MicroRNA-155调控在人椎间盘退变中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的
     目前认为椎间盘退变为体内外多种因素综合作用的结果,凋亡的增加为其中的因素之一,而凋亡增加确切的分子机制尚不明确。研究表明,内在性和外源性凋亡信号通路在人椎间盘髓核细胞的凋亡中均发挥作用。越来越多的证据表明凋亡机制受新近发现的非编码小RNA,即miRNAs的调控。miRNAs广泛参与蛋白表达的调控,在机体的多种生理和病理过程中发挥重要的作用,但是目前对其在椎间盘退变中的表达谱及发挥的作用知之甚少。本研究的目的为阐述miRNAs,特别是miR-155,在椎间盘退变中的作用。
     方法
     我们收集脊柱侧弯(n=12)和椎间盘退变患者(n=12)的椎间盘髓核组织为对照和退变的髓核标本。我们首先从新鲜分离的人髓核细胞中分离提取总RNA,继以miRNA芯片上进行RNA标记和杂交、分析。miRNA的相对表达量以实时定量PCR验证。miR-155调控的靶蛋白以miRNAs网上数据库和计算机分析进行预测。miR-155和潜在靶蛋白的3’-UTRs的作用通过双荧光素酶报告系统进行分析。我们对体外培养的人髓核细胞转染表达pre-miR-155的慢病毒及表达antigomiR-155的慢病毒实现miR-155的上调和下调。转染成功后,以重组人FasL诱导凋亡后,以Western蛋白印迹检测髓核细胞中FADD和caspase-3的表达水平,以APC-Annexin V/7-AAD双染流式细胞分析髓核细胞凋亡率的变化。我们以透射电镜检测对照组和椎间盘退变组髓核组织中的凋亡。我们以原位杂交,免疫组化及双标染色检测miR-155,FADD和caspase-3于髓核中的表达和分布。
     结果
     我们发现人椎间盘退变髓核中29个miRNAs为差异表达,miR-155下调了0.56±0.17倍,实时定量PCR进一步证实了miR-155的下调。生物信息方法预测FADD和caspase-3为miR-155的潜在靶蛋白。miR-155可通过直接作用于其3’UTRs而抑制FADD和caspase-3的表达,而靶蛋白3’UTR与miR-155结合位点的突变可组织这种抑制作用。人髓核细胞中上调miR-155的表达引起FADD和caspase-3表达的下调,而下调miR-155的表达则引起FADD和caspase-3的上调。流式细胞分析证实下调miR-155后Fas介导的凋亡增加,而上调miR-155后Fas介导的凋亡减少。同时,我们提供了椎间盘退变组织髓核细胞凋亡的透射电镜下的直接依据。而且,miR-155表达定位于人髓核细胞胞浆中,FADD和caspase-3表达于髓核细胞胞浆近胞膜处,两者的表达为反相关,即表达miR-155的细胞为靶蛋白阴性,表达靶蛋白的细胞为miR-155阴性。另一方面,对照组及退变组髓核均主要由活细胞构成(87.42±1.13%; 83.27±5.00%, p>0.05),细胞形态多种多样,电镜下可分类为典型的髓核细胞,有长突起的髓核细胞及具有吞噬功能的髓核细胞。而且,有长突起的髓核细胞存在于椎间盘退变的髓核中,吞噬功能的髓核细胞既有组织巨噬细胞溶酶体的特点,又有髓核细胞多量内质网的特点。
     结论
     本研究为目前首次对人椎间盘退变中凋亡增加的潜在分子机制及miRNAs表达谱进行的研究。同时,我们确定了caspase-3为miR-155调控的新的靶蛋白。我们的研究表明,在人椎间盘退变中,下调的miR-155通过对靶蛋白FADD和caspase-3的调控促进Fas介导的凋亡,提示miR-155在椎间盘退变的病因学中的作用。而且,人退变椎间盘髓核中的细胞主要为活细胞,我们提供了直接的在体依据,证实人髓核细胞具有吞噬功能,有助于理解退变髓核中细胞簇的形成机制;有长突起的髓核细胞存在于脊柱侧弯和退变的椎间盘髓核中。
Introduction.
     The etiology of intervertebral disc degeneration (IDD) is ascribed to various factors, one of which is the increase in apoptosis. The underlying molecular mechanisms of the increase in apoptosis remain largely unknown. Both the extrinsic and intrinsic apoptotic pathways play essential roles in the apoptosis of human nucleus pulpusos (NP) cells. Accumulating evidence has shown that the apoptotic machinery is regulated by the newly defined small noncoding RNAs, microRNAs (miRNAs). Despite miRNAs play an important role in a variety of physiologic and pathologic processes, little is known on their expression profiles and attendant roles in IDD. The purpose of this study was to investigate the role of miRNAs, in particular miR-155, in IDD.
     Methods.
     Human nucleus pulposus (NP) specimens were collected from patients with idiopathic scoliosis (n=12) and IDD (n=12) as control and degenerative NP samples. Following total RNA isolation from freshly isolated NP cells, RNA labeling and hybridization on miRNA microarray chips were completed on 6 samples. The relative expression of miRNAs was verified using real-time PCR. The prediction of putative targets of miR-155 was achieved using online miRNAs database search and computational analysis. The interaction of miR-155 and the 3’-UTRs of FADD and caspase-3 was performed using the dual luciferase reporter assay. In vitro over-expression and knockdown of miR-155 in human NP cells were achieved by transfection of NP cells with lentiviral Pre-miR-155 and antagomiR-155. Following treated with FasL, the expression levels of FADD and caspase-3 in NP cells with modulated miR-155 were detected using Western Blot. Flow cytometry with APC-Annexin V/7-AAD staining was used to detect the apoptosis in NP cells with modulated miR-155. Transmission electon microscopy was used to detect apoptosis in control and IDD samples. Moreover, miR-155, FADD and caspase-3 expression in human NP was validated using in situ hybridization, immunohistochemistry and a combination thereof.
     Results.
