charged cyclodextrin derivatives as chiral selectors in capillary electrophoresis, Chem. Soc. Rev. 1996, 25, 141-153.
    [36] Moore, E.; Bergamo, R.; Casllo, R. Direct compression tablets containing a series of four β-cyclodextrin complexes formed by neutralizing an acidic drug, Drug Dev. Ind. Pharm. 2000, 26, 1259-1270.
    [37] Varia, P. R.; Adhage, N. A. Freeze-dried inclusion complexes of tolfenamic acid with β-cyclodextrins, Pharm. Dev. Technd. 2000, 5, 571-574.
    [38] Skalko-Basnd, N.; Pavelic, Z. Direct compression tablets containing a series of four β-cyclodextrin complexes formed by neutralizing an acidic drug, Drug Dev. Ind. Pharm. 2000, 26, 1259-1284.
    [39] Wolbach, J. P.; Lloyd, D. K.; Wainer, I. W. Approaches to quantitative structure-enantioselectivity relationship modeling of chiral separations using capillary electrophoresis, J. Chromatogr. A 2001, 914, 299-314.
    [40] Yochida, A.; Yamasaki, T.; Aoyagi, T. Heterocycles, 2001,54, 596-600.
    [41] Miyake K; Irie T.; Hirayama F. Proc. Int. Stymp. Cyclodextrins 9th, 1998, 293-296.
    [42] Torro, N. J.; Okabo, T.; Chung, C. J. Analysis of static and dynamic host-guest associations of detergents with cyclodextrins via photoluminescence methods,J.Am.Chem.Soc.1982,104,1789.
    [43]David,B.New Scientist,1992,1832,15.
    [44]Pitha,J.;lrie,T.;Sklar,P.B.Life Sciences 1988,43,493-502.
    [45]李正化.药物化学,人民卫生出版社,北京,1998.
    [46]Uekama,K.;Hirashima.N.;Horiuchi,Y.;Hirayama,F.Ethylated -cyclodextrins as hydrophobic drug carriers:sustained release of diltiazem in the rat,J.Pharm.Sci.2006,76,660-661.
    [47]徐筱杰;陈丽蓉.化学及生物体系中的分子识别,化学进展 1996,8(3),189-192.
    [48]Hao,A.Y.,Tong,L.H.Dimerization constant determination of 6-O-benzoyl-β-cyclodextrin in aqueous solution,Chin.Chem.Lett.1996,9,853-854.
    [49]Styer,L.Biochemistry(3~(rd)),Freeman W.H.,New York,1988.
    [50]董捷;杨景和;蔡红.紫外分光光度法测定亚硝酸盐的研究及应用,中国环境监测 2002,18,26-30.
    [51]李珺;袁倬斌.毛细管区带电泳分离测定邻、对、间氯代苯酚,分析化学简报 2001,29(12),1414-1418.
    [52]Brusseau,M.L.;Wang,X.J.;Huang,Q.G.Enhanced transport of low-polarity organic compounds through soil by cyclodextrin,Environ.Sci.Technol.1994,28,952-956.
    [53]Arkas,M.;Allabashi,R.;Tsiourvas,D.;Mattausch,E.M.;Perfler,R.Organic/Inorganic Hybrid Filters Based on Dendritic and Cyclodextrin "Nanosponges"for the Removal of Organic Pollutants from Water,Environ.Sci.Technol.,2006,40,2771-2777.
    [54]高士祥;王灿;孔德洋;蔡邦成;邵云.β-环糊精对对硝基苯酚微生物降解的影响,环境化学 2003,22(5),445-449.
    [55]刘育;尤长城;张衡益.超分子化学.天津:南开大学出版社,2001.
    [56]郝爱友;童林荟.环糊精在环境保护中的功能应用,化学试剂 1997,19(5),302-303.
    [57]刘嫦娥;段昌群;曾清如:郭正元.环糊精衍生物(MCD和HPCD)对甲基对硫磷紫外光降解的影响研究,农业环境科学学报 2004,23(6),1124-1127.
    [58]孙宏元;郝爱友;尹明静;张华承;申健.环糊精在绿色有机合成中的应用,化学进展 2008,20(11),1694-1698.
    [59]Bravo-Diaz,C.;Gonzalez-Romero,E.Inhibition of the β-Cyclodextrin Catalyzed Dediazoniation of 4-Nitrobenzenediazonium Tetrafluoroborate.Blocking Effect of Sodium Dodecyl Sulfate,Langmuir 2005,21,4888-4895.
    [60]Tsianou,M.;Alexandridis,P.Control of the Rheoiogical Properties in Solutions of a Polyelectrolyte and an Oppositely Charged Surfactant by the Addition of Cyclodextrins,Langmuir 1999,15,8105-8112.
