大型钢储罐结构的风荷载和风致屈曲
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
储罐结构是一类典型的薄壳结构,广泛应用于工农业生产中,如石油、液化天然气、粮食、水泥等各类液体和固体的储存,其中,石油化工业中的钢制储油罐最为常见。近年来,随着国民经济的发展和国家能源战略的实施,以大型储油罐为代表的大型钢储罐结构的建造方兴未艾。大型钢储罐结构的特点是径厚比大、高径比低,属风敏感结构,在强风甚至是长时间和风作用下容易失稳破坏,特别是在空罐或储液、储料不多的情况下。在过去几十年中,世界各国和地区已先后发生过多起钢储罐的风毁事故。由于钢储罐的风毁造成巨大的经济损失和严重的环境污染,其风力稳定问题长期以来受到众多学者的广泛关注和重视,然而已有的文献主要关注中小型储罐及筒仓结构,对大型变壁厚钢储罐结构鲜有涉及。因此,开展大型钢储罐风荷载和风力稳定的研究有着迫切的现实意义与广泛的应用前景。
     本文主要通过风洞试验和有限元分析对以十万方立式圆柱形钢油罐为代表的大型钢储罐结构的风荷载和风致屈曲进行系统的研究,力求揭示这类结构的风致屈曲机理及行为,为大型钢储罐结构的合理抗风设计提供参考和建议。
     全文主要内容如下:
     第1章介绍本文研究的背景,回顾钢储罐及金属圆柱壳结构风荷载和风致屈曲的研究历史,总结现行规范的设计规定,指出本文工作的出发点和思路。
     第2章简要介绍流体动力学原理及其数值解法——计算流体动力学(CFD)的基本理论,采用CFD商用软件Fluent对十万立方大型钢储罐进行数值风洞分析,初步了解这类结构的风场绕流特点和风荷载分布特征,并为后文大型钢储罐的风洞试验设计提供参考。
     第3章针对十万立方大型钢储罐单体条件下的风荷载进行风洞试验,考察三种不同的储罐形式:敞口储罐、平顶储罐和穹顶储罐;获得上述三种储罐的基本风荷载数据,包括平均风压和脉动风压、偏度和峰度,对风压脉动的概率分布进行分析并与高斯分布比较;讨论顶盖形式对钢储罐罐壁部分风荷载的影响、平均风压和脉动风压的相关性,将获得的风荷载数据和以往相关研究成果和规范进行对比,拟合圆柱壳罐壁平均风荷载体型系数的傅里叶公式,以供设计应用参考。
     第4章以敞口储罐为例,通过519种工况试验,考察群体效应对储罐表面风荷载的影响。试验包括三种典型的排列:两相邻储罐包括串列、并列和错列、三角形三罐排列和正方形四罐排列;重点研究来流风向角和罐群间距对钢储罐风荷载分布的影响。
     第5章简述薄壳结构的力学特点、稳定问题的基本概念和薄壳结构非线性稳定理论的发展历程;简单介绍圆柱薄壳结构稳定问题的有限元求解方法;概括圆柱薄壳结构稳定问题的分类并提出侧压稳定的概念;以实际工程中常用的五种圆柱钢储罐(容量为2000-50000m3)为例,建立有限元模型,对其风致屈曲的一般行为进行分析,讨论焊缝缺陷和特征值模态缺陷对风致屈曲性能的影响。
     第6章以十万方钢油罐为研究对象,建立有限元模型,进行大型钢储罐结构在平均风荷载下的稳定分析,包括线性特征值屈曲分析和几何非线性分析,研究初始几何缺陷对钢储罐稳定性能的影响;讨论壁厚腐蚀和储液高度等基本参数对钢储罐风致屈曲性能的影响;研究群体条件下钢储罐风致屈曲承载力的变化特点。
     第7章简述结构动力稳定性原理和结构动力稳定性的实用判定准则;采用非线性动力时程分析方法对大型钢储罐结构的风振屈曲行为进行研究,考察初始缺陷对大型钢储罐结构风振屈曲性能的影响。
     第8章结合现行规范和工程设计方法,从包边角钢、抗风圈和加强圈三方面对大型钢储罐抗风结构的加强机理和破坏特点进行剖析,讨论不同国家规范所采用设计方法的差异,研究采取抗风设计后钢储罐的风致屈曲性能和破坏特点,提出大型钢储罐结构的抗风设计建议。
     第9章总结全文,概括全文主要结论,并提出进一步研究工作的建议。
Vertical cylindrical welded steel tanks are typical thin-walled structures which are widely used for fluid and bulk storage, such as oil, natural gas, grain and cement in industrial and agricultural plants. The welded steel oil tanks are representative of these structures. With the development of economy and oil industry and the implementation of the national energy strategy, more and more oil storage tanks are put into service in recent decades, especially large steel tanks. Because of high diameter-thickness ratios and low aspect ratios, tanks are wind-sensitive and therefore very susceptible to buckling under wind loads especially when they are empty or partially filled. Buckling of tanks sometimes even occurs under moderate wind load during their construction. Over the past few decades, buckling failures of cylindrical steel tanks and silos during windstorm have occurred in many countries and regions. Because of serious economic losses and environmental problems due to the destruction of storage tanks, studies about buckling of tanks under wind load have been conducted extensively over the past few decades. However, it is found that most of the literatures focus on small and medium tanks and silos while few studies have been conducted on the buckling behavior of large practical steel tanks with stepped wall. It is thus very important to conduct research on the wind loads and wind-induced buckling behaviour of large steel tanks which will also be put into a wider application.
