文昌鱼GNBP和LITAF基因进化、功能及免疫相关microRNA比较转录组分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
形态学以及分子生物学的证据表明文昌鱼是脊索动物中的基底生物,是研究脊椎动物形态、发育以及免疫系统的起源与进化的重要模式生物。随着比较免疫学的迅速发展,以及佛罗里达文昌鱼基因组测序的完成,关于文昌鱼免疫的研究越来越引起人们的关注。因此,本论文在文昌鱼EST数据库的基础上以文昌鱼免疫相关基因LITAF、 GNBP以及免疫相关microRNA为研究对象,通过分子克隆、实时定量、基因芯片、比较基因组学以及免疫生物学等检测手段得到以下几个方面的研究结果:
     1.本论文首先系统的对文昌鱼五个发育阶段的EST序列进行了比较分析,通过聚类拼接在卵、原肠胚、神经胚、幼虫及成虫中分别得到3364、3230、10,299、4052、3866个contig序列以及193、183、933、178、151个singlet序列。在这些序列中共预测得到25796个ORF,其中有6529个预测的ORF能够与Uniprot数据库中已知的蛋白序列相匹配。同时也对不同发育阶段的基因进行了GO功能注释,结果显示在神经胚阶段的GO注释要明显高于其它发育阶段。同时从BLASTx的结果中找到20个可能与免疫相关的基因,为后续免疫基因功能的研究提供了数据基础。此外,我们还对这些基因进行了microRNA靶标分析。最后基于以上分析结果构建了文昌鱼EST数据库http://rich.yunda.org/test/amphioxusest/。
     2.GNBP蛋白是一个重要的模式识别蛋白,能够驱使宿主抵御病原微生物的入侵。我们从白氏文昌鱼中克隆了一个GNBP基因,命名为AmphiGNBP,该基因编码558个氨基酸,序列分析表明该基因包含一个保守的p-1,3-葡聚糖识别与结合结构域,与其它物种不同的是该基因还包含两个额外的WSC结构域。对该基因的组织表达模式分析发现该基因主要是在文昌鱼的免疫组织肝盲囊及肠中高表达。脂多糖(LPS)刺激实验表明LPS能够诱导该基因的表达。这些研究揭示了文昌鱼AmphiGNBP基因与其它已知基因的共性与特性,为深入的研究GNBP基因的功能与进化提供了基础。
     3.TNF-α是一个重要的细胞因子,在LPS刺激的条件下能够调节先天免疫反应。脂多糖诱导的]TNF-α因子(LITAF)是近年来新发现的一个转录因子能够调控TNF-α以及一些其它炎症因子的表达。本论文首次在白氏文昌鱼中克隆得到了一个LITAF基因,命名为AmphiLITAF,该基因的DNA序列长度大概有1.6kb左右,能够转录产生一个827个碱基的cDNA序列,编码127个氨基酸。序列分析表明该基因包含一个保守的LITAF结构域,与其它物种的氨基酸序列相似性在37%-60%之间。对该基因的空间表达模式分析发现,该基因在肝盲囊和肠中高表达,在肌肉、鳃及性腺中次之,而在脊索中的表达量最低。LPS刺激实验表明在文昌鱼中LPS能够在一定程度上诱导AmphiLITAF基因的表达。该实验为进一步弄清LITAF基因在文昌鱼免疫中的作用及对该基因深入的进化分析提供了线索。
     4.采用小RNA深度测序的方法对白氏文昌鱼进行了小RNA测序,共得到568个microRNA (miRNA)。其中171个nicroRNA与佛罗里达文昌鱼中的nicroRNA一致,其余的497个microRNA则为在文昌鱼中新发现的microRNA,其中302个是在其它物种中存在的,而另外的95个microRNA则是在文昌鱼中特异存在的。利用芯片技术对PBS处理组及副溶血性弧菌处理组(PV)的文昌鱼microRNA进行定点检测,通过对不同处理组中microRNA转录组的比较分析找到差异表达的nicroRNA17个,进一步对这些nicroRNA基因进行靶标预测,发现其靶基因中可能与免疫相关的基因共31个,·为进一步开展文昌鱼中microRNA与免疫基因相互作用的研究提供了全新的数据。
     本论文搭建了Windows平台的数据库,提供了可视化友好的用户界面,为文昌鱼的基因组学、分子进化及发育生物学研究提供了有效的工具。基于EST数据库的信息首次对文昌鱼AmphiGNBP及AmphiLITAF基因进行了功能分析,为更全面的阐述文昌鱼的免疫调控提供了数据基础。对文昌鱼免疫相关microRNA的筛选为研究文昌鱼的免疫调控补充了新鲜的数据,有利于揭示全新的免疫调控机制。
Both morphological and molecular evidence show that amphioxus is the basal chordate and is a crucial organism for understanding the chordate evolution including the origin of the immune system, morphology and development. With the rapid development of comparative immunology, as well as the completion of the Branchiostoma floridae genome sequencing, the attention was focused on amphioxus immune increasingly. In this study, based on the ESTs of amphioxus, using molecular cloning, real-time PCR, microarray, comparative genomics and immunobiology technology, we studied the immune-related gene LITAF, GNBP and microRNAs. The results as follows:
     1. We have systematically compared amphioxus ESTs from five developmental stages. For the egg, gastrula, neurula, larva and adult stages, amphioxus ESTs were assembled, respectively, into3364,3230,10,299,4052and3866contigs, and193,183,933,178and151singlets.25,796ORFs were identified, of which6,529predicted ORFs have found matches from the UniProt database. The analysis suggested that there were significantly more GO terms assigned to the conreads of neurula stage. Meanwhile, we found20putative immune-related genes from these BLASTx results, providing the prilimilary data for functional study of amphioxus immunity. In addition, we also analyzed the target gene of these microRNAs. A web interface was developed for visualization of the contigs, miRNAs and annotations (http://www.rich.yunda.org/test/amphioxusest/).
     2. Gram-negative bacteria-binding proteins (GNBPs) are important pattern recognition proteins (PRPs), which can initiate host defense in response to pathogen surface molecules. In this study, we identified and characterized an amphioxus GNBP gene (designated as AmphiGNBP). The AmphiGNBP encodes a putative protein with558aa, which contains a conserved β-1,3-glucan recognizing and binding domain. Interestingly, AmphiGNBP encodes two extra WSC (cell wall integrity and stress response component) domains, which are unique in AmphiGNBP and not found in those known GNBPs from other species. The AmphiGNBP was mainly expressed in immune tissues, such as hepatic cecum and intestine. The expression of AmphiGNBP was affected after LPS stimulation. These studies disclose the particularity and universality of AmphiGNBP and will provide profound insights into the function and evolution of GNBP.