    [61]张有明;汪汉卿.β-环糊精与两性表面活性剂相互作用,无机化学学报 2002,18,773-776.
    [62]Cabaleiro-Lago,C.;Nilsson,M.;Soderman,O.Self-Diffusion NMR Studies of the Host-Guest Interaction between β-Cyclodextrin and Alkyltrimethylammonium Bromide Surfactants,Langmuir 2005,21,11637-11644.
    [63]Qu,X.K.;Zhu,L.Y.;Li,L.;Wei,X.L.;Liu,F.;Sun,D.Z.Host-Guest Complexation of β-,γ-Cyclodextrin with Alkyl Trimethyl Ammonium Bromides in Aqueous Solution,J.Solution Chem.2007,36,643-650.
    [64]Martin,J.V.;Turmine,M.;Letellier,P.;Hemery,P.Study of β-cyclodextrin/dodecyltrimethylammonium bromide complex into water-isopropanol mixtures,Electrochim.Acta 1995,40,2749-2753.
    [65]Galant,C.;Wintgens,V.;Amiel,C.;Auvray,L.A Reversible Polyelectrolyte Involving a β-Cyclodextrin Polymer and a Cationic Surfactant,Macromolecules 2005,38,5243-5253.
    [66]Harada,A.;Okumura,H.;Okada,M.;Suzuki,S.;Kamachi,M.Site-Selective Complexation of Amphiphilic Compounds by Cyclodextrins,Chem.Left.2000,29,548-549.
    [67]Jiang,L.;Deng,M.;Wang,Y.;Liang,D.;Yan,Y.;Huang,J.Special Effect of β-Cyelodextrin on the Aggregation Behavior of Mixed Cationic/Anionic Surfaetant Systems,J.Phys.Chem.B 2009,0.
    [68]Khan,A.R.;Forgo,P.Methods for selective modifications of cyclodextrins,Chem.Rev.1998,98,1977-1996.
    [69]Pitha,J.;Rao,C.T.An AMl molecular orbital study of α-glucopyranose and β-maltose:evaluation and implications,Carbohytr Res.1990,320,426-428.
    [70]Rong,D.;Valerian,T.D.A convenient method for functionalization of the 2-position of cyclodextrins,Tetrahedron.Lett.1990,31,4275-4278.
    [71]Szejtli,J.The properties and potential uses of cyclodextrin derivatives,J.Inclusion.Phenom.Mol.Recognit.Chem.1991,14.,25-36.
    [72]Takahashi,K.;Hatori,K.;Toda,F.Monotosylated α-and β-cyclodextrins prepared in an alkaline aqueous solution,Tetrahedron Lett.1984,25,3331-3334.
    [73]Fujita,K.;Nagamura,S.;Imoto,T.Convenient preparation and effective separation of the C-2 and C-3 tosylates of α-cyciodextrin,Tetrahedron Lett.1984,25,5673-5676
    [74]Ueno,A.;Breslow,R.Selective sulfonation of a secondary hydroxyl group of β-cyclodextrin,Tetrahedron Lett.1982,23,3451-3454.
    [75]Fujita,K.;Tahara,T.;lmoto,T.;Koga,T.Regiospecific sulfonation onto C-3hydroxyls of β-cyclodextrin preparation and enzyme-based structural assignment of 3A,3C and 3A,3D disuifonates,J.Am.Chem.Soc.1986,108,2030-2034.
    [76]Fujita,K.;Tahara,T.;Koga,T.;lmoto,T.Enzymatic synthesis of specifically modified linear oligosaccharides from γ-cyclodextrin derivatives,study on importance of active sites of taka amylase A,Bull.Chem,Soc.Jpn.1989,62,3150-3152.
    [77]Tahara,T.;Fujita,K.;Koga,T.Simple and convenient method for synthesis of 3-o-sulfonyl-γ-cyclodextrin,Bull.Chem.Soc.Jpn.1990,63,1409-1412.
    [78]Atwood,J.L.;Lehn,J.M.;Szejtli,J.;Osa,T.Cyclodextrins,Perga-mon,Oxford,1996.
    [79]Nepogodiev,S.A.;Stoddart,J.F.Cyclodextrin-based catenanes and rotaxanes,Chem.Rev.1998,98,1959-1976.
    [80] Weisz P. B.; Joullie M. M.; Hunter C. M.; Kumor K. M.; Zhang Z. Biochem. Pharm. 1997, 54, 149-156.
    