     This dissertation reports the work done to evaluate the wind loads and the wind-induced buckling strength of large steel tanks, with aim to.r.eveal the wind-induced buckling mechanism and behavior of large steel tanks and provide advices for reasonable wind-resistant design of large steel storage tank. The strategy in the research is experimental and computational, in which wind tunnel experiments are carried out on rigid models to obtain wind loads on large cylindrical tanks, and the pressures are next used in a finite element model to evaluate the buckling behaviour of large steel tanks. The layout is organized as follows:
     Chapter1introduces the background of this dissertation. Literature of topic on the wind loads and wind-induced buckling of cylindrical tanks as well as silos is reviewed and the suggestions of several national design codes are summarized. The argument and idea of this thesis are also given.
     Chapter2presents the numerical simulation of wind loads on large vertical cylindrical tanks. The basic principles of fluid dynamic and its numerical solution method, computational fluid dynamics (CFD), are fist introduced. The commercial software package for general purpose Fluent is then used to carry out the simulation of wind loads on tank models. Results of wind field around a tank and wind loads on tanks are discussed, providing a reference for the design of wind tunnel test of large storage tanks.
     Chapter3reports the wind tunnel test of the wind loads on an isolated tank. The test covers three types of tanks:open-top tank, flat-roof tank and the dome-roof tank. The first four moments of the measured wind pressure, including the mean and normalized deviation pressure, kurtosis and skewness of the pressure signal, are obtained to study the feature of the wind loads. The probability distribution of fluctuating wind pressure is examined and compared with the Gaussian distribution. The effect of roof on the wind loads of cylindrical wall and the correlation of the mean wind pressure and fluctuating wind pressure are discussed. Comparison of wind loads between present study and related literatures is carried out. Based on the data of wind loads obtained from wind tunnel test, a Fourier formula is fitted for the wind load distribution of the cylindrical shell for design.
     Chapter4contains the wind tunnel test conducted to investigate the wind loads on grouped tanks. Three types of tank groups are covered in this study:two adjacent tanks including tandem, parallel and staggered configurations, three adjacent tanks in triangular array and four adjacent tanks in square array. All together, there are519cases in the test. The effects of spacing between tanks and wind attack angle on wind pressure distributions of both external and internal wall are investigated, and the difference of wind loads on tanks in a group compared with those on an isolated tank is discussed.
     Chapter5describes the general behavior of wind buckling of cylindrical tanks. The basic mechanics characteristics, the basic concept of stability theory and the development history of nonlinear stability theory of thin-walled structures are fist introduced. The finite element method for buckling analysis is described. The classification of buckling of thin cylindrical shells and the concept of lateral pressure stability are put forward. Several common practical tanks with volume of2000m3~50000m3are then chosen to investigate the buckling behavior of this type of structures. Both the linear elastic bifurcation analysis and the geometrically nonlinear analysis are carried out. The sensitivities of the welded-induced and eigenvalue mode imperfections are also discussed.