     3. TNF-a is an important cytokine that can be stimulated by Lipopolysaccharide (LPS) to regulate the innate immunity. The lipopolysaccharide-induced TNF-a factor (LITAF) functions as a transcription factor for regulating the expression of TNF-a as well as various inflammatory cytokines in response to LPS stimulation. In this study, we identified and characterized an amphioxus LITAF gene (designated as AmphiLITAF). First, we identified the AmphiLITAF from the amphioxus and found that AmphiLITAF gene with~1.6kb in length has a827bp cDNA transcription product which encodes a putative protein with127amino acids containing conserved LITAF-domain, the deduced amino acid of AmphiLITAF shared37-60%similarity with the LITAFs from other species; second, we uncovered the spatial distribution of the LITAF in different tissues, the expression level of AmphiLITAF mRNA was the highest in hepatic cecum and intestine, moderate in muscles, gills and gonad, and the lowest in notochord; finally, we discovered that the expression of AmphiLITAF was affected after LPS stimulation. Our findings provide an insight into the innate immune response in the amphioxus and the evolution of the LITAF family.
     4. Using small RNA deep sequencing technology, a total of568microRNAs (miRNA) have been found in Branchiostoma belcheri.171microRNA sequences are consistent with those of Branchiostoma floridae, the rest of the497microRNAs are newly discovered in amphioxus. Among these newly discovered microRNAs,302microRNAs are conserved in other species, and95microRNAs are amphioxus specific microRNAs. We used microRNA microarray technology to analysis six microRNA transcriptomes prepared from amphioxus under PBS stimulation and amphioxus infection with Vibrio parahaemolyticus (PV) at different time points. By comparing the data from different treatment groups, we found18immune-related microRNAs. These microRNAs may be interaction with31immune-related genes. These results of our study suggest that miRNAs play an important role in the coordinated regulation of immune-related gene expression in the amphioxus.
     In this thesis, we built amphioxus EST database under the windows operation system. A web interface was developed for visualization of the contigs, microRNAs and annotations. The constructed AmphiEST database may serve as an essential resource for future studies of the development and evolution of amphioxus. Based on the EST database, we firstly identified and characterized LITAF and GNBP gene homolog from amphioxus, and our findings provide an insight into the innate immune response in the amphioxus and the evolution of the LITAF and GNBP family. Screening of amphioxus immune-related microRNAs will help with the development of new immune mechanism to prevent or treat Vibrio parahaemolyticus infections in the amphioxus.
引文
[1]Blair JE, Hedges SB. Molecular phylogeny and divergence times of deuterostome animals. Mol Biol Evol,2005,22(11):2275-84
    [2]Philippe H, Lartillot N, Brinkmann H. Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol,2005,22(5):1246-53
    [3]Putnam NH, Butts T, Ferrier DE, et al. The amphioxus genome and the evolution of the chordate karyotype. Nature,2008,453(7198):1064-71
    [4]Yu JK, Holland LZ. Cephalochordates (amphioxus or lancelets):a model for understanding the evolution of chordate characters. Cold Spring Harb Protoc, 2009,2009(9):pdb emo130
    [5]Yamaguchi T, Henmi Y. Biology of the amphioxus, Branchiostoma belcheri in the Ariake Sea, Japan Ⅱ. Reproduction. Zoolog Sci,2003,20(7):907-18
    [6]Nishikawa T. A new deep-water lancelet (Cephalochordata) from off Cape Nomamisaki, SW Japan, with a proposal of the revised system recovering the genus Asymmetron. Zoolog Sci,2004,21(11):1131-6
    [7]Holland LZ, Yu JK. Cephalochordate (amphioxus) embryos:procurement, culture, and basic methods. Methods Cell Biol,2004,74:195-215.
    [8]Schubert M, Escriva H, Xavier-Neto J, et al. Amphioxus and tunicates as evolutionary model systems. Trends Ecol Evol,2006,21 (5):269-77
    [9]Kon T, Nohara M, Yamanoue Y, et al. Phylogenetic position of a whale-fall lancelet (Cephalochordata) inferred from whole mitochondrial genome sequences. BMC Evol Biol, 2007,7:127
    [10]Zhang QJ, Zhong J, Fang SH, et al. Branchiostoma japonicum and B. belcheri are distinct lancelets (Cephalochordata) in Xiamen waters in China. Zoolog Sci, 2006,23(6):573-9
    [11]Nohara M, Nishida M, Manthacitra V, et al. Ancient phylogenetic separation between Pacific and Atlantic cephalochordates as revealed by mitochondrial genome analysis. Zoolog Sci,2004,21(2):203-10
    [12]Theodosiou M, Colin A, Schulz J, et al. Amphioxus spawning behavior in an artificial seawater facility. J Exp Zool B Mol Dev Evol,2011,316(4):263-75
    [13]Yasui K, Urata M, Yamaguchi N, et al. Laboratory culture of the Oriental lancelet Branchiostoma belcheri. Zoolog Sci,2007,24(5):514-20
    [14]Wu XH, Zhang SC, Wang YY, et al. Laboratory observation on spawning, fecundity and larval development of amphioxus (Branchiostoma belcheri tsingtaunese). Chinese Journal of Oceanology and Limnology,1994,12:289-94
    [15]Zhang QJ, Sun Y, Zhong J, et al. Continuous culture of two lancelets and production of the second filial generations in the laboratory. J Exp Zool B Mol Dev Evol, 2007,308(4):464-72
    [16]Mizuta T, Kubokawa K. Non-synchronous spawning behavior in laboratory reared amphioxus Branchiostoma belcheri Gray. Journal of experimental marine biology and ecology,2004,309(2):239-51
    [17]Fuentes M, Schubert M, Dalfo D, et al. Preliminary observations on the spawning conditions of the European amphioxus (Branchiostoma lanceolatum) in captivity. J Exp Zool B Mol Dev Evol,2004,302(4):384-91
    [18]Fuentes M, Benito E, Bertrand S, et al. Insights into spawning behavior and development of the European amphioxus (Branchiostoma lanceolatum). Journal of Experimental Zoology. Part B:Molecular and Developmental Evolution, 2007,308(4):484-93
    [19]Somorjai IML, Camasses A, Riviere B, et al. Development of a semi-closed aquaculture system for monitoring of individual amphioxus (Branchiostoma lanceolatum), with high survivorship. Aquaculture,2008,281(1-4):145-50
    [20]Garcia-Fernandez J, Jimenez-Delgado S, Pascual-Anaya J, et al. From the American to the European amphioxus:towards experimental Evo-Devo at the origin of chordates. Int J Dev Biol,2009,53(8-10):1359-66
    [21]Shimeld SM, Holland ND. Amphioxus molecular biology:insights into vertebrate evolution and developmental mechanisms. Canadian journal of zoology, 2005,83(1):90-100