    [81] Mrova, A.; Fenyvesi, E.; Koos, N. Proc.Int.stymp. Cyclodextrins 9th 1998, 53-56.
    [82] Takeo, K.; Uemura, K.; Mitoh, H. Phosphorus, sulfur, and silicon and the related elements: alkylation of thiohydantoins including synthesis, conformational and configurational studies of some acetylated s-pyranosides, J. Carbohydr. Chem. 1988, 7, 29-34.
    [83] Takeo, K.; Mitoh, H.;Uemura, K. Selective chemical modification of cyclomalto -oligosaccharides via tert-butyldimethylsilylation, Carbohydr. Res. 1989, 187, 203-221.
    [84] Zhang, P.; Ling, C. C.; Coleman, A.W.; Parrot-Loptz H.; Galons H. Formation of amphiphilic cyclodextrins via hydrophobic esterification at the secondary hydroxyl face, Tetrahedron Lett. 1991, 32, 2769-2770.
    
    [85] Coleman, A.W.; Zhang, P.; Parrot-Lopez, H.; Ling, C. C.; Miocque, M.; Mascrier, L. The first selective per-tosylation of the secondary OH-2 of P-cyclodextrin, Tetrahedron Lett. 1991, 32, 3997-3998.
    [86] Coleman, A.W.; Zhang, P.; Ling, C. C. The use of chlorodimethylthexylsilane for protecting the hydroxyl groups in cyclomaltoheptaose (β-cyclodextrin). Carbohydr. Res. 1992, 224, 307-309.
    [87] Tian, S.; Forgo, P. D.; Souza, V. T. Selective modification at the 3-position of p-cyclodextrin, Tetrahedron Lett. 1996, 37, 8309-8312.
    [88] Ashton, P. R.; Boyd, S. E.; Gattuso, G.; Hartwell, E. Y.; Koeing, R.; Specer, N.; Stoddart, J. F. Per - 3, 6-anhydro-alpha-cyclodextrin and per -3, 6- anhydro -beta-cyclodextrin, J. Org. Chem. 1991, 56, 7274-7280.
    [89] Pregel, M. L.; Buncel, E. Cyclodextrin-based enzyme models, part 1. synthesis of a tosylate and an epoxide derived from heptakis (6-O-tert-butyldimethylsilyl) -β-cyclodextrih and their characterization using 2D NMR techniques, an improved route to cyclodextrins functionalized on the secondary face, Can. J. Chem. 1991, 69, 130-137.
    [1]Pedersen,C.J.Cyclic polyethers and their complexes with metal salts,J.Am.Chem.Soc.1967,89,2495-2496.
    [2]Dietrich,B.;Lehn,J.M.;Sauvage,J.P.Diaza-polyoxa-macrocycles et macrobicycles,Tetrahedron Lett.1969,10,2885-2888.
    [3]Donald,J.C.;Jane,M.C.Host-Guest chemistry:Complexes between organic compounds simulate the substrate selectivity of enzymes,Science.1974,183,803-809.
    [4]Lehn,J.M.Cryptates:Inclusion Complexes of Macropolycyclic Receptor Molecules,Pure Appl.Chem.1978,50,871-892.
    [5]Lehn,J.M.Supramolecular chemistry—Scope and perspectives:Molecules—Supermolecules—Molecular devices,J.Inclusion Phenom.Macrocyclic Chem.1988,6,351-396.
    [6]Shilpa,C.M.;Kumaranand,P.;Muralidhara,T.A metal nanoparticle-based supramolecular approach for aqueous biphasic reactions,Chem.Comm.2005,3207-3209.
    [7] Ji, H. B.; Shi, D. P.; Shao, M. A metal nanoparticle-based supramolecular approach for aqueous biphasic reactions, Tetrahedron Lett. 2005, 46, 2517-2520.
    
    [8] Ji H. B. Highly Shape-Selective, Biomimetic, and Efficient Deprotection of Carbonyl Compounds Masked as Ethylene Acetals or Dioxolanes Produced from 1,2-Ethanediol, Eur. J. Org. Chem. 2003, 3659-3662.
    
    [9] Yang, J.; Gabriele, B.; Belvedere, S.; Huang ,Y.; Breslow. R. Catalytic oxidations of steroid substrates by artificial cytochrome P-450 enzymes, J. Org. Chem. 2002, 67, 5057-5067.
    
    [10] Breslow, R.; Zhang, X.; Xu, R.; Maletic, M.; Merger, R. Selective catalytic oxidation of substrates that bind to metalloporphyrin enzyme mimics carrying two or four cyclodextrin groups and related metallosalens, J. Am. Chem. Soc. 1996, 118, 11678-11679.
    
    [11] Ling, X. Y.; Reinhoudt, D. N.; Huskens, J. Ferrocenyl-Functionalized Silica Nanoparticles: Preparation, Characterization, and Molecular Recognition at Interfaces, Langmuir. 2006, 22, 8777-8783.
    
    [12] Ravoo, B. J.; Darcy, R. Cyclodextrin bilayer vesicles, Angew. Chem. Int. Ed. 2000, 39, 4324-4326.
    
    [13] Ravoo, B. J.; Jacquier, J. C.; Wenz, G. Molecular recognition of polymers by cyclodextrin vesicles, Angew. Chem. Int. Ed. 2003, 42, 2066-2070.
    