     Chapter6examines the buckling behaviour of large steel tanks under wind loads. The wind loads applied on finite element models are obtained from the wind tunnel test and the investigation is carried out by using bifurcation analysis and non-linear analysis. The effect of initial geometric imperfections on buckling behavior is analyzed through geometrically non-linear analysis. The effects of thickness reduction of cylindrical shell and the liquid stored in tank are also included. The buckling capacity of grouped tanks is also considered and compared with that of an isolated tank.
     Chapter7considers the nonlinear dynamic buckling behaviour of large steel tanks under wind loads. The dynamic stability theory and the criterion for evaluate the dynamic stability of a structure are first introduced and then the dynamic buckling behaviour of large steel tanks is investigated by using dynamic time history analysis. The effect of initial geometric imperfections on dynamic buckling behavior is also included.
     Chapter8discusses the design method of wind girders for large steel tanks. In light of current design code and engineering method, the strengthening mechanism and damage feature of the components for wind buckling resistance, including the top angle iron, the upper wind girder and the middle wind girder of tanks, are investigated. The difference of formula for wind girder design between several standards is discussed. The buckling performance of tanks with wind girders is examined and some suggestions for design of the components for wind buckling resistance of tanks are also given.
     Chapter9summarizes some important conclusions and indicates some further work which may contribute to the research on this topic.
引文
[1]董石麟,赵阳.论空间结构的形式和分类[J].土木工程学报,2004,37(1):7-12.
    [2]潘家华,郭光臣,高锡祺.油罐及管道强度设计[M].北京:石油工业出版社,1986
    [3]朱荣改,张洪林,朱丹.大型油气储罐的结构型式与变化趋势[J].石油规划设计,2001,5:009.
    [4]徐英,杨一凡,朱萍.球罐和大型储罐[M].北京:化学工业出版社,2005.
    [5]黄锋.网壳拱顶在大型固定顶储罐中的应用[J].南京化工大学学报,2000,22(3):39-42.
    [6]李宏斌.大型化是油罐发展的必然趋势[J].炼油设计,1996,26(6):24-26.
    [7]陈志平.大型非锚固储油罐应力分析与抗震研究[D].杭州:浙江大学,2006.
    [8]梁杰.国家石油储备基地探秘[N].人民日报海外版,2009-6-12(4).
    [9]米广生,陈德志,瞿帆.国产高强钢板在十五万油罐中的焊接[J].石油化工建设,2007,29(5):25-27.
    [10]韦振光,罗星环,贺金等.大庆南三油库十五万储罐设计[J].油气田地面工程,2008,27(3):1-2.
    [11]黄本才,汪从军.结构抗风分析原理及应用(第二版).上海:同济大学出版社,2008
    [12]张相庭.结构风工程.北京:中国建筑工业出版社,2006.
    [13]张岩峰,徐洪太.温州9417号台风灾情和反思[J].浙江水利科技,1996,(2):34-36
    [14]胡方西,胡辉.9417号台风对温州造成灾害的因子分析及预防对策[J].华东师范大学学报:自然科学版,1996(3):82-89.
    [15]Portela G. Wind pressure and buckling of metal cantilever tanks[D]. University Of Puerto Rico, Mayaguez Campus,2004:57-58.
    [16]Godoy L A. Performance of storage tanks in oil facilities damaged by Hurricanes Katrina and Rita[J]. Journal of Performance of Constructed Facilities,2007,21(6):441-449.
    [17]Godoy L A, Jaca R C. Wind buckling of metal tanks during their construction [J]. Thin-Walled Structures, 2010,48:453-459.
    [18]李锐,杜克,古米拉等.十万方油罐倾覆原因及修复方案[J].安装,2009(1):23-25.
    [19]Holroyd R J. On the behaviour of open-topped oil storage tanks in high winds. Part Ⅰ. Aerodynamic aspects[J]. Journal of Wind Engineering and Industrial Aerodynamics,1983,12(3):329-352.
    [20]Flores F G, Godoy L A. Forced vibrations of silos leading to buckling[J]. Journal of Sound and Vibration, 1999,224(3):431-454.
    [21]李宏斌.超大型油罐抗风结构的合理设计[J].石油化工设备技术,2002,23(6):7-8.
    [22]Pavlovic P, Folic R, Radonjanim V, et al. The testing and repair of steel silo[J]. Construction and Building Materials,1997,11(5):353-363.