    [22]Holland ND, Holland LZ. Amphioxus and the utility of molecular genetic data for hypothesizing body part homologies between distantly related animals. American zoologist, 1999,39(3):630-40
    [23]Plachov D, Chowdhury K, Walther C, et al. Pax8, a murine paired box gene expressed in the developing excretory system and thyroid gland. Development,1990,110(2):643-51
    [24]Lazzaro D, Price M, De Felice M, et al. The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development,1991,113(4):1093-104
    [25]Kozmik Z, Holland ND, Kalousova A, et al. Characterization of an amphioxus paired box gene, AmphiPax2/5/8:developmental expression patterns in optic support cells, nephridium, thyroid-like structures and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region. Development,1999,126(6):1295-304
    [26]Venkatesh TV, Holland ND, Holland LZ, et al. Sequence and developmental expression of amphioxus AmphiNk2-1:insights into the evolutionary origin of the vertebrate thyroid gland and forebrain. Dev Genes Evol,1999,209(4):254-9
    [27]Kimura S, Hong YS, Kotani T, et al. Structure of the human thyroid peroxidase gene: comparison and relationship to the human myeloperoxidase gene. Biochemistry, 1989,28(10):4481-9
    [28]Ogasawara M. Overlapping expression of amphioxus homologs of the thyroid transcription factor-1 gene and thyroid peroxidase gene in the endostyle:insight into evolution of the thyroid gland. Dev Genes Evol,2000,210(5):231-42
    [29]Zannini M, Avantaggiato V, Biffali E, et al. TTF-2, a new forkhead protein, shows a temporal expression in the developing thyroid which is consistent with a role in controlling the onset of differentiation. EMBO J,1997,16(11):3185-97
    [30]Yu JK, Holland LZ, Jamrich M, et al. AmphiFoxE4, an amphioxus winged helix/forkhead gene encoding a protein closely related to vertebrate thyroid transcription factor-2:expression during pharyngeal development. Evol Dev,2002,4(1):9-15
    [31]Elsdale T, Davidson D. Somitogenesis in amphibia. Ⅳ. The dynamics of tail development. J Embryol Exp Morphol,1983,76:157-76
    [32]Schoenwolf GC. The chick epiblast:a model for examining epithelial morphogenesis. Scan Electron Microsc,1983(Pt 3):1371-85
    [33]Nakao T, Ishizawa A. Light- and electron-microscopic observations of the tail bud of the larval lamprey (Lampetra japonica), with special reference to neural tube formation. Am J Anat,1984,170(1):55-71
    [34]Uehara M, Ueshima T. Studies of neural tube development in the chicken embryo tail. Anat Embryol (Berl),1988,179(2):149-55
    [35]Griffith CM, Wiley MJ, Sanders EJ. The vertebrate tail bud:three germ layers from one tissue. Anat Embryol (Berl),1992,185(2):101-13
    [36]Schubert M, Holland LZ, Stokes MD, et al. Three amphioxus Wnt genes (AmphiWnt3, AmphiWnt5, and AmphiWnt6) associated with the tail bud:the evolution of somitogenesis in chordates. Dev Biol,2001,240(1):262-73
    [37]Handrigan GR. Concordia discors:duality in the origin of the vertebrate tail. J Anat, 2003,202(Pt 3):255-67
    [38]Panopoulou GD, Clark MD, Holland LZ, et al. AmphiBMP2/4, an amphioxus bone morphogenetic protein closely related to Drosophila decapentaplegic and vertebrate BMP2 and BMP4:insights into evolution of dorsoventral axis specification. Dev Dyn, 1998,213(1):130-9
    [39]Gofflot F, Hall M, Morriss-Kay G. Genetic patterning of the developing mouse tail at the time of posterior neuropore closure. Developmental dynamics,1997,210(4):431-45
    [40]Yang Y. Wnts and wing:Wnt signaling in vertebrate limb development and musculoskeletal morphogenesis. Birth Defects Research Part C:Embryo Today:Reviews, 2003,69(4):305-17
    [41]Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol,1998,14:59-88
    [42]Itaranta P, Lin Y, Perasaari J, et al. Wnt-6 is expressed in the ureter bud and induces kidney tubule development in vitro. Genesis,2002,32(4):259-68
    [43]Bachvarova RF, Masi T, Hall L, et al. Expression of Axwnt-8 and Axszl in the urodele, axolotl:comparison with Xenopus. Dev Genes Evol,2001,211(10):501-5
    [44]Augustine KA, Liu ET, Sadler TW. Interactions of Wnt-1 and Wnt-3a are essential for neural tube patterning. Teratology,1995,51(2):107-19
    [45]Oishi I, Suzuki H, Onishi N, et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells,2003,8(7):645-54
    [46]Schubert M, Holland LZ, Holland ND. Characterization of two amphioxus Wnt genes (AmphiWnt4 and AmphiWnt7b) with early expression in the developing central nervous system. Dev Dyn,2000,217(2):205-15
    [47]Vonica A, Gumbiner BM. Zygotic Wnt activity is required for Brachyury expression in the early Xenopus laevis embryo. Dev Biol,2002,250(1):112-27
    [48]Beck CW, Slack JM. A developmental pathway controlling outgrowth of the Xenopus tail bud. Development,1999,126(8):1611-20
    [49]Van Den Akker E, Forlani S, Chawengsaksophak K, et al. Cdxl and Cdx2 have overlapping functions in anteroposterior patterning and posterior axis elongation. Development,2002,129(9):2181-93
    [50]Beck CW, Whitman M, Slack JM. The role of BMP signaling in outgrowth and patterning of the Xenopus tail bud. Dev Biol,2001,238(2):303-14
    [51]Beck CW, Slack JMW. Notch is required for outgrowth of the Xenopus tail bud. International Journal of Developmental Biology,2002,46(2):255-8
    [52]Lohnes D. The Cdxl homeodomain protein:an integrator of posterior signaling in the mouse. Bioessays,2003,25(10):971-80
    [53]Haremaki T, Tanaka Y, Hongo I, et al. Integration of multiple signal transducing pathways on Fgf response elements of the Xenopus caudal homologue Xcad3. Development,2003,130(20):4907-17
    [54]Marlow F, Gonzalez EM, Yin C, et al. No tail co-operates with non-canonical Wnt signaling to regulate posterior body morphogenesis in zebrafish. Development, 2004,131(1):203-16
    [55]Hilfer SR. Cellular interactions in morphogenesis of the thyroid gland. Am Zool, 1968,8(2):273-84
    [56]Graham A, Smith A. Patterning the pharyngeal arches. Bioessays,2001,23(1):54-61
    [57]Graham A. Development of the pharyngeal arches. Am J Med Genet A, 2003,119A(3):251-6
    [58]Trainor PA, Melton KR, Manzanares M. Origins and plasticity of neural crest cells and their roles in jaw and craniofacial evolution. Int J Dev Biol,2003,47(7-8):541-53
    [59]Owen JJ, McLoughlin DE, Suniara RK, et al. The role of mesenchyme in thymus development. Curr Top Microbiol Immunol,2000,251:133-7