    [14] Liu, Y.; You, C. C.; Chen, Y.; Wada, T.; Inoue, Y. Molecular Recognition Studies on Supramolecular Systems 25 Inclusion Complexation by Organoselenium-Bridged Bis(β-cyclodextrin)s and Their Platinum(IV) Complexes, J. Org. Chem. 1999, 64,7781-7787.
    
    [15] Liu, Y.; Chen, Y.; Li, L.; Zhang, H. Y.; Liu, S. X.; Guan, X. D. Bridged Bis(P-cyclodextrin)s Possessing Coordinated Metal Center(s) and Their Inclusion Complexation Behavior with Model Substrates: Enhanced Molecular Binding Ability by Multiple Recognition, J. Org. Chem. 2001, 66, 8518-8527.
    
    [16] Ueno, A.; Breslow, R. Selective sulfonation of a secondary hydroxyl group of P-cyclodextrin, Tetrahedron Lett. 1982, 23, 3451-3454.
    
    [17] Tong, L. H.; Hou, Z. J.; Tai, Y.; Inoue, A. Molecular recognition by modified cyclo-dextrin:Inclusion complexation of β-cyclodextrin 6-O-monobenzoate with acyclic and cyclic hydrocarbons,J.Chem.Soc.Perk Trans.1992,2,1253.
    [18]Zhao,M.G.;Hao,A.Y.;Li,J.;Wei,Y.H.;Guo,P.New cyclomaltoheptaose ([beta]-cyclodextrin) derivative 2-O-(2-hydroxybutyl)cyclomaltoheptaose:preparation and its application for the separation of enantiomers of drugs by capillary electrophoresis.Carbohydr.Res.2005,340,1563-1565.
    [19]Rao,C.T.;Lindberg,B.;Lindberg,J.;Pitha,J.Substitution in beta-cyclodextrin directed by basicity:preparation of 2-0- and 6-O-[(R)- and(S)-2-hydroxypropyl]derivatives,J.Org.Chem.1991,56,1327-1329.
    [20]Hans-J(O|¨)rg;Schneider;Frank;Hacket.NMR Studies of Cyclodextrins and Cyclodextrin Complexes,Chem.Rev.1998,1755-1785.
    [21]赵明刚.博士论文:新型β-环糊精衍生物的合成与性能,2007,38.
    [22]Hirai,H.;Tashima,N.;Uencuame.Inclusion complex formation of γ-cyclodextrin.one host-two guest complexation with water-soluble dyes in ground state,Bull.Chem.Soc.Jpn.1985,58,1156.
    [23]郝爱友 博士论文:β-环糊精的第二面选择性修饰及其修饰主体存分子识别中的应用研究,中国科学院兰州化学物理研究所,1995:41-44.
    [24]Liu,Y.;Li,B.;You,C.C.;Wada,T.;lnoue,Y.Molecular Recognition Studies on Supramolecular Systems 32.1 Molecular Recognition of Dyes by Organoselenium-Bridged Bis(β-cyclodextrin)s,J.Org.Chem.2001,66,225-232.
    [25]Pierre,C.ORD and CD in Chemistry and Biochemistry,Academic Press:New York,1972,1-19.
    [26]Connors,K.A.The Stability of Cyclodextrin Complexes in Solution,Chem.Rev.1997,1325-1358.
    [27]Rekharsky,M.V.;Inoue,Y.Complexation Thermodynamics of Cyclodextrins,Chem.Rev.1998,98,1875-1918.
    [28]Kajtar,M.;Horvath-Toro,C.;Kuthi,E.;Szejtli,J.Acta Chim.Acad.Sci.Hung.,1982,110,327.
    [29]Harata,K.;Uedaira,H.Bull.Chem.Soc.Jpn.,1975,48,375.
    [30]Kodaka,M.J.Am.Chem.Soc.,1993,115,3702.
    [1]Levy,A L;Chung,D.Two-Dimensional Chromatography of Amino Acids on Buffered Papers,Anal.Chem.1953,25,396-399.
    [2]Sato,C.S.;Gyorkey,F.Bidimensional electrophoresis of glycosaminoglycans on cellulose acetate membrane,Anal.Biochem.1974,61,305-310.
    [3]Smithies,O.Grouped Variations in the Occurrence of New Protein Components in Normal Human Serum,Nature,1955,175,307-308.
    [4]Uriel,J.Electrophoretic method on acrylamide-agarose gels,Bull Soc.Chim.Biol.(Paris),1966,48,969-982.
    [5]Raymond,S.;Wang,Y.J.Preparation and properties of acrylamide gel for use in electrophoresis,Anal.Biochem.1960,1,391-396.
    [6]Virtanen,R.Zone electrophoresis in a narrow-bore tube employing potentiometric detection,Acta Polytech.Scad.,Appl.Phys.Ser.1974,123,1-67.
    [7]Mikkers,F.E.P.;Everaerts,F.M.;Verheggen,T.P.E.M.High-performance zone electrophoresis,J.Chromatogr.1979,169,11-20.
    [8]Jorgenson,J.W.;Lukacs.K.D.High-resolution separations based on electrophoresis and electroosmosis,J.Chromatogr.1981,218,209-216.