    [23]冀苗苗.考虑储罐不均匀沉降的凯威特型网壳顶盖稳定性分析[D].浙江大学,2007.
    [24]Hugh L. Dryden, George C. Hill. Wind pressure on circular cylinders and chimneys. Research No.221. National Standard Bureau, US. Washington DC,1930,5:653-692
    [25]李国琛.浮顶油罐的强度和稳定性的计算公式.力学与实践,1982,3(2):36-40
    [26]Maher F J. Wind loads on dome-cylinders and dome-cone shapes[J]. ASCE Journal of Structural Division, 1966,92(5):79-96.
    [27]Purdy D M, Maher P E, Frederick D. Model studies of wind loads on flat-top cylinders[J]. ASCE Journal of Structural Division,1967,93(2):379-395.
    [28]Johns D J. On the behaviour of open-topped oil storage tanks in high winds. Part Ⅱ. Structural aspects by RJ Holroyd [J]. Journal of Wind Engineering and Industrial Aerodynamics,1985,18(1):111-114.
    [29]Holroyd R J. On the behaviour of open-topped oil storage tanks in high winds. Part Ⅲ. A structural dynamic instability mechanism [J]. Journal of Wind Engineering and Industrial Aerodynamics,1985,21(3): 339-341.
    [30]Macdonald P A, Kwok K C S, Holmes J D. Wind loads on circular storage bins, silos and tanks:Ⅰ. Point pressure measurements on isolated structures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988,31(2):165-187.
    [31]Portela G, Godoy L A. Wind pressures and buckling of cylindrical steel tanks with a dome roof[J]. Journal of Constructional Steel Research,2005,61(6):808-824.
    [32]Portela G, Godoy L A. Wind pressures and buckling of cylindrical steel tanks with a conical roof[J]. Journal of Constructional Steel Research,2005,61(6):786-807.
    [33]Sabransky I J, Melbourne W H. Design pressure distribution on circular silos with conical roofs[J]. Journal of Wind Engineering and Industrial Aerodynamics,1987,26(1):65-84.
    [361陈寅,梁枢果,杨彪.大型储气罐风洞试验研究[J].华中科技大学学报(城市科学版),2010(004):53-58.
    [37]Falcinelli O A, Elaskar S A, Godoy L A. Influence of topography on wind pressures in tanks using CFD[J]. Latin American Applied Research,2011,41(4):379-388.
    [38]张冬兵,梁枢果,陈寅等.大型煤气柜风荷载的风洞试验及数值模拟[J].实验流体力学,2010,24(006):47-51.
    [39]袁行飞,吕晓东.兆瓦级太阳能热气流发电站风荷载的数值模拟[J].浙江大学学报(工学版),2011,45(1):99-105.
    [40]Godoy LA. Hurricane failures of tanks for the oil industry[C]. Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia:114-125.
    [41]Macdonald P A, Holmes J D, Kwok K C S. Wind loads on circular storage bins, silos and tanks. II. Effect of groupmg[J]. Journal of Wind Engineering and Industrial Aerodynamics,1990,34(1):77-95.
    [42]Portela G, Godoy L A. Shielding effects and buckling of steel tanks in tandem arrays under wind pressures[J]. Wind and Structures,2005,8(5):325-342.
    [43]Portela G, Godoy L A. Wind pressure and buckling of grouped steel tanks[J]. Wind and Structures,2007, 10(1):23-44.
    [44]Sun T F, Gu Z F. Interference between wind loading on group of structures[J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,54:213-225.
    [45]Gu Z, Sun T. On interference between two circular cylinders in staggered arrangement at high subcritical Reynolds numbers[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,80(3):287-309.
    [46]Gu Z, Sun T. Classifications of flow pattern on three circular cylinders in equilateral-triangular arrangements[J]. Journal of Wind Engineering and Industrial Aerodynamics,2001,89(6):553-568.
    [47]Kareem A, Kijewski T, Lu P C. Investigation of interference effects for a group of finite cylinders[J]. Journal of Wind Engineering and Industrial Aerodynamics,1998,77:503-520.
    [48]Lam K, Zou L. Three-dimensional numerical simulations of cross-flow around four cylinders in an in-line square configuration[J]. Journal of Fluids and Structures,2010,26(3):482-502.