    [60]Manley NR. Thymus organogenesis and molecular mechanisms of thymic epithelial cell differentiation. Semin Immunol,2000,12(5):421-8
    [61]Morriss-Kay GM, Ward SJ. Retinoids and mammalian development. Int Rev Cytol, 1999,188:73-131
    [62]Holland LZ, Holland ND. Expression of AmphiHox-1 and AmphiPax-1 in amphioxus embryos treated with retinoic acid:insights into evolution and patterning of the chordate nerve cord and pharynx. Development,1996,122(6):1829-38
    [63]Escriva H, Holland ND, Gronemeyer H, et al. The retinoic acid signaling pathway regulates anterior/posterior patterning in the nerve cord and pharynx of amphioxus, a chordate lacking neural crest. Development,2002,129(12):2905-16
    [64]Holland ND, Panganiban G, Henyey EL, et al. Sequence and developmental expression of AmphiDll, an amphioxus Distal-less gene transcribed in the ectoderm, epidermis and nervous system:insights into evolution of craniate forebrain and neural crest. Development,1996,122(9):2911-20
    [65]Holland LZ, Schubert M, Holland ND, et al. Evolutionary conservation of the presumptive neural plate markers AmphiSox1/2/3 and AmphiNeurogenin in the invertebrate chordate amphioxus. Dev Biol,2000,226(1):18-33
    [66]Holland LZ, Schubert M, Kozmik Z, et al. AmphiPax3/7, an amphioxus paired box gene:insights into chordate myogenesis, neurogenesis, and the possible evolutionary precursor of definitive vertebrate neural crest. Evol Dev,1999,1(3):153-65
    [67]Langeland JA, Tomsa JM, Jackman WR, Jr., et al. An amphioxus snail gene: expression in paraxial mesoderm and neural plate suggests a conserved role in patterning the chordate embryo. Dev Genes Evol,1998,208(10):569-77
    [68]Garcia-Castro MI, Marcelle C, Bronner-Fraser M. Ectodermal Wnt function as a neural crest inducer. Science,2002,297(5582):848-51
    [69]Meulemans D, Bronner-Fraser M. Amphioxus and lamprey AP-2 genes:implications for neural crest evolution and migration patterns. Development,2002,129(21):4953-62
    [70]Gostling NJ, Shimeld SM. Protochordate Zic genes define primitive somite compartments and highlight molecular changes underlying neural crest evolution. Evol Dev,2003,5(2):136-44
    [71]Meulemans D, McCauley D, Bronner-Fraser M. Id expression in amphioxus and lamprey highlights the role of gene cooption during neural crest evolution. Dev Biol, 2003,264(2):430-42
    [72]Yu JK, Holland ND, Holland LZ. An amphioxus winged helix/forkhead gene, AmphiFoxD:insights into vertebrate neural crest evolution. Dev Dyn,2002,225(3):289-97
    [73]Pancer Z, Amemiya CT, Ehrhardt GR, et al. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature,2004,430(6996):174-80
    [74]Nagawa F, Kishishita N, Shimizu K, et al. Antigen-receptor genes of the agnathan lamprey are assembled, by a process involving copy choice. Nat Immunol, 2007,8(2):206-13
    [75]Zhang SM, Adema CM, Kepler TB, et al. Diversification of Ig superfamily genes in an invertebrate. Science,2004,305(5681):251-4
    [76]Neves G, Zucker J, Daly M, et al. Stochastic yet biased expression of multiple Dscam splice variants by individual cells. Nat Genet,2004,36(3):240-6
    [77]Cannon JP, Haire RN, Litman GW. Identification of diversified genes that contain immunoglobulin-like variable regions in a protochordate. Nat Immunol,2002,3(12):1200-7
    [78]Rast JP, Smith LC, Loza-Coll M, et al. Genomic insights into the immune system of the sea urchin. Science,2006,314(5801):952-6
    [79]Yu C, Dong M, Wu X, et al. Genes "waiting" for recruitment by the adaptive immune system:the insights from amphioxus. J Immunol,2005,174(6):3493-500
    [80]Huang S, Yuan S, Guo L, et al. Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity. Genome Res, 2008,18(7):1112-26
    [81]Azumi K, De Santis R, De Tomaso A, et al. Genomic analysis of immunity in a Urochordate and the emergence of the vertebrate immune system:"waiting for Godot". Immunogenetics,2003,55(8):570-81
    [82]Gibson-Brown JJ, Osoegawa K, McPherson JD, et al. A proposal to sequence the amphioxus genome submitted to the Joint Genome Institute of the US Department of Energy. J Exp Zool B Mol Dev Evol,2003,300(1):5-22
    [83]Holland LZ, Albalat R, Azumi K, et al. The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res,2008,18(7):1100-11
    [84]Beutler B. Innate immunity:an overview. Mol Immunol,2004,40(12):845-59
    [85]Huang S, Wang X, Yan Q, et al. The evolution and regulation of the mucosal immune complexity in the basal chordate amphioxus. J Immunol,2011,186(4):2042-55
    [86]Yu Y, Huang H, Feng K, et al. A short-form C-type lectin from amphioxus acts as a direct microbial killing protein via interaction with peptidoglycan and glucan. J Immunol, 2007,179(12):8425-34
    [87]Yuan S, Huang S, Zhang W, et al. An amphioxus TLR with dynamic embryonic expression pattern responses to pathogens and activates NF-kappaB pathway via MyD88. Mol Immunol,2009,46(11-12):2348-56
    [88]Yuan S, Wu K, Yang M, et al. Amphioxus SARM involved in neural development may function as a suppressor of TLR signaling. J Immunol,2010,184(12):6874-81
    [89]Yuan S, Liu T, Huang S, et al. Genomic and functional uniqueness of the TNF receptor-associated factor gene family in amphioxus, the basal chordate. J Immunol, 2009,183(7):4560-8
    [90]Pang Q, Zhang S, Liu X, et al. Humoral immune responses of amphioxus Branchiostoma belcheri to challenge with Escherichia coli. Fish Shellfish Immunol, 2006,21(2):139-45
    [91]Zhang S, Wang C, Wang Y, et al. Presence and characterization of complement-like activity in the amphioxus Branchiostoma belcheri tsingtauense. Zoolog Sci, 2003,20(10):1207-14
    [92]Suzuki MM, Satoh N, Nonaka M. C6-like and C3-like molecules from the cephalochordate, amphioxus, suggest a cytolytic complement system in invertebrates. J Mol Evol,2002,54(5):671-9
    [93]Endo Y, Nonaka M, Saiga H, et al. Origin of mannose-binding lectin-associated serine protease (MASP)-1 and MASP-3 involved in the lectin complement pathway traced back to the invertebrate, amphioxus. J Immunol,2003,170(9):4701-7
    [94]He Y, Tang B, Zhang S, et al. Molecular and immunochemical demonstration of a novel member of Bf/C2 homolog in amphioxus Branchiostoma belcheri:implications for involvement of hepatic cecum in acute phase response. Fish Shellfish Immunol, 2008,24(6):768-78
    [95]Fan C, Zhang S, Li L, et al. Fibrinogen-related protein from amphioxus Branchiostoma belcheri is. a multivalent pattern recognition receptor with a bacteriolytic activity. Mol Immunol,2008,45(12):3338-46