     We found that 29 miRNAs were differentially expressed and miR-155 was down-regulated in human degenerative NP. The deregulation of miR-155 (0.56±0.17-fold) was further verified using qRT-PCR. FADD and caspase-3 were predicted as putative targets of miR-155 using the bioinformatics methods. miR-155 inhibited FADD and caspase-3 expression by directly targeting their 3’UTRs, which was abolished by mutation of the predicted miR-155-binding-sites. Overexpression and knockdown of miR-155 in human NP cells resulted in significant deregulation and upregulation expression of FADD and caspase-3. As well, Fas-mediated apoptosis was increased when antagonizing miR-155 and decreased when using pre-miR-155. Furthermore, we presented direct evidence of NP cells undergoing apoptosis in IDD samples. Moreover, miR-155 expressed in the cytoplasm of human NP cells with reverse correlation with FADD and caspase-3. On the other hand, both control and degenerative human NP consisted of mainly viable cells (87.42±1.13%; 83.27±5.00%, p>0.05) with a variety of morphology, which were further categorized as typical NP cells, NP cells with long processes and phagocytic NP cells. Moreover, NP cells with long processes existed in degenerative NP. Phagocytic NP cells had the hallmarks of both stationary macrophages with lysosomes and NP cells with a large amount of the endoplasmic reticulum.
     Conclusion.
     To our knowledge, this is the first study addressing the underlying mechanism of apoptosis and the expression profiles of miRNAs in IDD. As well, caspase-3 is identified as a novel target of miR-155. Our results suggest that deregulated miR-155 promotes Fas-mediated apoptosis in human IDD by targeting FADD and caspase-3, implicating a role of miR-155 in the etiology of IDD. In addition, human degenerative NP consists of primarily viable cells. Furthermore, we present direct and in vivo evidence that human NP cells have phagocytic potential, which may have implications for the underlying mechanisms of cell clusters. Moreover, NP cells with long processes exist in both scoliosis and degenerative NP.
引文
1. Medawar PB. Immunity to homologous grafted skin. III. The fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 1948; 29: 58-69.
    2. Forrester JV. Privilege revisited: an evaluation of the eye's defence mechanisms. Eye 2009; 23: 756-766.
    3.王娜. Fas配体与椎间盘免疫赦免及退行性变的研究。.国际免疫学杂志2006; 29: 229-232.
    4. Arck PC, Gilhar A, Bienenstock J, et al. The alchemy of immune privilege explored from a neuroimmunological perspective. Curr Opion in Pharmacol 2008; 8: 480-489.
    5. Bechmann I, Mor G, Nilsen J, et al. FasL (CD95L, Apo1L) is expressed in the normal rat and human brain: Evidence for the existence of an immunological brain barrier. Glia 1999; 27: 62-74.
    6. Xerri L, Devilard E, Hassoun J, et al. Fas ligand is not only expressed in immune privileged human organs but is also coexpressed with Fas in various epithelial tissues. Mol Pathol 1997; 50: 87-91.
    7. Paus R, Nickoloff BJ, Ito T. A‘hairy’privilege. Trends Immunol 2005; 26: 32-40.
    8. Park JB, Lee JK, Park SJ, et al. Mitochondrial involvement in fas-mediated apoptosis of human lumbar disc cells. J Bone Joint Surg Am 2005; 87: 1338-1342.
    9. Takada T, Nishida K, Doita M, et al. Fas ligand exists on intervertebral disc cells: a potential molecular mechanism for immune privilege of the disc. Spine (Phila Pa 1976) 2002; 27: 1526-1530.
    10. Kaneyama S, Nishida K, Takada T, et al. Fas ligand expression on human nucleus pulposus cells decreases with disc degeneration processes. J Orthop Sci 2008; 13:130-135.
    11. Park J-B, Kim K-W, Han C-W, et al. Expression of Fas receptor on disc cells in herniated lumbar disc tissue. Spine (Phila Pa 1976) 2001; 26: 142-146.
    12. Park J-B, Lee J-K, Cho S-T, et al. A biochemical mechanism for resistance of intervertebral discs to metastatic cancer: Fas ligand produced by disc cells induces apoptotic cell death of cancer cells. Euro Spine J 2007; 16: 1319-1324.
    13. Park J-B, Park I-C, Park S-J, et al. Anti-apoptotic effects of caspase inhibitors on rat intervertebral disc cells. J Bone Joint Surg Am 2006; 88: 771-779.
    14. Roberts S, Evans H, Trivedi J, et al. Histology and Pathology of the Human Intervertebral Disc. J Bone Joint Surgery Am 2006; 88: 10-14.
    15. Anderson DG, Albert TJ, Fraser JK, et al. Cellular therapy for disc degeneration. Spine (Phila Pa 1976) 2005; 30: S14-S19.
    16. Johnson WE, Roberts S. Human intervertebral disc cell morphology and cytoskeletal composition: a preliminary study of regional variations in health and disease. J Anat 2003; 203: 605-612.
    17.王海强,禹晓东,刘志恒, et al.髓核研究的现状难以诠释椎间盘退变之道.医学争鸣2010; 1: 34-37.
    18. Solovieva S, Lohiniva J, Leino-Arjas P, et al. Intervertebral disc degeneration in relation to the COL9A3 and the IL-1? gene polymorphisms. Eur Spine J 2006; 15: 613-619.
    19. Melrose J, Ghosh P, Taylor TK. A comparative analysis of the differential spatial and temporal distributions of the large (aggrecan, versican) and small (decorin, biglycan, fibromodulin) proteoglycans of the intervertebral disc. J Anat 2001; 198: 3-15.
    20.夏平.地塞米松对兔椎间盘髓核细胞增殖及聚集蛋白聚糖表达的影响[武汉大学博士论文]:武汉大学; 2010.
    21. Trout JJ, Buckwalter JA, Moore KC. Ultrastructure of the human intervertebral disc:II. Cells of the nucleus pulposus. Anat Rec 1982; 204: 307 - 314.
    22. Trout JJ, Buckwalter JA, Moore KC, et al. Ultrastructure of the human intervertebral disc. I. Changes in notochordal cells with age. Tissue Cell 1982; 14: 359-369.
    23.李朝顶.脊索细胞与椎间盘退变的相关性研究[苏州大学博士论文]:苏州大学; 2010.
    24.沈军.脊索细胞遗迹与脊索瘤发生的相关性研究[苏州大学博士论文]:苏州大学; 2010.
    25. Pazzaglia UE, Salisbury JR, Byers PD. Development and involution of the notochord in the human spine. J R Soc Med 1989; 82: 413-415.
    26. Hunter CJ, Matyas JR, Duncan NA. The notochordal cell in the nucleus pulposus: A review in the context of tissue engineering. Tissue Eng 2003; 9: 667-677.
    27. Fujita N, Miyamoto T, Imai J-i, et al. CD24 is expressed specifically in the nucleus pulposus of intervertebral discs. Biochemical and Biophysical Research Communications 2005; 338: 1890-1896.