    [49]Rish R F. Forces in cylindrical chimneys due to wind [J]. Proceeding of Institute of Civil Engineering, ASCE,1967,36(4):791-803.
    [50]Greiner R, Derler P. Effect of imperfections on wind-loaded cylindrical shells [J]. Thin-Walled Structures, 1995,23(1):271-281.
    [51]Schweizerhof K, Ramm E. Stability of cylindrical shell under wind loading with particular reference to follower load effects [A]. Design of Steel Bins for the Storage of Bulk Solids [C]. Sydney, Australia:School of Civil and Mining Engineering, University of Sydney,1985.144-157.
    [52]Pircher M, Bridger Q, Greiner R. Case study of a medium-length silo under wind loading [A]. Advances in Steel Structures [C]. Oxford, UK:Elsevier,2002.667-674.
    [53]Kwok, K C S. Wind loads on circular storage bins [A]. Design of Steel Bins for the Storage of Bulk Solids [C]. Sydney, Aust ralia:School of Civil and Mining Engineering, University of Sydney,1985.49-54.
    [54]ACI 334-2R. Reinforced concrete cooling tower shells-practice and commentary [S]. ACI-ASCE Committee 334,1991.
    [55]ENV 1993-4-1. Eurocode 3. Design of Steel Structures-Part 4-1:Silos [S]. European Committee for Standardization, Brussel,2007
    [56]Calladine C R. The theory of thin shell structures [J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,1988,202(3):141-149.
    [57]Teng J G. Buckling of thin shells:recent advances and trends [J]. Applied Mechanics Reviews,1996, 49(4):263-274.
    [58]杨勇.薄壁圆柱壳在不均匀沉降下的试验研究[D].浙江大学,2010
    [59]Teng J G, Rotter J M. Buckling of thin shells[M]. London, Spon,2004.
    [60]Rotter J M. Development of proposed European design rules for buckling of axially compressed cylinders[J]. Advances in Structural Engineering,1998,1:273-286.
    [61]ENV 1993-1-6. Eurocode 3:Design of steel structure, Part 1-6:General Rules:Supplementary Rules for Shell Structure[S]. European Committee for Standardization, Brussel,1999
    [62]Chang-yong S. Buckling of un-stiffened cylindrical shell under non-uniform axial compressive stress[J], Journal of Zhejiang University SCIENCE A,2002,3(5):520-531.
    [63]Kundurpi P S, Johns D J, Samavedam G. Stability of cantilever shells under wind loads[J]. Journal of the Engineering Mechanics Division,1975,101(5):517-530.
    [64]Uematsu Y, Uchiyama K. Deflection and buckling behavior of thin, circular cylindrical shells under wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics,1985,18(3):245-261.
    [65]Uematsu Y, Koo C, Kondo K. Wind Loads on Open-Topped Oil Storage Tanks[C]. Proceedings of 6th International Colloquium on Bluff Body Aerodynamics and Application, Milan, Italy, July.2008:20-24.
    [66]Eduardo M. Sosa, Luis A. Godoy. Computational buckling analysis of shells:theories and practice[J]. Mecanica Computacional,2002,21:1652-1667.
    [67]Jaca R C, Godoy L A, Flores F G, et al. A reduced stiffness approach for the buckling of open cylindrical tanks under wind loads[J]. Thin-Walled Structures,2007,45(9):727-736.
    [68]Sosa E M, Godoy L A. Challenges in the computation of lower-bound buckling loads for tanks under wind pressures[J]. Thin-Walled Structures,2010,48(12):935-945.
    [69]Jaca R C, Godoy L A,.Croll J G A. Reduced Stiffness Buckling Analysis of Aboveground Storage Tanks with Thickness Changes[J]. Advances in Structural Engineering,2011,14(3):475-487.
    [70]金维昂.立式圆筒形钢油罐的风力稳定[J].石油化工设备技术,1980,2:002.
    [71]Schmidt H, Binder B, Lange H. Postbuckling strength design of open thin-walled cylindrical tanks under wind load[J]. Thin-Walled Structures,1998,31(1):203-220.
    [72]Koo Choongmo, Uematsu Yasushi, Kondo Koji, Okubo Kazumasa. Wind Loads for designing open-topped oil storage tanks[C]. Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2010, Shanghai, China:1646-1655
    [73]Flores F G, Godoy L A. Buckling of short tanks due to hurricanes [J]. Engineering Structures,1998,20(8): 752-760.