    [9]Hjerten,S.High-performance electrophoresis:the electrophoretic counterpart of high-performance liquid chromatography,J.Chromatogr.1983,270,1-6.
    [10]Terabe,S.;Otsuka,K.Electrokinetic separations with micellar solutions and open-tubular capillaries,Anal.Chem.1984,56,111-113.
    [11]Hjerten,S.;Zhu,M.D.Adaptation of the equipment for high-performance electrophoresis to isoelectric focusing,J.Chromatogr.1985,346,265-270..
    [12]Cohen,A.S.;Karger,B.L.High-performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins,J.Chromatogr.1987,397,409-417.
    [13]Kang,J.W.;Wistuba,D.;Schurig,V.Recent progress in enantiomeric separation by capillary electrochromatography,Electrophoresis,2002,23,4005-4021.
    [14]Rizzi,A.Fundamental aspects of chiral separations by capillary electrophoresis,Electrophoresis,2001,22,3079-3106.
    [15]Cherkaoui,S.;Rudaz,S.;Veuthey,J.L.Nonaqueous capillary electrophoresis-mass spectrometry for separation of venlafaxine and its phase Ⅰmetabolites,Electrophoresis,2001,22,491-496.
    [16]Schmalzing,D.;Buonocore,S.;Piggee,C.Capillary electrophoresis-based immunoassays,Electrophoresis,2000,21,3919-3930.
    [17]Zhang,X.X.;Li,J.;Gao,J.;Sun,L.;Chang,W.B.Determination of morphine by capillary electrophoresis immunoassay in thermally reversible hydrogel-modified buffer and laser-induced fluorescence detection,J.Chromatogr.A 2000,895,1-7.
    [18]Wistuba,D.Recent progress in enantiomer separation by capillary electrochromatography,Electrophoresis,2000,21,4136-4158.
    [19]Chankvetadze,B.;Blaschke,G.Enantioseparations using capillary electromigration techniques in nonaqueous buffers,Electrophoresis,2000,21,4159-4178.
    [20]Zhu,C.F.;Lin X.L.;Wu J.S.;Wei,Y.H.Chirai separation of several drugs using electrophoresis with dual cyclodextrin systems,Anal.Sci.2002,18,1055-1057.
    [21]李方;张莉萍;靳慧;顾峻岭,傅若农,王小文.以β-环糊精及其衍生物为手性选择剂毛细管电泳拆分几种药物的旋光对映体,分析化学 1997,25,644-647.
    [22]Kuo,C.Y.;Wu,H.L.;Wu,S.M.Enantiomeric analysis of methotrexate in pharmaceuticals by cyclodextrin-modified capillary electrophoresis,Anal Chim.Acta 2002,471,211-217.
    [23]Russo,M.V.Chiral separation of methoxamine and lobeline in capillary zone electrophoresis using ethylbenzene-deactivated fused-silica capillary columns and cyclodextrins as buffer additives,J.Pharm.Biomed Anal.2002,29,999-1003.
    [24]Lin,C.E.;Chert K.H.Enantioseparation of phenothiazines in capillary zone electrophoresis using cyciodextrins as chiral selectors,J.Chromatogr.A 2001,930,155-163.
    [25]Lurie,I.S.Separation selectivity in chiral and achiral capillary electrophoresis with mixed cyclodextrins,J.Chromatogr.A 1997,792,297-307.
    [26]Fanalis.Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors,J.Chromatogr.A 2000,875,89-122.
    [27]Janini,G.M.;Issag,H.J.Micellar electrokinetic capillary chromatography:basic considerations and current trends,J.Liq.Chromatogr.1992,15,927-960.
    [28]阮宗琴;李菊白;欧庆瑜;俞惟乐.聚硅氧烷侧链甲基化B-CD键合交联手性毛细管柱分离对映体,化学学报 1999,7,155-160.
    [29]Aumatell,A.;Guttm,A.Ultra-fast chiral separation of basic drugs by capillary electrophoresis,J.Chromatogr.A,1995,717,229-234.
    [30]Lin,B.;Zhu,X.;Koppenhoefer,B.;Epperlin,U.Investigation of 123chiral drugs by cyclodextrin-modified capillary electrophoresis,LC-GC,1997,15,40-46.
    [31]Lin,B.C.;Zhu,X.F.;Epperlin,U.;Schwierskott,M.;Schlunk,R.; Koppenhoefer,B.Separation of Enantiomers of Drugs by Capillary Electrophoresis,Part 6.Hydroxypropyl-β-cyclodextrin as Chiral Solvating Agent,J.High Resolut.Chromatogr.1998,21,215-224.
    [32]Terabe,S.Electrokinetic chromatography:an interface between electrophoresis and chromatography,Trends in Anal.Chem.1989,8,129-134.