    [96]Pang Q, Zhang S, Wang C, et al. Presence of prophenoloxidase in the humoral fluid of amphioxus Branchiostoma belcheri tsingtauense. Fish Shellfish Immunol, 2004,17(5):477-87
    [97]Sato A, Mayer WE, Klein J. A molecule bearing an immunoglobulin-like V region of the CTX subfamily in amphioxus. Immunogenetics,2003,55(6):423-7
    [98]Cannon JP, Haire RN, Schnitker N, et al. Individual protochordates have unique immune-type receptor repertoires. Curr Biol,2004,14(12):R465-6
    [99]Castro LF, Furlong RF, Holland PW. An antecedent of the MHC-linked genomic region in amphioxus. Immunogenetics,2004,55(11):782-4
    [100]Abi-Rached L, Gilles A, Shiina T, et al. Evidence of en bloc duplication in vertebrate genomes. Nat Genet,2002,31(1):100-5
    [101]Dong M, Fu Y, Yu C, et al. Identification and characterisation of a homolog of an activation gene for the recombination activating gene 1 (RAG 1) in amphioxus. Fish Shellfish Immunol,2005,19(2):165-74
    [102]Mazet F, Masood S, Luke GN, et al. Expression of AmphiCoe, an amphioxus COE/EBF gene, in the developing central nervous system and epidermal sensory neurons. Genesis,2004,38(2):58-65
    [103]Hoffmann JA, Kafatos FC, Janeway CA, et al. Phylogenetic perspectives in innate immunity. Science,1999,284(5418):1313-8
    [104]Iwanaga S, Lee BL. Recent advances in the innate immunity of invertebrate animals. J Biochem Mol Biol,2005,38(2):128-50
    [105]Takahasi K, Ochiai M, Horiuchi M, et al. Solution structure of the silkworm betaGRP/GNBP3 N-terminal domain reveals the mechanism for beta-1,3-glucan-specific recognition. Proc Natl Acad Sci U S A,2009,106(28):11679-84
    [106]Medzhitov R, Janeway CA, Jr. Innate immunity:the virtues of a nonclonal system of recognition. Cell,1997,91 (3):295-8
    [107]Janeway CA, Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol,1989,54 Pt 1:1-13
    [108]Royet J. Infectious non-self recognition in invertebrates:lessons from Drosophila and other insect models. Mol Immunol,2004,41(11):1063-75
    [109]Ashida M, Brey PT. Role of the integument in insect defense:pro-phenol oxidase cascade in the cuticular matrix. Proc Natl Acad Sci U S A,1995,92(23):10698-702
    [110]Hoffmann JA. The immune response of Drosophila. Nature,2003,426(6962):33-8
    [111]Hu X, Yagi Y, Tanji T, et al. Multimerization and interaction of Toll and Spatzle in Drosophila. Proc Natl Acad Sci U S A,2004,101(25):9369-74
    [112]Choe KM, Lee H, Anderson KV. Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor. Proc Natl Acad Sci U S A, 2005,102(4):1122-6
    [113]Ma C, Kanost MR. A beta1,3-glucan recognition protein from an insect, Manduca sexta, agglutinates microorganisms and activates the phenoloxidase cascade. J Biol Chem, 2000,275(11):7505-14
    [114]Werner T, Liu G, Kang D, et al. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc Natl Acad Sci U S A,2000,97(25):13772-7
    [115]Ochiai M, Ashida M. A pattern-recognition protein for beta-1,3-glucan. The binding domain and the cDNA cloning of beta-1,3-glucan recognition protein from the silkworm, Bombyx mori. J Biol Chem,2000,275(7):4995-5002
    [116]Lee WJ, Lee JD, Kravchenko VV, et al. Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc Natl Acad Sci U S A,1996,93(15):7888-93
    [117]Kim YS, Ryu JH, Han SJ, et al. Gram-negative bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and beta-1,3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. J Biol Chem, 2000,275(42):32721-7
    [118]Gobert V, Gottar M, Matskevich AA, et al. Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science,2003,302(5653):2126-30
    [119]Pili-Floury S, Leulier F, Takahashi K, et al. In vivo RNA interference analysis reveals an unexpected role for GNBP1 in the defense against Gram-positive bacterial infection in Drosophila adults. J Biol Chem,2004,279(13):12848-53
    [120]Christophides GK, Zdobnov E, Barillas-Mury C, et al. Immunity-related genes and gene families in Anopheles gambiae. Science,2002,298(5591):159-65
    [121]Dimopoulos G, Richman A, Muller HM, et al. Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc Natl Acad Sci U S A, 1997,94(21):11508-13
    [122]Warr E, Das S, Dong Y, et al. The Gram-negative bacteria-binding protein gene family:its role in the innate immune system of anopheles gambiae and in anti-Plasmodium defence. Insect Mol Biol,2008,17(1):39-51
    [123]Cerenius L, Liang Z, Duvic B, et al. Structure and biological activity of a 1,3-beta-D-glucan-binding protein in crustacean blood. J Biol Chem, 1994,269(47):29462-7
    [124]Lee SY, Wang R, Soderhall K. A lipopolysaccharide-and beta-1,3-glucan-binding protein from hemocytes of the freshwater crayfish Pacifastacus leniusculus. Purification, characterization, and cDNA cloning. J Biol Chem,2000,275(2):1337-43
    [125]Lin YC, Vaseeharan B, Chen JC. Identification and phylogenetic analysis on lipopolysaccharide and beta-1,3-glucan binding protein (LGBP) of kuruma shrimp Marsupenaeus japonicus. Dev Comp Immunol,2008,32(11):1260-9
    [126]Cheng W, Liu CH, Tsai CH, et al. Molecular cloning and characterisation of a pattern recognition molecule, lipopolysaccharide-and beta-1,3-glucan binding protein (LGBP) from the white shrimp Litopenaeus vannamei. Fish Shellfish Immunol, 2005,18(4):297-310
    [127]Roux MM, Pain A, Klimpel KR, et al. The lipopolysaccharide and beta-1,3-glucan binding protein gene is upregulated in white spot virus-infected shrimp (Penaeus stylirostris). J Virol,2002,76(14):7140-9
    [128]Romo-Figueroa MG, Vargas-Requena C, Sotelo-Mundo RR, et al. Molecular cloning of a beta-glucan pattern-recognition lipoprotein from the white shrimp Penaeus (Litopenaeus) vannamei:correlations between the deduced amino acid sequence and the native protein structure. Dev Comp Immunol,2004,28(7-8):713-26
    [129]Sritunyalucksana K, Lee SY, Soderhall K. A beta-1,3-glucan binding protein from the black tiger shrimp, Penaeus monodon. Dev Comp Immunol,2002,26(3):237-45
    [130]Zheng LP, Hou L, Chang AK, et al. Expression pattern of a Gram-negative bacteria-binding protein in early embryonic development of Artemia sinica and after bacterial challenge. Dev Comp Immunol,2011,35(1):35-43
    [131]Itoh N, Kamitaka R, Takahashi KG, et al. Identification and characterization of multiple beta-glucan binding proteins in the Pacific oyster, Crassostrea gigas. Dev Comp Immunol,2010,34(4):445-54
    [132]Nikapitiya C, De Zoysa M, Lee J. Molecular characterization and gene expression analysis of a pattern recognition protein from disk abalone, Haliotis discus discus. Fish Shellfish Immunol,2008,25(5):638-47