    28. Stevens JW, Kurriger GL, Carter AS, et al. CD44 expression in the developing and growing rat intervertebral disc. Dev Dynam 2000; 219: 381-390.
    29. Gotz W, Kasper M, Miosge N, et al. Detection and distribution of the carbohydrate binding protein galectin-3 in human notochord, intervertebral disc and chordoma. Differentiation 1997; 62: 149-157.
    30. Sive JI, Baird P, Jeziorsk M, et al. Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs. Mol Pathol 2002; 55: 91-97.
    31. Rajpurohit R, Risbud M, Ducheyne P, et al. Phenotypic characteristics of the nucleus pulposus: expression of hypoxia inducing factor-1, glucose transporter-1 and MMP-2. Cell Tissue Res 2002; 308: 401-407.
    32. Sakai D, Mochida J, Iwashina T, et al. Atelocollagen for culture of human nucleus pulposus cells forming nucleus pulposus-like tissue in vitro: influence on theproliferation and proteoglycan production of HNPSV-1 cells. Biomaterials 2006; 27: 346-353.
    33. Chiba K, Andersson GB, Masuda K, et al. A new culture system to study the metabolism of the intervertebral disc in vitro. Spine (Phila Pa 1976) 1998; 23: 1821-1827; discussion 1828.
    34. Wang JY, Baer AE, Kraus VB, et al. Intervertebral disc cells exhibit differences in gene expression in alginate and monolayer culture. Spine (Phila Pa 1976) 2001; 26: 1747-1751; discussion 1752.
    35. Sakai D, Mochida J, Yamamoto Y, et al. Immortalization of human nucleus pulposus cells by a recombinant SV40 adenovirus vector: establishment of a novel cell line for the study of human nucleus pulposus cells. Spine (Phila Pa 1976) 2004; 29: 1515-1523.
    36.李钢.椎间盘器官整体培养条件下髓核组织的变化[浙江大学博士论文]:浙江大学; 2010.
    37. Lim TH, Ramakrishnan PS, Kurriger GL, et al. Rat spinal motion segment in organ culture: a cell viability study. Spine (Phila Pa 1976) 2006; 31: 1291-1297; discussion 1298.
    38. Risbud MV, Izzo MW, Adams CS, et al. An organ culture system for the study of the nucleus pulposus: description of the system and evaluation of the cells. Spine (Phila Pa 1976) 2003; 28: 2652-2658; discussion 2658-2659.
    39. Lee CR, Iatridis JC, Poveda L, et al. In vitro organ culture of the bovine intervertebral disc: effects of vertebral endplate and potential for mechanobiology studies. Spine (Phila Pa 1976) 2006; 31: 515-522.
    40. Gan JC, Ducheyne P, Vresilovic EJ, et al. Intervertebral disc tissue engineering I: characterization of the nucleus pulposus. Clin Orthop Relat Res 2003: 305-314.
    41. Gan JC, Ducheyne P, Vresilovic EJ, et al. Intervertebral disc tissue engineering II:cultures of nucleus pulposus cells. Clin Orthop Relat Res 2003: 315-324.
    42.石健.人骨形态发生蛋白-7基因转染对原代培养兔髓核细胞生物学活性的影响[第二军医大学博士论文]:第二军医大学; 2006.
    43.熊晓芊.烟酰胺治疗兔椎间盘退变的实验研究[华中科技大学博士论文]:华中科技大学; 2006.
    44. Maldonado BA, Oegema TR, Jr. Initial characterization of the metabolism of intervertebral disc cells encapsulated in microspheres. J Orthop Res 1992; 10: 677-690.
    45. Bibby SRS, Urban JPG. Effect of nutrient deprivation on the viability of intervertebral disc cells. Euro Spine J 2004; 13: 695-701.
    46. Roberts S, Menage J, Duance V, et al. Collagen types around the cells of the intervertebral disc and cartilage end plate: an immunolocalization study. 1991 Volvo Award in basic sciences. . Spine (Phila Pa 1976) 1991; 16: 1030-1038.
    47. Fujita N, Miyamoto T, Imai J-i, et al. CD24 is expressed specifically in the nucleus pulposus of intervertebral discs. Biochem Biophys Res Commun 2005; 338: 1890-1896.
    48. Vadala G, Studer RK, Sowa G, et al. Coculture of bone marrow mesenchymal stem cells and nucleus pulposus cells modulate gene expression profile without cell fusion. Spine (Phila Pa 1976) 2008; 33: 870-876.
    49. Watanabe T, Sakai D, Yamamoto Y, et al. Human nucleus pulposus cells significantly enhanced biological properties in a coculture system with direct cell-to-cell contact with autologous mesenchymal stem cells. J Orthop Res 2009.
    50. Katz MM, Hargens AR, Garfin SR. Intervertebral disc nutrition. Diffusion versus convection. Clin Orthop Relat Res 1986; 210: 243-245.
    51.辛龙.神经血管长入退变椎间盘致源性腰痛相关性的研究与体外生物椎间盘初步构建[浙江大学博士论文]:浙江大学; 2009.
    52. Ferguson SJ, Ito K, Nolte LP. Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech 2004; 37: 213-221.
    53. Bobechko WP, Hirsh C. Auto-immune response to nucleus pulposus in the rabbit. J Bone Joint Surg 1965; 147: 574-580.
    54. Geiss A, Larsson K, Rydevik B, et al. Autoimmune properties of nucleus pulposus: an experimental study in pigs. Spine (Phila Pa 1976) 2007; 32: 168-173
    55. Doita M, Kanatani T, Ozaki T, et al. Influence of macrophage infiltration of herniated disc tissue on the production of matrix metalloproteinases leading to disc resorption. Spine (Phila Pa 1976) 2001; 26: 1522-1527.
    56. Cleveland JL, Ihle JN. Contenders in FasL/TNF death signaling. Cell 1995; 81: 479-482.
    57. Griffith TS, Brunner T, Fletcher SM, et al. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 1995; 270: 1189-1192.
    58. Ju S-T, Panka DJ, Cui H, et al. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 1995; 373: 444-448.
    59. Nagata S, Golstein P. The Fas death factor. Science 1995; 267: 1449-1456.
    60. Nagata S, Suda T. Fas and Fas ligand: lpr and gld mutations. Immunol Today 1995; 16: 39-43.
    61. Lee H-o, Ferguson TA. Biology of FasL. Cytokine Growth Factor Rev 2003; 14: 325-335.
    62. Fukuyama H, Adachi M, Suematsu S, et al. Requirement of Fas expression in B cells for tolerance induction. Euro J Immunol 2002; 32: 223-230.