    [33]Smith,N.W.Separation of positional isomers and enantiomers using capillary zone electrophoresis with neutral and charged cyclodextrins,J.Chromatogr.1993,652,259-262.
    [34]Schmitt,T.;Engelhardt,H.Charged and uncharged cyclodextrins as chiral selectors in capillary electrophoresis,Chromatographia,1993,37,475-481.
    [35]Amini,A.;Olofsson,M.Analysis of calcitonin and its analogues by capillary zone electrophoresis and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry,J.Sep.Sci.2004,27,675-685.
    [36]Morin,P.;Bellessort,D.;Dreux,M.Chiral Resolution of Functionalized Piperdine Enantiomers by Capillary Electrophoresis with Native,Alkylated and Anionic Beta-Cyclodextrins,J.Chromatogr.A,1998,796,375-383.
    [37]阮宗琴;陆豪杰;欧庆瑜.手性添加剂磺丁基-β-环糊精的合成及毛细管电泳手性分离,分析测试学报 2000,19,16-20.
    [38]Desiderio,C.;Palcarocm,F.S.Stereoselective analys of herbicides by capillary electrophoresis is using sulfobutyl etherβ-cyclodextrin as chiralselector,Electrophoresis,1997,18,227-234.
    [39]Stalcup,A.M.;Gahm,K.H.Application of sulfated cyclodextrins to chiral separations by capillary zone electrophoresis,Anal.Chem.1996,68,1360-1368.
    [40]阮宗琴;尤进茂;欧庆瑜.磺化β-环糊精的合成及其在毛细管电泳手性拆分中的应用,色谱 2000,18,183-186.
    [41]Jarubeta,H.;Juza,M.;Schurig,V.Dual chiral recognition system involving cyclodextrin derivatives in capillary electrophoresis Ⅱ.Enhancement of enantioselectivity,Electrophoresis 1998,19,738-744.
    [42]Schmitt,T.;Engelhardt,H.Derivatized cyclodextrins for the separation of enantiomers in capillary electrophoresis,J.High Resol.Chromatogr.1993,16,525-529.
    [43]Zukowski,J.;Biasi,V.D.;Berthod,A.Chiral separation of basic drugs by capillary electrophoresis with carboxymethyl- cyclodextrins,J.Chromatogr.A 2002,948,331-342.
    [44]Iio,R.;Chinaka,S.;Takayama,N.;Hayakawa,K.Simultaneous Chiral Analysis of Methamphetamine and Related Compounds by Capillary Electrophoresis/Mass Spectrometry Using Anionic Cyclodextrin,Anal.Sci.2005,21,15-19.
    [45]Cucinotta,V.;Giuffrida,A.;Maccarrone,G.;Messina,M.;Puglisi,A.;Torrisi,A.;Vecchio,G.The 6-derivative of β-cyclodextrin with succinic acid:a new chirai selector for CD-EKC,J.Pharm.Biomed.Anal.2005,37,1009-1014.
    [46]Kano,K.;Kitae,T.;Takashima,H.Use of Electrostatic Interaction for Chiral Recognition.Enantioselective Complexation of Anionic Binaphthyls with Protonated Amino-b-cyclodextrin,J.Inchtsion Phenom.Mol.Recogn.Chem.1996,25,243-248.
    [47]Haynes,J.L.;Shamsi,S.A.A Cationic β-Cyclodextrin Derivative for Chiral Separations,J.Chromatogr.A,1998,803,261-271.
    [48]Galaverna,G.;Corradini,R.;Dossena,A.;Marcheili,R.;Vecchio,G.Histamine-modified beta-cyclodextrins for the enantiomeric separation of dansyl-amino acids in capillary electrophoresis,Electrophoresis,1997,18,905-911.
    [49]Lin X.L.;Zhu,C.F.;Hao,A.Y.Enantiomeric separations of some acidic compounds with cationic cyclodextrin by capillary electrophoresis,Anal,Chim.Acta 2004,517,95-101.
    [50]Lelievre,F.;Gareil,P.;Bahaddi,Y.;Galons,H.Use of a zwitterionic cyclodextrin as a chiral agent for the separation of enantiomers by capillary electrophoresis,Electrophoresis,1997,18,891-896.
    [51]Ingelse,B.A.;Everaerat,F.M.;Desidem,C.et al.Enantiomeric separation by capillary electrophoresis using a soluble neutral β-cyclodextrin polymer,J.Chromatogr.1995,709,89-98.
    [52]童林荟.环糊精化学-基础与应用.北京:科学出版社,2001.
    [53]苏小笛;刘六战.β-环糊精交联聚合物包结α-吡啶偶氮-β-萘酚络全物树脂吸附,分析化学 1995,23,1361-1366.
    [54]苏小笛;刘六战.β-环糊精交联聚合物包结5-Br-PADAP配合物富集铜和镍的研究,高等学校化学学报 1996,17,206-210.
    [55]Submitted by Bernadette Brady,Nuala Lynam,Thomas O'Sullivan,Cormac Ahern,and Raphael Darcy;Checked by Kevin M Shea and Rick L Danheiser.Organic Syntheses,Coll.2004,Vol.10,p.686;2000,Vol.77,p.220..