    [133]Zhang D, Ma J, Jiang J, et al. Molecular characterization and expression analysis of lipopolysaccharide and beta-1,3-glucan-binding protein (LGBP) from pearl oyster Pinctada fucata. Mol Biol Rep,2010,37(7):3335-43
    [134]Zhang SM, Zeng Y, Loker ES. Characterization of immune genes from the schistosome host snail Biomphalaria glabrata that encode peptidoglycan recognition proteins and gram-negative bacteria binding protein. Immunogenetics,2007,59(11):883-98
    [135]Hoebe K, Janssen E, Beutler B. The interface between innate and adaptive immunity. Nat Immunol,2004,5(10):971-4
    [136]Salzet M. Vertebrate innate immunity resembles a mosaic of invertebrate immune responses. Trends Immunol,2001,22(6):285-8
    [137]Belardelli F, Ferrantini M. Cytokines as a link between innate and adaptive antitumor immunity. Trends Immunol,2002,23(4):201-8
    [138]Wan Y, Freeswick PD, Khemlani LS, et al. Role of lipopolysaccharide (LPS), interleukin-1, interleukin-6, tumor necrosis factor, and dexamethasone in regulation of LPS-binding protein expression in normal hepatocytes and hepatocytes from LPS-treated rats. Infect Immun,1995,63(7):2435-42
    [139]Neale ML, Williams BD, Matthews N. Tumour necrosis factor activity in joint fluids from rheumatoid arthritis patients. Br J Rheumatol,1989,28(2):104-8
    [140]Manicourt DH, Triki R, Fukuda K, et al. Levels of circulating tumor necrosis factor alpha and interleukin-6 in patients with rheumatoid arthritis. Relationship to serum levels of hyaluronan and antigenic keratan sulfate. Arthritis Rheum,1993,36(4):490-9
    [141]Duh EJ, Maury WJ, Folks TM, et al. Tumor necrosis factor alpha activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-kappa B sites in the long terminal repeat. Proc Natl Acad Sci U S A, 1989,86(15):5974-8
    [142]Collart MA, Baeuerle P, Vassalli P. Regulation of tumor necrosis factor alpha transcription in macrophages:involvement of four kappa B-like motifs and of constitutive and inducible forms of NF-kappa B. Mol Cell Biol,1990,10(4):1498-506
    [143]Kramer B, Wiegmann K, Kronke M. Regulation of the human TNF promoter by the transcription factor Ets. J Biol Chem,1995,270(12):6577-83
    [144]Lee MH, Park J, Chung SW, et al. Enhancement of interleukin-4 production in activated CD4+T cells by diphthalate plasticizers via increased NF-AT binding activity. Int Arch Allergy Immunol,2004,134(3):213-22
    [145]Pope R, Mungre S, Liu H, et al. Regulation of TNF-alpha expression in normal macrophages:the role of C/EBPbeta. Cytokine,2000,12(8):1171-81
    [146]Vitiello M, D'Isanto M, Galdiero M, et al. Interleukin-8 production by THP-1 cells stimulated by Salmonella enterica serovar Typhimurium porins is mediated by AP-1, NF-kappaB and MAPK pathways. Cytokine,2004,27(1):15-24
    [147]Myokai F, Takashiba S, Lebo R, et al. A novel lipopolysaccharide-induced transcription factor regulating tumor necrosis factor alpha gene expression:molecular cloning, sequencing, characterization, and chromosomal assignment. Proc Natl Acad Sci U SA,1999,96(8):4518-23
    [148]Takashiba S, Van Dyke TE, Shapira L, et al. Lipopolysaccharide-inducible and salicylate-sensitive nuclear factor(s) on human tumor necrosis factor alpha promoter. Infect Immun,1995,63(4):1529-34
    [149]Tang X, Metzger D, Leeman S, et al. LPS-induced TNF-alpha factor (LITAF)-deficient mice:express reduced LPS-induced cytokine:Evidence for LITAF-dependent LPS signaling pathways. Proc Natl Acad Sci U S A, 2006,103(37):13777-82
    [150]Tang X, Marciano DL, Leeman SE, et al. LPS induces the interaction of a transcription factor, LPS-induced TNF-alpha factor, and STAT6(B) with effects on multiple cytokines. Proc Natl Acad Sci U S A,2005,102(14):5132-7
    [151]Hong YH, Lillehoj HS, Lee SH, et al. Molecular cloning and characterization of chicken lipopolysaccharide-induced TNF-alpha factor (LITAF). Dev Comp Immunol, 2006,30(10):919-29
    [152]Woods IG, Wilson C, Friedlander B, et al. The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res,2005,15(9):1307-14
    [153]Yu Y, Qiu L, Song L, et al. Molecular cloning and characterization of a putative lipopolysaccharide-induced TNF-alpha factor (LITAF) gene homologue from Zhikong scallop Chlamys farreri. Fish Shellfish Immunol,2007,23(2):419-29
    [154]Park EM, Kim YO, Nam BH, et al. Cloning, characterization and expression analysis of the gene for a putative lipopolysaccharide-induced TNF-alpha factor of the Pacific oyster, Crassostrea gigas. Fish Shellfish Immunol,2008,24(1):11-7
    [155]Zhang D, Jiang J, Jiang S, et al. Molecular characterization and expression analysis of a putative LPS-induced TNF-alpha factor (LITAF) from pearl oyster Pinctada fucata. Fish Shellfish Immunol,2009,27(3):391-6
    [156]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75(5):843-54
    [157]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-97
    [158]Ambros V. MicroRNA pathways in flies and worms:growth, death, fat, stress, and timing. Cell,2003,113(6):673-6
    [159]Pillai RS. MicroRNA function:multiple mechanisms for a tiny RNA? RNA, 2005,11(12):1753-61
    [160]Lindsay MA. microRNAs and the immune response. Trends Immunol, 2008,29(7):343-51
    [161]O'Connell RM, Taganov KD, Boldin MP, et al. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A,2007,104(5):1604-9
    [162]Velu CS, Baktula AM, Grimes HL. Gfil regulates miR-21 and miR-196b to control myelopoiesis. Blood,2009,113(19):4720-8
    [163]Johnnidis JB, Harris MH, Wheeler RT, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature,2008,451(7182):1125-9
    [164]Fontana L, Pelosi E, Greco P, et al. MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol, 2007,9(7):775-87
    [165]Rosa A, Ballarino M, Sorrentino A, et al. The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation. Proc Natl Acad Sci U S A,2007,104(50):19849-54
    [166]Ceppi M, Pereira PM, Dunand-Sauthier I, et al. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A,2009,106(8):2735-40
    [167]Sheedy FJ, Palsson-McDermott E, Hennessy EJ, et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol,2010,11 (2):141-7
    [168]Zhou L, Seo KH, He HZ, et al. Tie2cre-induced inactivation of the miRNA-processing enzyme Dicer disrupts invariant NKT cell development. Proc Natl Acad Sci U S A,2009,106(25):10266-71
    [169]Hou J, Wang P, Lin L, et al. MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol,2009,183(3):2150-8
    [170]Perry MM, Moschos SA, Williams AE, et al. Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. J Immunol,2008,180(8):5689-98