    63. Peter ME, Budd RC, Desbarats J, et al. The CD95 Receptor: Apoptosis Revisited. Cell 2007; 129: 447-450.
    64. Nagata S. Apoptosis by death factor. Cell 1997; 88: 355-365.
    65. Dockrell DH, Badley AD, Villacian JS, et al. The expression of Fas Ligand bymacrophages and its upregulation by human immunodeficiency virus infection. J Clin Invest 1998; 101: 2394-2405.
    66. Griffith TS, Ferguson TA. The role of FasL-induced apoptosis in immune privilege. Immunol Today 1997; 18: 240-244.
    67. Cohen PL, Eisenberg RA. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu Rev Immunol 1991; 9: 243-269.
    68. Karray S, Kress C, Cuvellier S, et al. Complete loss of Fas ligand gene causes massive lymphoproliferation and early Death, indicating a residual activity of gld allele. J Immunol 2004; 172: 2118-2125.
    69. Enari M, Hug H, Hayakawa M, et al. Different apoptotic pathways mediated by Fas and the Tumor-necrosis-factor receptor. Eur J Biochem 1996; 236: 533-538.
    70. Kassahn D, Nachbur U, Conus S, et al. Distinct requirements for activation-induced cell surface expression of preformed Fas//CD95 ligand and cytolytic granule markers in T cells. Cell Death Differ 2009; 16: 115-124.
    71. Sun H, Gong S, Carmody RJ, et al. TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis. Cell 2008; 133: 415-426.
    72. Hao Z, Duncan GS, Seagal J, et al. Fas Receptor Expression in Germinal-Center B Cells Is Essential for T and B Lymphocyte Homeostasis. Immunity 2008; 29: 615-627.
    73. Mabrouk I, Buart S, Hasmim M, et al. Prevention of autoimmunity and control of recall response to exogenous antigen by Fas death receptor ligand expression on T Cells. Immunity 2008; 29: 922-933.
    74. Hitomi J, Christofferson DE, Ng A, et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 2008; 135: 1311-1323.
    75. Ferguson TA, Griffith TS. A vision of cell death: Fas ligand and immune privilege 10years later. Immunol Rev 2006; 213: 228-238.
    76.赵丹. FADD研究进展.国际免疫学杂志2006; 29: 152-155.
    77. Menaker RJ, Jones NL. Fascination with bacteria-triggered cell death: the significance of Fas-mediated apoptosis during bacterial infection in vivo. Microbes Infect 2003; 5: 1149-1158.
    78. Krammer PH. CD95's deadly mission in the immune system. Nature 2000; 407: 789-795.
    79. Park SM, Peter ME. microRNAs and death receptors. Cytokine Growth Factor Rev 2008; 19: 303-311.
    80. Yeh W-C, Pompa J, eacute, et al. FADD: essential for embryo development and signaling from some, but not all, iInducers of apoptosis. Science 1998; 279: 1954-1958.
    81. Lee H-o, Herndon JM, Barreiro R, et al. TRAIL: a mechanism of tumor surveillance in an immune privileged site. J Immunol 2002; 169: 4739-4744.
    82.刘益. FLIP、FADD在上皮性卵巢癌肿表达及其意义[中南大学硕士论文]:中南大学; 2008.
    83. Sudo H, Minami A. Caspase-3 as a therapeutic target for regulation of intervertebral disc degeneration. Arthritis Rheum 2011: [Equb ahead of print].
    84. Park J-B, Chang H, Kim K-W. Expression of Fas ligand and apoptosis of disc cells in herniated lumbar disc tissue. Spine (Phila Pa 1976) 2001; 26: 618-621.
    85. Anderson DG, Izzo MW, Hall DJ, et al. Comparative gene expression profiling of normal and degenerative discs: analysis of a rabbit annular laceration model. Spine (Phila Pa 1976) 2002; 27: 1291-1296.
    86. Anderson GB. Epidemiological features of chronic low-back pain. Lancet 1999; 354: 581-585.
    87.刘小云.杆状病毒作为椎间盘退变基因治疗载体的实验研究[中南大学博士学位论文]:中南大学; 2006.
    88. Battie MC, Haynor D, Fisher LD, et al. Similarities in degenerative findings on magnetic resonance images of the lumbar spines of identical twins J Bone Joint Surg Am 1995; 77: 1662-1670.
    89. Sambrook PN, MacGregor AJ, Spector TD. Genetic influences on cervical and lumbar disc degeneration. Arthritis Rheum 1999; 42: 366-372.
    90. Kawaguchi Y, Osada R, Kanamori M, et al. Association between an aggrecan gene polymorphism and lumbar disc degeneration Spine (Phila Pa 1976) 1999; 24: 2456-2460.
    91. Solovieva S, Kouhia S, Leino-Arjas P, et al. Association between interleukin 1 gene locus polymorphisms and intervertebral disc degeneration Epidemiology 2004; 15: 626-633.
    92. Donohue PJ, Jahnke MR, Blaha JD, et al. Characterization of link protein(s) from human intervertebral-disc tissues. Biochem J 1988; 251: 739-747.
    93. Edelson JG, Nathan H. Stages in the natural history of the vertebral endplates. Spine (Phila Pa 1976) 1988; 13: 21-26.
    94. Boos N, Weissbach S, Rohrbach H, et al. Classification of age-related changes in lumbar intervertebral discs. Spine (Phila Pa 1976) 2002; 27: 2631 - 2644.
    95. Malko JA, Hutton WC, Fajman WA. An in vivo MRI study of the changes in volume (and fluid content) of the lumbar intervertebral disc after overnight bed rest and during an 8-h walking protocol. J Spinal Disord Tech 2002; 15: 157-163.
    96. McMillan DW, Garbutt G, Adams MA. Effect of sustained loading on the water content of intervertebral discs: implications for disc metabolism. Ann Rheum Dis 1996; 55: 880-887.
    97. Korecki CL, MacLean JJ, Iatridis JC. Dynamic compression effects on intervertebral disc mechanics and biology. Spine (Phila Pa 1976) 2008; 33: 1403-1409.
    98. Iatridis JC, Mente PL, Stokes IA, et al. Compression-induced changes in intervertebral disc properties in a rat tail model. Spine (Phila Pa 1976) 1999; 24: 996-1002.