    [56]Blanco,M.;Coello,J.;Iturriaga,H.;Maspoch,S.;Perez,M.C.Separation of profen enantiomers by capillary electrophoresis using cyclodextrins as chiral selectors,J.Chromatogr.A 1998,793,165-175.
    [57]Li W.J.;Wang,B.;Xu,Z.L.Synthesis of N,N-Dimethyl Amino Acetates and Their Applications.Acta Scientiarum Naturalium Universitatis Sunyatseni.2003,6,44-46.
    [58]Lawson Y.A.;Levy,H.L.The use of betaine in the treatment of elevated homocysteine,Mol.Genet.Metab.2006,88,201-207.
    [59]Esteve,G.E.;Mack,S.The effect of DL-methionine and betaine on growth performance and carcass characteristics in broilers.Anita.Feed Sci.Technol.2000,87,85-93.
    [60]Rankin,D.A.;Lowe,A.B.New well-defined polymeric betaines:first report detailing the synthesis and ROMP of salt-responsive sulfopropylbetaine- and carboxyethylbetaine-exo-7-oxanorbornene monomers,Macromolecules 2008,41,614-622.
    [61]Auze'ly-Velty R.;Rinaudo M.Synthesis of starch derivatives with labile cationic groups,Int.J.Biol.Maeromol.2003,31,123-129.
    [62]Gran(o|¨),H.;Yli-Kauhaluoma,J.;Suortti,T.;,K(a|¨)ki,J.;Nurmi,K.Preparation of starch betainate:a novel cationic starch derivative,Carbohydr.Polym.2000,41,277-283.
    [63]Ueno,A.;Breslow,R.Selective sulfonation of a secondary hydroxyl group of [beta]-cyclodextrin,Tetrahedron Lett.1982,23,3451-3454.
    [64]Wren,S.A.C.;Rowe,R.C.Theoretical aspects of chiral separation in capillary electrophoresis:Ⅰ Initial evaluation of a model,J.Chromatogr.1992,603,235-241.
    [65]Wren,S.A.C.;Rowe,R.C.Theoretical aspects of chiral separation in capillary electrophoresis:Ⅱ.The role of organic solvent,J.Chromatogr.1992,609,363-367.
    [66]Wren,S.A.C.Theory of chiral separation in capillary electrophoresis,J.Chromatogr 1993,636,57-62.
    [67]Rawjee,Y.Y.;Stack,D.U.Vigh,G.Capillary electrophoretic chiral separations with cyclodextrin additives:Ⅰ.acids:Chiral selectivity as a function of pH and the concentration of β-cyclodextrin for fenoprofen and ibuprofen,J.Chromatogr.1993,635,291-306.
    [68]Rawjee,Y.Y.;Williams,R.L.;Vigh,G.Capillary electrophoretic chiral separations using β-cyclodextrin as resolving agent:Ⅱ.Bases:Chiral selectivity as a function of pH and the concentration of β-cyclodextrin,J.Chromatogr.1993,652,233-245.
    [69]Rawjee,Y.Y.;Vigh,G.A Peak Resolution Model for the Capillary Electrophoretic Separation of the Enantiomers of Weak Acids with Hydroxypropyi.beta.-Cyclodextrin-Containing Background Electrolytes,Anal.Chem.,1994,66:619-627.
    [70]Penn,S.G.;Brgstrom,E.T.;Goodall,D.M.Capillary electrophoresis with chiral selectors:optimization of separation and determination of thermodynamic parameters for binding of tioconazole enantiomers to cyclodextrins,Anal.Chem.1994,66,2866-2873.
    [71]林炳承;朱晓峰.毛细管电泳进展,第2卷[M],广州:华南理工大学出版社,1995:60-61.
    [72]Nillso,S.;Schweitz,L.;Peterson,M.Three approaches to enantiomer separation of beta-adrenergic antagonists by capillary electrochromatography,Electrophoresis 1997,18,884-890.
    [73]Lelievre,F.;Gareil,P.Selectivity in Capillary Electrophoresis:Application to Chiral Separations with Cyclodextrins,Anal.Chem.1997,69,385-392.
    [74]Sun,H.Y.;Hao,A.Y.;Yang,Y.L.;Zhu,C.F.;Li,J.Y.;Shen,J.;Yin,M.J.New cyclodextrin derivative 6-O-(2-hydroxyl-3-betainylpropyl)-β-cyclodextrin:preparation and its application for enantiomerseparation of drugs by capillary electrophoresis,J.Inclusion Phenom.Macrocyclic Chem.2009,65,427-430.
    [75] Chankvetadze, B.; Endresz, G.; Blaschke, G. Enantiomeric resolution of anionic R/S-l,l'-binaphthyl-2,2'-diyl hydrogen phosphate by capillary electrophoresis using anionic cyclodextrin derivatives as chiral selectors, J. Chromatogr. A 1995, 704, 234-237.
    