    [171]Chen XM, Splinter PL, O'Hara SP, et al. A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J Biol Chem,2007,282(39):28929-38
    [172]Witwer KW, Sisk JM, Gama L, et al. MicroRNA regulation of IFN-beta protein expression:rapid and sensitive modulation of the innate immune response. J Immunol, 2010,184(5):2369-76
    [173]Merkerova M, Belickova M, Bruchova H. Differential expression of microRNAs in hematopoietic cell lineages. Eur J Haematol,2008,81(4):304-10
    [174]Xiao C, Srinivasan L, Calado DP, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol, 2008,9(4):405-14
    [175]Li QJ, Chau J, Ebert PJ, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell,2007,129(1):147-61
    [176]Du C, Liu C, Kang J, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol, 2009,10(12):1252-9
    [177]Kohlhaas S, Garden OA, Scudamore C, et al. Cutting edge:the Foxp3 target miR-155 contributes to the development of regulatory T cells. J Immunol, 2009,182(5):2578-82
    [178]Lu LF, Thai TH, Calado DP, et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity, 2009,30(1):80-91
    [179]Tan LP, Wang M, Robertus JL, et al. miRNA profiling of B-cell subsets:specific miRNA profile for germinal center B cells with variation between centroblasts and centrocytes. Lab Invest,2009,89(6):708-16
    [180]Basso K, Sumazin P, Morozov P, et al. Identification of the human mature B cell miRNome. Immunity,2009,30(5):744-52
    [181]Zhang J, Jima DD, Jacobs C, et al. Patterns of microRNA expression characterize stages of human B-cell differentiation. Blood,2009,113(19):4586-94
    [182]Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science,2004,303(5654):83-6
    [183]Xiao C, Calado DP, Galler G, et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell,2007,131(1):146-59
    [184]Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function. Science,2007,316(5824):608-11
    [185]Griffiths-Jones S, Saini HK, van Dongen S, et al. miRBase:tools for microRNA genomics. Nucleic Acids Res,2008,36(Database issue):D154-8
    [186]Luo Y, Zhang S. Computational prediction of amphioxus microRNA genes and their targets. Gene,2009,428(1-2):41-6
    [187]Dai Z, Chen Z, Ye H, et al. Characterization of microRNAs in cephalochordates reveals a correlation between microRNA repertoire homology and morphological similarity in chordate evolution. Evol Dev,2009,11(1):41-9
    [188]Chen X, Li Q, Wang J, et al. Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biol,2009,10(7):R78
    [189]Carthew RW. Gene regulation by microRNAs. Curr Opin Genet Dev, 2006,16(2):203-8
    [190]Pertea G, Huang X, Liang F, et al. TIGR Gene Indices clustering tools (TGICL):a software system for fast clustering of large EST datasets. Bioinformatics,2003,19(5):651-2
    [191]Huang X, Madan A. CAP3:A DNA sequence assembly program. Genome Res, 1999,9(9):868-77
    [192]Bairoch A, Apweiler R, Wu CH, et al. The Universal Protein Resource (UniProt). Nucleic Acids Res,2005,33(Database issue):D154-9
    [193]Ashburner M, Ball CA, Blake JA, et al. Gene ontology:tool for the unification of biology. The Gene Ontology Consortium. Nat Genet,2000,25(1):25-9
    [194]Min XJ, Butler G, Storms R, et al. OrfPredictor:predicting protein-coding regions in EST-derived sequences. Nucleic Acids Res,2005,33(Web Server issue):W677-80
    [195]Min XJ, Butler G, Storms R, et al. Targetldentifier:a webserver for identifying full-length cDNAs from EST sequences. Nucleic Acids Res,2005,33(Web Server issue):W669-72
    [196]Enright AJ, John B, Gaul U, et al. MicroRNA targets in Drosophila. Genome Biol, 2003,5(1):R1
    [197]Hendrickson DG, Hogan DJ, McCullough HL, et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol,2009,7(11):e1000238
    [198]Campanella J, Bitincka L, Smalley J. MatGAT:an application that generates similarity/identity matrices using protein or DNA sequences. BMC bioinformatics, 2003,4(1):29
    [199]Edgar RC. MUSCLE:multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res,2004,32(5):1792-7
    [200]Ronquist F, Huelsenbeck JP. MrBayes 3:Bayesian phylogenetic inference under mixed models. Bioinformatics,2003,19(12):1572-4
    [201]Kanagawa M, Satoh T, Ikeda A, et al. Structural insights into recognition of triple-helical beta-glucans by an insect fungal receptor. J Biol Chem, 2011,286(33):29158-65
    [202]Mishima Y, Quintin J, Aimanianda V, et al. The N-terminal domain of Drosophila Gram-negative binding protein 3 (GNBP3) defines a novel family of fungal pattern recognition receptors. J Biol Chem,2009,284(42):28687-97
    [203]Bulmer MS, Crozier RH. Variation in positive selection in termite GNBPs and Relish. Mol Biol Evol,2006,23(2):317-26
    [204]Du XJ, Zhao XF, Wang JX. Molecular cloning and characterization of a lipopolysaccharide and. beta-1,3-glucan binding protein from fleshy prawn (Fenneropenaeus chinensis). Mol Immunol,2007,44(6):1085-94
    [205]Beschin A, Bilej M, Hanssens F, et al. Identification and cloning of a glucan-and lipopolysaccharide-binding protein from Eisenia foetida earthworm involved in the activation of prophenoloxidase cascade. J Biol Chem,1998,273(38):24948-54
    [206]Lodder AL, Lee TK, Ballester R. Characterization of the Wscl protein, a putative receptor in the stress response of Saccharomyces cerevisiae. Genetics, 1999,152(4):1487-99
    [207]Rodicio R, Heinisch JJ. Together we are strong--cell wall integrity sensors in yeasts. Yeast,2010,27(8):531-40
    [208]Gunaratne HJ, Moy GW, Kinukawa M, et al. The 10 sea urchin receptor for egg jelly proteins (SpREJ) are members of the polycystic kidney disease-1 (PKD1) family. BMC Genomics,2007,8:235
    [209]Nakamura T, Aoki S, Kitajima K, et al. Molecular cloning and characterization of Kremen, a novel kringle-containing transmembrane protein. Biochim Biophys Acta, 2001,1518(1-2):63-72
    [210]Dishaw LJ, Haire RN, Litman GW. The amphioxus genome provides unique insight into the evolution of immunity. Brief Funct Genomics,2012,11(2):167-76
    [211]Kawashima T, Kawashima S, Tanaka C, et al. Domain shuffling and the evolution of vertebrates. Genome Res,2009,19(8):1393-403
    [212]Patthy L. Modular assembly of genes and the evolution of new functions. Genetica, 2003,118(2-3):217-31
    [213]Ekman D, Bjorklund AK, Elofsson A. Quantification of the elevated rate of domain rearrangements in metazoa. J Mol Biol,2007,372(5):1337-48
    [214]Jiggins FM, Kim KW. Contrasting evolutionary patterns in Drosophila immune receptors. J Mol Evol,2006,63(6):769-80