    99. Wilke HJ, Neef P, Caimi M, et al. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila Pa 1976) 1999; 24: 755-762.
    100. Maitre LCL, Frain J, Fotheringham AP, et al. Human cells derived from degenerate intervertebral discs respond differently to those derived from non-degenerate intervertebral discs following application of dynamic hydrostatic pressure. Biorheology 2008; 45: 563-575.
    101. Maitre CLL, Frain J, Millward-Sadler J, et al. Altered integrin mechanotransduction in human nucleus pulposus cells derived from degenerated discs. Arthritis Rheum 2009; 60: 460-469.
    102. Walsh AJ, Lotz JC. Biological response of the intervertebral disc to dynamic loading. J Biomech 2004; 37: 329-337.
    103. Chubinskaya S, Kawakami M, Rappoport L, et al. Anti-catabolic effect of OP-1 in chronically compressed intervertebral discs. J Orthop Res 2007; 25: 517-530.
    104. Stokes IA, Iatridis JC. Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine (Phila Pa 1976) 2004; 29: 2724-2732.
    105. Guehring T, Omlor GW, Lorenz H, et al. Stimulation of gene expression and loss of anular architecture caused by experimental disc degeneration--an in vivo animal study. . Spine (Phila Pa 1976) 2005; 30: 2510-2515.
    106. Guehring T, Omlor GW, Lorenz H, et al. Disc distraction shows evidence of regenerative potential in degenerated intervertebral discs as evaluated by protein expression, magnetic resonance imaging, and messenger ribonucleic acid expression analysis. Spine (Phila Pa 1976) 2006; 31: 1658-1665.
    107.夏茂盛.整合素α_5β_1,细胞外信号调节激酶和蛋白激酶C在纤维粘连蛋白碎片诱导髓核细胞退变过程中的作用[中国医科大学博士论文]:中国医科大学; 2009.
    108.曹晓鹏.骨形态发生蛋白4在椎间盘退变中作用的实验研究[第二军医大学博士论文]:第二军医大学; 2007.
    109. Yu J, Fairbank JC, Roberts S, et al. The elastic fibre network of the anulus fibrosus of the normal and scoliotic human intervertebral disc. Spine (Phila Pa 1976) 2005; 30: 1815-1820.
    110. Anderson DG, Li X, Balian G. A fibronectin fragment alters the metabolism by rabbit intervertebral disc cells in vitro. Spine (Phila Pa 1976) 2005; 30: 1242-1246
    111. Roberts S, Caterson B, Menage J, et al. Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc. Spine (Phila Pa 1976) 2000; 25: 3005-3013.
    112. Roberts S, Bains MA, A. K, et al. Type X collagen in the human intervertebral disc: an indication of repair or remodelling? Histochem J 1998; 30: 89-95.
    113. Sztrolovics R, Alini M, Mort JS, et al. Age-related changes in fibromodulin and lumican in human intervertebral discs. Spine (Phila Pa 1976) 1999; 24: 1765-1771.
    114. Rutges JPHJ, Kummer JA, Oner FC, et al. Increased MMP-2 activity during intervertebral disc degeneration is correlated to MMP-14 levels. J Pathology 2008; 214: 523-530.
    115. Iwabuchi S, Ito M, Chikanishi T, et al. Role of the tumor necrosis factor-alpha, cyclooxygenase-2, prostaglandin E2, and effect of low-intensity pulsed ultrasound in an in vitro herniated disc resorption model. J Orthop Res 2008; 26: 1274-1278.
    116. Haschtmann D, Ferguson SJ, Stoyanov JV. Apoptosis and gene expression of collagenases but not gelatinases in rabbit disc fragment cultures. J Neurosurg Spine 2008; 8: 552-560.
    117. Murata Y, Olmarker K, Larsson K, et al. Production of tumor necrosis factor-[alpha] from porcine nucleus pulposus cells at various time points in cell culture under conditions of nutritional deficiency. Cytokine 2006; 34: 206-211.
    118.田鹏. IL-17在腰椎间盘突出症患者突出椎间盘组织中的表达[天津医科大学硕士论文]:天津医科大学; 2010.
    119. Cui LY, Liu SL, Ding Y, et al. IL-1beta sensitizes rat intervertebral disc cells to Fas ligand mediated apoptosis in vitro. Acta Pharacol Sin 2007; 28: 1671-1676.
    120. Johnson WE, Eisenstein SM, Roberts S. Cell cluster formation in degenerate lumbar intervertebral discs is associated with increased disc cell proliferation. Connect Tissue Res 2001; 42: 197-207.
    121. Tschoeke SK, Hellmuth M, Hostmann A, et al. Apoptosis of human intervertebral discs after trauma compares to degenerated discs involving both receptor-mediated and mitochondrial-dependent pathways. J Orthop Res 2008; 26: 999-1006.
    122. Jones P, Gardner L, Menage J, et al. Intervertebral disc cells as competent phagocytes in vitro: implications for cell death in disc degeneration. Arthritis Res Ther 2008; 10: R86.
    123.赵长清.细胞凋亡、细胞增殖与人颈椎间盘退变的关系[郑州大学硕士论文]:郑州大学; 2005.
    124. Gruber HE, Hanley EN, Jr. Analysis of aging and degeneration of the human intervertebral disc. Comparison of surgical specimens with normal controls. Spine (Phila Pa 1976) 1998; 23: 751-757.
    125. Johnson WE, Roberts S. 'Rumours of my death may have been greatly exaggerated': a brief review of cell death in human intervertebral disc disease and implications for cell transplantation therapy. Biochem Soc Trans 2007; 35: 680-682.
    126. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843-854.
    127. Almeida MI, Reis RM, Calin GA. MicroRNA history: Discovery, recent applications, and next frontiers. Mutat Res 2011.
    128. Kim M, Kasinski AL, Slack FJ. MicroRNA therapeutics in preclinical cancer models. Lancet Oncol 2011; 12: 319-321.
    129. Lee SK, Calin GA. Non-coding RNAs and cancer: new paradigms in oncology. Discov Med 2011; 11: 245-254.
    130. Moussay E, Wang K, Cho JH, et al. MicroRNA as biomarkers and regulators in B-cell chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2011.
    131. Cheng H, Zhang L, Cogdell DE, et al. Circulating Plasma MiR-141 Is a Novel Biomarker for Metastatic Colon Cancer and Predicts Poor Prognosis. PLoS One 2011; 6: e17745.