    [76] Chankvetadze, B.; Endresz, G.; Blaschke, G. About Some Aspects of the Use of Charged Cyclodextirns for Capillary Electrophoresis Enantio-Separation, Electrophoresis 1994, 15, 804-807.
    
    [77] Desiderio, C.; Fanali, S. Use of negatively charged sulfobutyl ether-β-cyclodextrin for enantiomeric separation by capillary electrophoresis, J.Chromatogr. A 1995, 716, 183-196.
    [1]Breslow,R.;Dong,S.D.Biomimetic Reactions Catalyzed by Cyclodextrins and Their Derivatives,Chem.Rev.1998,98,1997-2012.
    [2]Rekharsky,M.V.;Inoue,Y.Complexation Thermodynamics of Cyclodextrins,Chem.Rev.1998,98,1875-1918.
    [3]Florence,S.;Raphael,D.Amphiphilic Cyclodextrins - Advances in Synthesis and Supramolecular Chemistry.Eur.J.Org.Chem..2008,957-969.
    [4]Wu,Y.G.;Mao,C.H.;Lan,Z.L.Synthesis of Ethyl 3-Bromo-1-(3-chloro-2-pyri dinyl)-4,5-dihydro-1H-pyrazole-5-carboxylate,Fine Chem.Intermed.2007,37,15-17
    [5]Liu,Y.;Yang,Y.W.;Cao,R.;Song,S.H.;Zhang,H.Y.;Wang,L.H.Thermodynamic Origin of Molecular Selective Binding of Bile Salts by Aminated β-Cyclodextrins,J.Phys.Chem.B 2003,107,14130-14139.
    [6]Mcclure.J.D.Glycidyltrimethylammonium chloride and related compounds.J.Org.Chem.1970,35,2059-2061.
    [7]Dong,S.;Li,X.;Xu,G.;Hoffmann,H.A Cationic Fluorocarbon Surfactant DEFUMAC1 and Its Mixed Systems with Cationic Surfactants:19F NMR and Surface Tension Study,J.Phys.Chem.B 2007,111,5903-5910.
    [8]Binkowski,C.;Hapiot,F.;Lequart,V.;Martin,P.;Monflier,E.Evidence of a self-inclusion phenomenon for a new class of mono-substituted alkylammonium-β-cyclodextrins,Org.Biomol.Chem.2005,3,1129-1133.
    [9]Rosen,M.J.Surfactants and Interfacial Phenomena,John Wiley & Sons,Inc.,Hoboken,New Jersey,2004.
    [10]Binkowski,C.;Hapiot,F.;Lequart,V.;Martin,P.;Monflier,E.Evidence of a self-inclusion phenomenon for a new class of mono-substituted alkylammonium-β-cyclodextrins,Org.Biomol.Chem.2005,3,1129-1133.
    [11]Lu,R.H.;Hao,J.C.;Wang,H.Q.;Tong,L.H.Determination of Association Constants for Cyclodextrin-Surfactant Inclusion Complexes:A Numerical Method Based on Surface Tension Measurements,J.Colloid Interface Sci.1997,192,37-42
    [12]Kalyanasundaram,K.;Thomas,J.K.,Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems,J,Am.Chem.Soc.1977,99,2039-2044.
    [13]Munoz de la Pena,A.;Ndou,T.;Zung,J.B.;Warner,I.M.,Stoichiometry and formation constants of pyrene inclusion complexes with β-and γ-cyclodextrin,J.Phys.Chem.1991,95,3330-3334.
    [14] Zana, R.; Levy, H.; Papoutsi, D.; Beinert, G., Micellization of Two Triquaternary Ammonium Surfactants in Aqueous Solution. Langmuir 11, 3694-3698.
    
    [15] Rosen, M. J. Surfactants and Interfacial Phenomena; 3rd ed. ed.; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2004; p 464.
    [1]Klaus,H.;Hoffmann,H.;Hao,J.Classic Lα-phases as opposed to vesicle phases in cationic-anionic surfactant mixtures,J.Phys.Chem.B,2000,104,2781-2784.
    [2]Allen,T.M.;Cullis,P.R.Drug delivery system:Entering the mainstream,Science 2004,303,1818-1822.
    [3]Yin,H.Q.;Lei,S.;Zhu,S.B.;Huang,J.B.;Ye,J.P.Micelle to Vesicle Transition Induced by Organic Additives in the Catanionic Surfactant Systems,Chem.Eur J.2006,12,2825-2835.
    [4]Zhao,G.;Zhu,B.Principles of Surfactant Action,China Light Industry Press,Beijing,2003.