    [74]Julio Cesar Mendez Degro. Evaluation of "Buckling Damage in Steel Tank due to Hurricanes [D]. University Of Puerto Rico, Mayaguiez Campus,2000.
    [75]Pircher M. Medium-length thin-walled cylinder under wind loading-case study [J]. Journal of Structural Engineering,2004,130(12):2062-2069.
    [76]马昌恒.基于小波分析的风场模拟及大型储罐风致屈曲初步研究[D].大庆:大庆石油学院,2007.
    [77]Chen Lei, Rotter J M. Buckling of anchored cylindrical shells of uniform thickness under wind load [J]. Thin-Walled Structures,2012,41:199-208
    [78]Ding Zhibin, Tamura Y, Yoshida A. Contributions to member stresses due to overall wind-induced behaviors of thin-walled cylindrical shell [J]. Journal of Wind Engineering and Industrial Aerodynamics.2012, 107-108:192-201
    [79]Zhao Y, Cao Q, Su L. Buckling design of large circular steel silos subject to wind pressure[J]. Thin-Walled Structures,2013,73:337-349.
    [80]Greiner R, Derler P. Effect of imperfections on wind-loaded cylindrical shells[J]. Thin-Walled Structures, 1995,23(1):271-281.
    [81]Godoy L A, Flores F G. Imperfection sensitivity to elastic buckling of wind loaded open cylindrical tanks[J]. Structural Engineering and Mechanics,2002,13(5):533-542.
    [82]Pircher M. The influence of a weld-induced axi-symmetric imperfection on the buckling of a medium-length silo under wind loading[J]. International Journal of Solids and Structures,2004,41(20): 5595-5610.
    [83]Jaca R C, Godoy L A. Wind buckling of metal tanks during their construction[J]. Thin-Walled Structures, 2010,48(6):453-459.
    [84]Borgersen S., Yazdani S. Finite element analysis of wind induced buckling of steel tank. in Ghafoori edited. Challenges, Opportunities and Solutions in Structural Engineering [M]. London:Taylor & Francis Group,2010:157-160
    [85]Holroyd R J. On the behaviour of open-topped oil storage tanks in high winds. Part Ⅲ. A structural dynamic instability mechanism [J]. Journal of Wind Engineering and Industrial Aerodynamics,1985,21(3): 339-341.
    [86]Flores F G, Godoy L A. Buckling of short tanks due to hurricanes[J]. Engineering Structures,1998,20(8): 752-760.
    [87]Flores F G, Godoy L A. Forced vibrations of silos leading to buckling[J]. Journal of Sound and Vibration, 1999,224(3):431-454.
    [88]Sosa E M, Godoy L A. Nonlinear dynamics of above-ground thin-walled tanks under fluctuating pressures[J]. Journal of Sound and Vibration,2005,283(1):201-215.
    [89]李娟,王金玉,刘振华.钢制拱顶油罐结构风振响应数值模拟[J].山东大学学报(工学版),2008,38(S2):119-127.
    [90]孙茂成.大型储罐设计有关问题探讨[J].石油化工设备,2005,34(2):41-43.
    [91]王海滨.大型储罐风力稳定性设计方法的探讨[J].宁波化工,2005(2):26-29.
    [92]张文良,李桂珍.大型油罐抗风结构的合理设计[J].石油化工设备技术,1990,11(1):47-51.
    [93]靳永欣,孙思海.大型油罐中间抗风圈设计计算[J].石油工程建设,2012,37(6):20-22.
    [94]GB 50341-2003立式圆筒形钢制焊接油罐设计规范[S].北京:中国计划出版社,2003.
    [95]GB 50009-2012建筑结构荷载规范[S].北京:中国计划出版社,2012.
    [96]ASCE 7 standard. Minimum design loads for buildings and other structures[S]. Reston (Virginia): American Society of Civil Engineers; 2002.
    [97]Uniform building code. Structural engineering design provisions, vol.2[S], International Conference of Building Officials.1997.
    [98]API 650-2012 Weld steel tanks for oil storage[S]. API Publishing Services, Washington D.C,2007.
    [99]JIS B 8501-1995铜制石油貯槽的构造[S].束京:工业技术院标准部,1995.