    132. Shan J, Feng L, Luo L, et al. MicroRNAs: Potential Biomarker in Organ Transplantation. Transpl Immunol 2011.
    133. Lin L, Shen Q, Zhang C, et al. Assessment of the profiling MicroRNA expression of differentiated and dedifferentiated human adult articular chondrocytes. J Orthop Res 2011.
    134. McCarthy JJ. The MyomiR Network in Skeletal Muscle Plasticity. Exerc Sport Sci Rev 2011.
    135. Najafi-Shoushtari SH. MicroRNAs in Cardiometabolic Disease. Curr Atheroscler Rep 2011.
    136. Niemoeller OM, Niyazi M, Corradini S, et al. MicroRNA expression profiles in human cancer cells after ionizing radiation. Radiat Oncol 2011; 6: 29.
    137. Levati L, Pagani E, Romani S, et al. MicroRNA-155 Targets the SKI Gene in Human Melanoma Cell Lines. Pigment Cell Melanoma Res 2011.
    138. Turner DP, Findlay VJ, Moussa O, et al. Mechanisms and functional consequences of PDEF protein expression loss during prostate cancer progression. Prostate 2011.
    139. Zhang J, Liu LH, Zhou Y, et al. Effects of miR-541 on neurite outgrowth during neuronal differentiation. Cell Biochem Funct 2011.
    140. Wang Y, Lee CG. MicroRNA and cancer--focus on apoptosis. J Cell Mol Med 2009; 13: 12-23.
    141. Sonkoly E, Stahle M, Pivarcsi A. MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol 2008; 18: 131-140.
    142. van Rooij E, Olson EN. MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest 2007; 117: 2369-2376.
    143. Sandhu SK, Croce CM, Garzon R. Micro-RNA Expression and Function in Lymphomas. Adv Hematol 2011; 2011: 347137.
    144. Raponi M, Dossey L, Jatkoe T, et al. MicroRNA classifiers for predicting prognosis of squamous cell lung cancer. Cancer Res 2009; 69: 5776-5783.
    145. Chen HC, Chen GH, Chen YH, et al. MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer 2009; 100: 1002-1011.
    146. Chen H, Wang N, Burmeister M, et al. MicroRNA expression changes in lymphoblastoid cell lines in response to lithium treatment. Int J Neuropsychopharmacol 2009: 1-7.
    147. Nikiforova MN, Tseng GC, Steward D, et al. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab 2008; 93: 1600-1608.
    148. Xu W, Li JY. MicroRNA gene expression in malignant lymphoproliferative disorders. Chin Med J (Engl) 2007; 120: 996-999.
    149. Habbe N, Koorstra JB, Mendell JT, et al. MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol Ther 2009; 8: 340-346.
    150. Jung M, Mollenkopf HJ, Grimm C, et al. MicroRNA profiling of clear cell renal cellcancer identifies a robust signature to define renal malignancy. J Cell Mol Med 2009.
    151. Mishra PJ, Merlino G. MicroRNA reexpression as differentiation therapy in cancer. J Clin Invest 2009; 119: 2119-2123.
    152. Roehle A, Hoefig KP, Repsilber D, et al. MicroRNA signatures characterize diffuse large B-cell lymphomas and follicular lymphomas. Br J Haematol 2008; 142: 732-744.
    153. Parmacek MS. MicroRNA-modulated targeting of vascular smooth muscle cells. J Clin Invest 2009; 119: 2526-2528.
    154. Tsitsiou E, Lindsay MA. microRNAs and the immune response. Curr Opin Pharmacol 2009; 9: 514-520.
    155. Garzon R, Croce CM. MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol 2008; 15: 352-358.
    156. Pedersen I, David M. MicroRNAs in the immune response. Cytokine 2008; 43: 391-394.
    157. Chang TC, Mendell JT. microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet 2007; 8: 215-239.
    158. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-297.
    159. Schickel R, Boyerinas B, Park SM, et al. MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 2008; 27: 5959-5974.
    160. Nana-Sinkam SP, Hunter MG, Nuovo GJ, et al. Integrating the MicroRNome into the study of lung disease. Am J Respir Crit Care Med 2009; 179: 4-10.
    161. Williams AE, Moschos SA, Perry MM, et al. Maternally imprinted microRNAs are differentially expressed during mouse and human lung development. Dev Dyn 2007; 236: 572-580.
    162. Jovanovic M, Hengartner MO. miRNAs and apoptosis: RNAs to die for. Oncogene2006; 25: 6176-6187.
    163. Baehrecke EH. miRNAs: micro managers of programmed cell death. Curr Biol 2003; 13: R473-475.
    164.李景怡.类风湿性关节炎CD4~+T细胞相关miRNA的鉴定和功能研究[第三军医大学博士论文]:第三军医大学; 2008.
    165.李琼. MiR-224在肝癌细胞中的表达及其功能分析[第三军医大学硕士论文]:第三军医大学; 2009.
    166. Luo HC, Zhang ZZ, Zhang X, et al. MicroRNA expression signature in gastric cancer. Chin J Can Res 2009; 21: 74-80.
    167. Shi Y, Jin YX. MicroRNA in cell differentiation and development. Sci China C Life Sci 2009; 52: 205-211.
    168.敖绪军. let-7维持Sca-1~+Lewis肺癌干细胞特性的实验研究[第三军医大学博士论文]:第三军医大学; 2008.
    169.钱莘.支气管肺泡干细胞的鉴定、分离机其微RNA表达谱的初步研究[第三军医大学博士论文]:第三军医大学; 2008.
    170. Lawrie CH, Soneji S, Marafioti T, et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer 2007; 121: 1156-1161.
    171. Yamanaka Y, Tagawa H, Takahashi N, et al. Aberrant overexpression of microRNAs activate AKT signaling via downregulation of tumor suppressors in NK-cell lymphoma/leukemia. Blood 2009; 114: 3265-3275.
    172. Eleme K, Taner SB, Onfelt B, et al. Cell surface organization of stress-inducible proteins ULBP and MICA that stimulate human NK cells and T cells via NKG2D. J Exp Med 2004; 199: 1005-1010.
    173. Kohlhaas S, Garden OA, Scudamore C, et al. Cutting edge: The Foxp3 target miR-155 contributes to the development of regulatory T cells. J Immunol 2009; 182:2578-2582.
    174. Eskildsen T, Taipaleenmaki H, Stenvang J, et al. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci U S A 2011.
    175. Iliopoulos D, Kavousanaki M, Ioannou M, et al. The negative co-stimulatory molecule PD-1 modulates the balance between immunity and tolerance via miR-21. Eur J Immunol 2011.