    [215]Irving P, Troxler L, Heuer TS, et al. A genome-wide analysis of immune responses in Drosophila. Proc Natl Acad Sci U S A,2001,98(26):15119-24
    [216]Adams ME, Butler MH, Dwyer TM, et al. Two forms of mouse syntrophin, a 58 kd dystrophin-associated protein, differ in primary structure and tissue distribution. Neuron, 1993,11(3):531-40
    [217]Ahn AH, Yoshida M, Anderson MS, et al. Cloning of human basic Al, a distinct 59-kDa dystrophin-associated protein encoded on chromosome 8q23-24. Proc Natl Acad Sci USA,1994,91(10):4446-50
    [218]Yan J, Wen W, Xu W, et al. Structure of the split PH domain and distinct lipid-binding properties of the PH-PDZ supramodule of alpha-syntrophin. EMBO J, 2005,24(23):3985-95
    [219]Chang JS, Seok H, Kwon TK, et al. Interaction of elongation factor-lalpha and pleckstrin homology domain of phospholipase C-gamma 1 with activating its activity. J Biol Chem,2002,277(22):19697-702
    [220]Yahata N, Watanabe T, Nakamura Y, et al. Structure of the gene encoding beta-1,3-glucanase Al of Bacillus circulans WL-12. Gene,1990,86(1):113-7
    [221]Padhi A, Verghese B. Detecting molecular adaptation at individual codons in the pattern recognition protein, lipopolysaccharide-and beta-1,3-glucan-binding protein of decapods. Fish Shellfish Immunol,2008,24(5):638-48
    [222]Lowe JB. Glycosylation, immunity, and autoimmunity. Cell,2001,104(6):809-12
    [223]Zhao D, Chen L, Qin C, et al. Molecular cloning and characterization of the lipopolysaccharide and beta-1,3-glucan binding protein in Chinese mitten crab (Eriocheir sinensis). Comp Biochem Physiol B Biochem Mol Biol,2009,154(1):17-24
    [224]Yeh MS, Chang CC, Cheng W. Molecular cloning and characterization of lipopolysaccharide-and beta-1,3-glucan-binding protein from the giant freshwater prawn Macrobrachium rosenbergii and its transcription in relation to foreign material injection and the molt stage. Fish Shellfish Immunol,2009,27(6):701-6
    [225]Chappell VL, Le LX, LaGrone L, et al. Stat proteins play a role in tumor necrosis factor alpha gene expression. Shock,2000,14(3):400-2; discussion 2-3
    [226]Johansson CC, Bryn T, Yndestad A, et al. Cytokine networks are pre-activated in T cells from HIV-infected patients on HAART and are under the control of cAMP. AIDS, 2004,18(2):171-9
    [227]Ponting CP, Mott R, Bork P, et al. Novel protein domains and repeats in Drosophila melanogaster:insights into structure, function, and evolution. Genome Res, 2001,11(12):1996-2008
    [228]Letunic I, Copley RR, Pils B, et al. SMART 5:domains in the context of genomes and networks. Nucleic Acids Res,2006,34(Database issue):D257-60
    [229]Schultz J, Milpetz F, Bork P, et al. SMART, a simple modular architecture research tool:identification of signaling domains. Proc Natl Acad Sci U S A,1998,95(11):5857-64
    [230]Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res,1994,22(22):4673-80
    [231]Beutler B, Cerami A. The biology of cachectin/TNF--a primary mediator of the host response. Annu Rev Immunol,1989,7:625-55
    [232]Goldfeld AE, Doyle C, Maniatis T. Human tumor necrosis factor alpha gene regulation by virus and lipopolysaccharide. Proc Natl Acad Sci U S A, 1990,87(24):9769-73
    [233]Tang X, Fenton MJ, Amar S. Identification and functional characterization of a novel binding site on TNF-alpha promoter. Proc Natl Acad Sci U S A,2003,100(7):4096-101
    [234]Li HJ, Yang Q, Gao XG, et al. Identification and expression of a putative LPS-induced TNF-alpha factor from Asiatic hard clam Meretrix meretrix. Mol Biol Rep, 2012,39(2):865-71
    [235]Bolcato-Bellemin AL, Mattei MG, Fenton M, et al. Molecular cloning and characterization of mouse LITAF cDNA:role in the regulation of tumor necrosis factor-alpha (TNF-alpha) gene expression. J Endotoxin Res,2004,10(1):15-23
    [236]Sela N, Mersch B, Gal-Mark N, et al. Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome. Genome Biol,2007,8(6):R127
    [237]Shen S, Lin L, Cai JJ,et al. Widespread establishment and regulatory impact of Alu exons in human genes. Proc Natl Acad Sci U S A,2011,108(7):2837-42
    [238]Medstrand P, van de Lagemaat LN, Dunn CA, et al. Impact of transposable elements on the evolution of mammalian gene regulation. Cytogenet Genome Res, 2005,110(1-4):342-52
    [239]Han JS, Szak ST, Boeke JD. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature,2004,429(6989):268-74
    [240]De Zoysa M, Nikapitiya C, Oh C, et al. Molecular evidence for the existence of lipopolysaccharide-induced TNF-alpha factor (LITAF) and Rel/NF-kB pathways in disk abalone (Haliotis discus discus). Fish Shellfish Immunol,2010,28(5-6):754-63
    [241]Sonkoly E, Stahle M, Pivarcsi A. MicroRNAs and immunity:novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol, 2008,18(2):131-40
    [242]Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A,2006,103(33):12481-6
    [243]Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol, 2004,4(7):499-511
    [244]Fehniger TA, Wylie T, Germino E, et al. Next-generation sequencing identifies the natural killer cell microRNA transcriptome. Genome Res,2010,20(11):1590-604
    [245]Garcia-Sastre A, Sansonetti PJ. Host-pathogen interactions. Curr Opin Immunol, 2010,22(4):425-7
    [246]Goddard ME, Hayes BJ. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet,2009,10(6):381-91
    [247]Clop A, Marcq F, Takeda H, et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet, 2006,38(7):813-8
    [248]Ou JT, Tang SQ, Sun DX, et al. Polymorphisms of three neuroendocrine-correlated genes associated with growth and reproductive traits in the chicken. Poult Sci, 2009,88(4):722-7
    [249]Weitzel RP, Lesniewski ML, Haviernik P, et al. microRNA 184 regulates expression of NFAT1 in umbilical cord blood CD4+T cells. Blood,2009,113(26):6648-57
    [250]Takata A, Otsuka M, Kojima K, et al. MicroRNA-22 and microRNA-140 suppress NF-kappaB activity by regulating the expression of NF-kappaB coactivators. Biochem Biophys Res Commun,2011,411 (4):826-31
    [251]Xiong J, Du Q, Liang Z. Tumor-suppressive microRNA-22 inhibits the transcription of E-box-containing c-Myc target genes by silencing c-Myc binding protein. Oncogene, 2010,29(35):4980-8
    [252]Barbato C, Ruberti F, Pieri M, et al. MicroRNA-92 modulates K(+) Cl(-) co-transporter KCC2 expression in cerebellar granule neurons. J Neurochem, 2010,113(3):591-600
    [253]Menghini R, Casagrande V, Cardellini M, et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation, 2009,120(15):1524-32