    [100]BS 2654-1989 Specification for Manufacture of vertical steel welded storage tanks with butt-welded shells for the petroleum industry [S]. London:Pressure vessel Standard Committee,1989
    [101]BS EN 14015-2004 Specification for the design and manufacture of site built, vertical, cylindrical flat-bottomed, above ground, welded, steel tanks for the storage of liquids at ambient temperature and above[S]. European Committee for Standardization, Brussel,2004.
    [102]吴龙平,明斐卿,罗丽华等.国内外大型储罐的设计标准对比[J].油气储运,2010,29(012): 933-936.
    [103]周平槐,赵阳,黄业飞.风荷载作用下柱支承钢筒仓的受力性能[J].工程设计学报,2005,12(4):243-246.
    [104]郑史雄.大型储气结构设计风荷载的确定[J].福州大学学报:自然科学版,2005,33:90-94.
    [105]Chen L, Rotter J M. Buckling of anchored cylindrical shells of uniform thickness under wind load[J]. Engineering Structures,2012,41:199-208.
    [106]Rotter J M. Silos and tanks in research and practice:state of the art and current challenges[C]. International Association for Shell and Spatial. Symposium on Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures. IASS,2009, Universidad Politecnica de Valencia, Spain:65-76.
    [107]马骏,周岱,李华锋等.大跨度空间结构抗风分析的数值风洞方法[J].工程力学,2007,24(7):77-85.
    [108]鲍侃袁,沈国辉,孙炳楠.大型双曲冷却塔平均风荷载的数值模拟研究[J].空气动力学学报,2009,27(6):650-655.
    [109]谢壮宁,顾明,赵雅丽等.低层房屋屋面平均风压的风洞试验和数值模拟[J].空气动力学学报,28(01):82-87.
    [110]顾明,黄鹏,杨伟等.上海铁路南站平均风荷载的风洞试验和数值模拟[J].建筑结构学报,2005,25(5):43-47.
    [111]王福军.计算流体动力学分析:CFD软件原理与应用.北京:清华大学出版社,2004.
    [112]鲍侃袁.大型双曲冷却塔的风荷载和风致响应理论分析与试验研究[D].杭州:浙江大学,2009.
    [113]江帆.Fluent高级应用与实例分析.北京:清华大学出版社,2008
    [114]B. E. Launder, D. B. Spalding. Lectures in Mathematical Models of Turbulence[M]. Academic Press, London,1972.
    [11 5]张凯,王瑞金,王刚Fluent技术基础与应用实例.北京:清华大学出版社,2007.
    [116]Yasushi Uematsu, Choongmo Koo, and Koji Kondo wind loads on open-topped oil storage tanks[C]. BBAA VI International Colloquium on:Bluff Bodies Aerodynamics & Applications, Milano, Italy, July,20-24, 2008.
    [117]余世策,吴钟伟,冀晓华等.边界层风洞多功能流场模拟装置的研制[J].实验室研究与探索,2012(4):9-11.
    [118]Standard of Japan. Recommendations for loads on buildings [S]. Architectural Institute of Japan, Tokyo, 2006.
    [119]孔江涛,井珉,杨娜等.风洞试验风载体型系数的理论推导[J].西部探矿工程,2008,20(2):186-187.
    [120]埃米尔.希缪,刘尚培、项海帆等译.风对结构的作用—风工程导论[M].上海:同济大学出版社,1992.
    [121]操金鑫,赵林,葛耀君等.双曲线圆截面建筑结构雷诺数效应模拟实践[J].实验流体力学,2009,23(4):46-55.
    [122]李会知,樊友景,吴义章.不同粗糙表面的圆柱风压分布试验研究[J].工程力学,2002,19(2):129-132.
    [123]Cheung J C K, Melbourne W H. Turbulence effects on some aerodynamic parameters of a circular cylinder at supercritical numbers[J]. Journal of Wind Engineering and Industrial Aerodynamics,1983,14(1): 399-410.
    [124]邱天爽,张旭秀,李小兵等.统计信号处理:非高斯信号处理及其应用[M].北京:电子工业出版社,2004:114-119.