    176. Ceppi M, Pereira PM, Dunand-Sauthier I, et al. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A 2009; 106: 2735-2740.
    177. Unger ML, Hokland M, Basse PH, et al. High dose IL-2-activated murine natural killer (A-NK) cells accumulate glycogen and granules, lose cytotoxicity, and alter target cell interaction in vitro. Scand J Immunol 1997; 45: 623-636.
    178. Ruggiero T, Trabucchi M, De Santa F, et al. LPS induces KH-type splicing regulatory protein-dependent processing of microRNA-155 precursors in macrophages. Faseb J 2009; 23: 2898-2908.
    179.刘真.幽门螺杆菌感染相关microRNAs的筛选、鉴定及功能研究[第三军医大学博士论文]:第三军医大学; 2010.
    180.肖斌.幽门螺杆菌非编码小RNA的筛选、鉴定及miRNAs在幽门螺杆菌感染中负向调控炎症反应的作用研究[第三军医大学博士论文]:第三军医大学; 2009.
    181. Bird L. Immune regulation: MicroRNAs keep microglia quiet. Nat Rev Immunol 2011; 11: 76.
    182. Dang LT, Kondo H, Aoki T, et al. Engineered virus-encoded pre-microRNA (pre-miRNA) induces sequence-specific antiviral response in addition to nonspecific immunity in a fish cell line: convergence of RNAi-related pathways and IFN-related pathways in antiviral response. Antiviral Res 2008; 80: 316-323.
    183. Cameron JE, Fewell C, Yin Q, et al. Epstein-Barr virus growth/latency III program alters cellular microRNA expression. Virology 2008; 382: 257-266.
    184. Zhao Y, Yao Y, Xu H, et al. A functional MicroRNA-155 ortholog encoded by the oncogenic Marek's disease virus. J Virol 2009; 83: 489-492.
    185. McClure LV, Sullivan CS. Kaposi's sarcoma herpes virus taps into a host microRNA regulatory network. Cell Host Microbe 2008; 3: 1-3.
    186. Amin I, Patil BL, Briddon RW, et al. A common set of developmental miRNAs are upregulated in Nicotiana benthamiana by diverse begomoviruses. Virol J 2011; 8: 143.
    187. Jordan SD, Kruger M, Willmes DM, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 2011; 13: 434-446.
    188. Teng G, Papavasiliou FN. Shhh! Silencing by microRNA-155. Philos Trans R Soc Lond B Biol Sci 2009; 364: 631-637.
    189. Jung I, Aguiar RC. MicroRNA-155 expression and outcome in diffuse large B-cell lymphoma. Br J Haematol 2009; 144: 138-140.
    190. Zhang T, Nie K, Tam W. BIC is processed efficiently to microRNA-155 in Burkitt lymphoma cells. Leukemia 2008; 22: 1795-1797.
    191. O'Connell RM, Taganov KD, Boldin MP, et al. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 2007; 104: 1604-1609.
    192. Romania P, Lulli V, Pelosi E, et al. MicroRNA 155 modulates megakaryopoiesis at progenitor and precursor level by targeting Ets-1 and Meis1 transcription factors. Br J Haematol 2008; 143: 570-580.
    193. Worm J, Stenvang J, Petri A, et al. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF. Nucleic Acids Res 2009; 37: 5784-5792.
    194. Tili E, Michaille JJ, Cimino A, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 2007; 179: 5082-5089.
    195. Gottwein E, Mukherjee N, Sachse C, et al. A viral microRNA functions as an orthologue of cellular miR-155. Nature 2007; 450: 1096-1099.
    196.曹学武. miR-155对A549细胞Weel表达调控的研究[第三军医大学博士论文]:第三军医大学; 2008.
    197. Liu L, Chen Q, Lai RS, et al. Elevated expression of mature miR-21 and miR-155 in cancerous gastric tissues from Chinese patients with gastric cancer. J Biomed Res 2010; 24: 187-197.
    198. Chen DF, Gong BD, Xie Q, et al. MicroRNA155 is induced in activated CD(+) T cells of TNBS-induced colitis in mice. World J Gastroenterol 2010; 16: 854-861.
    199. Cheng AM, Byrom MW, Shelton J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucl Acids Res 2005; 33: 1290-1297.
    200. Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006; 103: 2257-2261.
    201. Krichevsky AM, Gabriely G. miR-21: a small multi-faceted RNA. J Cell Mol Med 2009; 13: 39-53.
    202. Yan LX, Huang XF, Shao Q, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 2008; 14: 2348-2360.
    203. Corsten MF, Miranda R, Kasmieh R, et al. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 2007; 67: 8994-9000.
    204. Ting AT, Pimentel-Muinos FX, Seed B. RIP mediates tumor necrosis factor receptor 1activation of NF-kappaB but not Fas/APO-1-initiated apoptosis. Embo J 1996; 15: 6189-6196.
    205. Valoczi A, Hornyik C, Varga N, et al. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 2004; 32: e175.
    206. Torres AG, Fabani MM, Vigorito E, et al. MicroRNA fate upon targeting with anti-miRNA oligonucleotides as revealed by an improved Northern-blot-based method for miRNA detection. RNA 2011.
    207. Schmittgen TD, Lee EJ, Jiang J, et al. Real-time PCR quantification of precursor and mature microRNA. Methods 2008; 44: 31-38.
    208. Liu CG, Calin GA, Meloon B, et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci U S A 2004; 101: 9740-9744.
    209. Wienholds E, Kloosterman WP, Miska E, et al. MicroRNA expression in zebrafish embryonic development. Science 2005; 309: 310-311.
    210. Obernosterer G, Martinez J, Alenius M. Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nat Protoc 2007; 2: 1508-1514.
    211. Kloosterman WP, Wienholds E, de Bruijn E, et al. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods 2006; 3: 27-29.
    212. Silahtaroglu AN, Nolting D, Dyrskjot L, et al. Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nat Protoc 2007; 2: 2520-2528.
    213. Pena JT, Sohn-Lee C, Rouhanifard SH, et al. miRNA in situ hybridization in formaldehyde and EDC-fixed tissues. Nat Methods 2009; 6: 139-141.
    214. Nuovo GJ, Elton TS, Nana-Sinkam P, et al. A methodology for the combined in situanalyses of the precursor and mature forms of microRNAs and correlation with their putative targets. Nat Protoc 2009; 4: 107-115.