    [125]何选森.随机过程[M].北京:人民邮电出版社,2009:20-21
    [126]陆志良.空气动力学[M].北京:北京航天航空大学出版社,2009
    [127]孙瑛,武岳,林志兴等.大跨屋盖结构风压脉动的非高斯特性[J].土木工程学报,2007,40(4):1-5
    [128]林巍,楼文娟,申屠团兵等.高层建筑脉动风压的非高斯峰值因子方法[J].浙江大学学报(工学版),2012,46(4):691.-697
    [129]盛骤,谢式千,潘承毅.概率论与数理统计(第3版)[M].北京:高等教育出版社,2001
    [130]沈国辉,王宁搏,楼文娟等.渡桥电厂冷却塔倒塌的塔型因素分析[J].工程力学,2012,29(8):123-128.
    [131]铁摩辛柯.板壳理论[M].北京:科学出版社,1977.
    [132]刘鸿文.板壳理论[M].杭州:浙江大学出版社,1987.
    [133]曹庆帅.大型钢储罐在谐波沉降下的结构性能[D].杭州:浙江大学,2005.
    [134]吴连元.板壳稳定性理论.武汉:华中理工大学出版社.1996
    [135]童根树.钢结构的平面内稳定[M].北京:中国建筑工业出版社.2005.
    [136]雷翔.大型变壁厚钢储罐在不均匀沉降下的稳定性能[D].杭州:浙江大学,2011.
    [137]陈骥.钢结构稳定理论与设计[M].北京:科学出版社(第五版).2011
    [138]杜启端.现代薄壳非线性稳定性理论的发展和应用[J].强度与环境,2002,29(1):41-51.
    [139]周利,黄义.薄壳非线性稳定理论的最新发展[J].建筑钢结构进展,2006,8(4):23-32.
    [140]沈惠申.板壳后屈曲行为[M].上海:上海科学技术出版社,2002.
    [141]闻立言.外压圆筒米西斯公式与拉姆公式的剖析及临界压力的计算机程序[J].兰州石化职业技术学院学报,1986(0):005.
    [142]Pircher M, Berry P A, Ding X, et al. The shape of circumferential weld-induced imperfections in thin-walled steel silos and tanks[J]. Thin-Walled Structures,2001,39(12):999-1014.
    [143]Rotter J M, Teng J G. Elastic stability of cylindrical shells with weld depressions[J]. Journal of Structural Engineering,1989,115(5):1244-1263.
    [144]Schmidt H. Stability of steel shell structures:General Report[J]. Journal of Constructional Steel Research,2000,55(1):159-181.
    [145]胡继军,黄金枝.网壳风振随机响应有限元法分析[J].上海交通大学学报,2000,34(8):1053-1056.
    [146]魏德敏,边建烽.单层柱面网壳的风振响应[J].华南理工大学学报(自然科学版),2006,34(7).
    [147]王军林,李红梅,郭华等.风荷载下单层柱面网壳弹塑性动力失效破坏有限元分析[J].空间结构,2013,19(004):40-46.
    [148]何艳丽,李燕.单层简壳的风振响应及实用抗风设计方法[J].空间结构,2007,12(3):7-11.
    [149]Liapunov A M. Stability of motion[M]-New York:Academic Press,1966.
    [150]Simitses G J. Instability of dynamically-loaded structures[J]. Applied Mechanics Reviews,1987,40(10): 1403-1408.
    [151]王策,沈世钊.单层球面网壳结构动力稳定分析[J].土木工程学报,2000,33(6):17-24.
    [152]何金龙,法永生.结构动力稳定性的分析方法与进展[J].四川建筑,2007,27(2):155-157.
    [153]黄友钦,傅继阳.B—R准则在大跨空间结构风致动力稳定中的应用[J].广州大学学报:自然科学版,2013,11(6):58-64.
    [154]Simitses G J. Suddenly-loaded structural configurations[J]. Journal of Engineering Mechanics,1984, 110(9):1320-1334.
    [155]庄茁.ABAQUS有限元入门指南.北京:清华大学出版社,2004:148-148
    [156]潘家华.圆柱形金属油罐设计[M].北京:石油工业出版社,1984:104-106
    [157]Portela G, Godoy L A. Computational modeling of wind damage in unanchored tanks [C]. Proceedings of the 23rd Southeastern Conference on Theoretical and Applied Mechanics Mayagiiez, Puerto Rico, May 21-23,2006.
    [158]GB 50341-20xx.中国钢油罐规范2013征求意见稿条文说明[S].2013