    215. Nuovo GJ. In situ detection of microRNAs in paraffin embedded, formalin fixed tissues and the co-localization of their putative targets. Methods 2010; 52: 307-315.
    216. Lu J, Tsourkas A. Imaging individual microRNAs in single mammalian cells in situ. Nucleic Acids Res 2009; 37: e100.
    217. Wang F, Niu G, Chen X, et al. Molecular imaging of microRNAs. Eur J Nucl Med Mol Imaging 2011.
    218. Pfirrmann CWA, Metzdorf A, Zanetti M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 2001; 26: 1873-1878.
    219. Brazma A, Hingamp P, Quackenbush J, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 2001; 29: 365-371.
    220. Chen C, Ridzon DA, Broomer AJ, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005; 33: e179.
    221. Pei Y, Wang X, Zhang X. Predicting the fate of microRNA target genes based on sequence features. J Theor Biol 2009; 261: 17-22.
    222. Xia W, Cao G, Shao N. Progress in miRNA prediction and identification. Sci China C Life Sci 2009; 52: 1123-1130.
    223. Rehmsmeier M, Steffen P, Hochsmann M, et al. Fast and effective prediction of microRNA/target duplexes. RNA 2004; 10: 1507-1517.
    224. Huang J, Feng F, Tamamaki N, et al. Prenatal and postnatal development of GABAergic neurons in the spinal cord revealed by green fluorescence protein expression in the GAD67-GFP knock-in mouse. Neuroembryol Aging 2007; 4: 147-154.
    225. Vermes I, Haanen C, Steffens-Nakken H, et al. A novel assay for apoptosis. Flowcytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 1995; 184: 39-51.
    226. Ademokun A, Turner M. Regulation of B-cell differentiation by microRNAs and RNA-binding proteins. Biochem Soc Trans 2008; 36: 1191-1193.
    227. Boggs RM, Wright ZM, Stickney MJ, et al. MicroRNA expression in canine mammary cancer. Mamm Genome 2008; 19: 561-569.
    228. Anglicheau D, Sharma VK, Ding R, et al. MicroRNA expression profiles predictive of human renal allograft status. Proc Natl Acad Sci U S A 2009; 106: 5330-5335.
    229. Bellon M, Lepelletier Y, Hermine O, et al. Deregulation of microRNA involved in hematopoiesis and the immune response in HTLV-I adult T-cell leukemia. Blood 2009; 113: 4914-4917.
    230. Bruchova H, Yoon D, Agarwal AM, et al. Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp Hematol 2007; 35: 1657-1667.
    231. Yin D, Mufson RA, Wang R, et al. Fas-mediated cell death promoted by opioids. Nature 1999; 397: 218-218.
    232. Streffer J, Schuster M, Zipp F, et al. Soluble CD95 (Fas/APO-1) in Malignant Glioma: (No) Implications for CD95-based Immunotherapy? J Neuro-Oncology 1998; 40: 233-235.
    233. Yagita H, Seino K-i, Kayagaki N, et al. CD95 ligand in graft rejection. Nature 1996; 379: 682-682.
    234. Chervonsky AV, Wang Y, Wong FS, et al. The role of Fas in autoimmune diabetes. Cell 1997; 89: 17-24.
    235. Gupta VA, Hermiston ML, Cassafer G, et al. B cells drive lymphocyte activation and expansion in mice with the CD45 wedge mutation and Fas deficiency. J Exp Med 2008; 205: 2755-2761.
    236. Inui Y, Nishida K, Doita M, et al. Fas-Ligand expression on nucleus pulposus beginsin developing embryo. Spine (Phila Pa 1976) 2004; 29: 2365-2369.
    237. Calame K. MicroRNA-155 function in B Cells. Immunity 2007; 27: 825-827.
    238. Teng G, Hakimpour P, Landgraf P, et al. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 2008; 28: 621-629.
    239. Kong W, Yang H, He L, et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 2008; 28: 6773-6784.
    240. Martinez-Nunez RT, Louafi F, Friedmann PS, et al. MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). J Biol Chem 2009; 284: 16334-16342.
    241. Vigorito E, Perks KL, Abreu-Goodger C, et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 2007; 27: 847-859.
    242. Dorsett Y, McBride KM, Jankovic M, et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 2008; 28: 630-638.
    243. Turner M, Vigorito E. Regulation of B- and T-cell differentiation by a single microRNA. Biochem Soc Trans 2008; 36: 531-533.
    244. Kluiver J, van den Berg A, de Jong D, et al. Regulation of pri-microRNA BIC transcription and processing in Burkitt lymphoma. Oncogene 2007; 26: 3769-3776.
    245. Kluiver J, Poppema S, de Jong D, et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 2005; 207: 243-249.
    246. Faraoni I, Antonetti FR, Cardone J, et al. miR-155 gene: A typical multifunctional microRNA. Biochim Biophys Acta 2009; 1792: 497-505.
    247. Ovcharenko D, Kelnar K, Johnson C, et al. Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. Cancer Res 2007; 67: 10782-10788.
    248. Selbach M, Schwanhausser B, Thierfelder N, et al. Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455: 58-63.
    249. Liang Y, Ridzon D, Wong L, et al. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 2007; 8: 166.
    250. Trout JJ, Buckwalter JA, Moore KC. Ultrastructure of the human intervertebral disc: II. Cells of the nucleus pulposus. Anat Rec 1982; 204: 307 - 314.
    251. Gruber HE, Hanley EN. Recent advances in disc cell biology. Spine (Phila Pa 1976) 2003; 28: 186-193.
    252. Nerlich AG, Weiler C, Zipperer J, et al. Immunolocalization of phagocytic cells in normal and degenerated intervertebral discs. Spine (Phila Pa 1976) 2002; 27: 2484-2490.
    253. Roberts S, Menage J, Eisenstein SM. The cartilage end-plate and intervertebral disc in scoliosis: calcification and other sequelae. J Orthop Res 1993; 11: 747-757.
    254. Wang HQ, Yu XD, Liu ZH, et al. Human nucleus pulposus cell cultures and disc degeneration grading systems: Comment on the article by Le Maitre et al. Arthritis Rheum 2010; 62: 301-302.
    255. Yang F, Leung VYL, Luk KDK, et al. Injury-induced sequential transformation of notochordal nucleus pulposus to chondrogenic and fibrocartilaginous phenotype in the mouse. J Pathol 2009; 218: 113-121.