人脐带来源间充质干细胞生物学特性的研究及其对移植物抗宿主病作用的初步探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间充质干细胞(mesenchymal stem cell,MSC)是具有自我复制和多向分化潜能的一类多能干细胞。目前成人骨髓是MSC的主要来源。骨髓间充质干细胞的获取须行骨髓穿刺术,给供者造成一定痛苦,且骨髓间充质干细胞的增殖及分化潜能随供者年龄的增大而下降,因此,寻找新的MSC来源成为国内外干细胞研究领域的热点。本研究从足月胎儿脐带中分离出MSC,对其生物学特征、免疫学特征及抗急性移植物抗宿主病(acute graft versus host disease, aGVHD)的作用进行系统研究,旨在寻找MSC的新来源。
     本实验第一部分建立从脐带中分离MSC的方法,并与成人骨髓源MSC对比,研究脐带源MSC的生物学特征。结果显示,脐带源MSC的分离成功率达100%;与骨髓源MSC相比,脐带源MSC成纤维细胞集落形成单位(CFU-F)比例、增殖能力和神经细胞诱导分化能力均高于骨髓源MSC,HLA-I和CD106分子表达低于骨髓源MSC(P<0.05)。脐带源MSC形态、大多数分子表型(CD13、CD29、CD44、CD105、CD73、CD166阳性,CD14、CD34、CD38和CD45阴性,CD31阴性)、细胞周期状态(超过80%的细胞处于G_0/G_1期)、脂肪和骨诱导分化能力、细胞因子分泌(表达SCF、TPO、FL、IL-6、M-CSF、LIF、SDF-1和VEGF,不表达IL-3)和长期支持造血的能力与骨髓源MSC相似。
     本实验第二部分研究脐带源MSC的免疫学特征。免疫表型分析显示,脐带源MSC表达HLA-I,不表达HLA-DR,不表达协同刺激分子CD80、CD86和CD40。3H-胸腺嘧啶核苷(3H-Tdr)掺入法检测淋巴细胞增殖结果显示,脐带源MSC不刺激小鼠淋巴细胞增殖,且可显著抑制小鼠混合淋巴细胞反应。
     本实验第三部分通过GVHD小鼠模型初步研究了脐带源MSC对aGVHD的影响。对GVHD鼠生存时间、GVHD靶器官(肝脏、小肠和皮肤)病理改变、淋巴细胞亚群和细胞因子水平的研究结果证明,脐带源MSC静脉输入可显著减轻小鼠半相合移植模型aGVHD的严重程度。其机制可能与增高Th2细胞因子
Mesenchymal stem cells (MSCs) are of great therapeutic potential due to their capacity of self-renewal and multilineage differentiation. Currently, bone marrow (BM) represents the major source of MSCs for cell therapy. However, aspiration of BM involves invasive procedure. Moreover, the frequency and multi-lineage differentiation potential of BM-MSCs decrease significantly with age. Therefore, the search for alternative sources of MSCs is of significant value. We isolated abundant MSCs from the full term umbilical cord (UC). The biological characteristics, the immunological function and the effect on graft-versus-host disease (GVHD) of the UC-MSCs were further determined. The aim of this study is to find the alternative source for BM-MSCs.
     In the first part, a method to isolate abundant MSC from UC was described. The biological characteristics of the UC-MSCs were further determined and compared with BM-MSCs. The results showed that MSCs were successfully isolated from all the 36 UC and 8 BM. Although the mean number of nucleated cells isolated of UC was significantly lower than that of BM (1×10~6 /cm vs. 5.5×10~7/ml) (p=0.0002), no significant differences of the yield of adherent cells were observed (8.6×105/cm vs. 8.4×10~5/ml) (p>0.05). UC-MSCs shared the most of the characteristic of BM-MSCs, including fibroblastic-like morphology, typical immunophenotype, cell cycle status,
引文
1. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-147.
    2. Yuehua J, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41-49.
    3. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 2004; 95: 9-20.
    4. Schwartz RE, Reyes M, Koodie L, et al. Mutipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 2002; 109:1291-1302.
    5. Satake K, Lou J, Lenke LG. Migration of mesenchymal stem cells through cerebrospinal fluid into injured spinal cord tissue. Spine 2004; 29: 1971-1979.
    6. Noort WA, Kruisselbrink AB, In 't Anker PS, et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 2002; 30: 870-878.
    7. Angelopoulou M, Novelli E, Grove JE. Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Exp Hematol 2003; 31: 413-420.
    8. Blanc LK, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439-1441.
    9. Frank MH, Sayegh MH. Immunomodulatory functions of mesenchymal stem cells. Lancet 2004; 363: 1411-1412.
    10. Rao MS, Matton MP. Stem cells and aging: expanding the possibilities. Mech Ageing Dev 2001; 122: 713-734.
    11. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications andbiological characterization. Int J Biochem Cell Biol 2004; 36: 568-84.
    12. Hu Y, Liao LM, Wang QY, et al. Isolation and identification of mesenchymal stem cells from human fetal pancreas. J Lab Clin Med 2003; 141: 342-349.
    13. In’t Anker PS, Noort WA, Scherjon SA, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 2003; 88: 845-852.
    14. Lee OK, Kuo TK, Chen WM, et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004; 103: 1669-1675.
    15. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 2003; 21: 105-110.
    16. Wexler SA, Donaldson C, Denning-Kendall P, et al. Adult bone marrow is a rich source of human mesenchymal 'stem' cells but umbilical cord and mobilized adult blood are not.Br J Haematol 2003; 121: 368-374.
    17. Covas DT, Siufi JL, Silva AR, et al. Isolation and culture of umbilical vein mesenchymal stem cells. Braz J Med Biol Res 2003; 36: 1179-1183.
    18. Wang HS, Hung SC, Peng ST, et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells 2004; 22: 1330-1337.
    19. Rahul S, David L, Dolores B, et al. Human Umbilical Cord Perivascular (HUCPV) Cells: A Source of Mesenchymal Progenitors Stem Cells 2005;23:220–229.
    20. Castro Malaspina H, Gay RE, Resnick G, et al. Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 1980; 56: 289-301.
    21. Taswell C. Limiting dilution assays for the determination of immunocompetent cell frequencies. J Immunol 1981; 126: 1614-1619.
    22. Cheng SL, Yang JW, Rifas L. Differentiation of human bone marrow osteogenic stromal cells in vitro: induce of the osteoblast phenotype by dexamethasone. Endocrinology 1994; 134: 277-286.
    23. Preece A. A manual for histologic technicians. Bostone, little, brown 1972; 259-260.
    24. Lee OK, Kuo TK, Chen WM, et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004; 103: 1669-1675.
    25. Cashman J, Eaves AC, Eavew CJ. Regulated proliferationo f primitive hematopoietic progenitor cells in long-term human marrow cultures. Blood 1985; 66: 1002-1005.
    26. Kemp KC, Hows J, Donaldson C. Bone marrow-derived mesenchymal stem cells. Leuk Lymphoma. 2005; 46: 1531-1544.
    27. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Bioche Cell Biol 2004; 36: 568-584.
    28. Jorgensen C, Djouad F, Apparailly F, et al. Engineering mesenchymal stem cells for immunotherapy. Gene Ther 2002; 10: 928-931.
    29. Pittenger MF, Macky AM, Beck SC, et al. Multiineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-147.
    30. Wang Y, Singh A, Xu P et al. Expansion and osteogenic differentiation of bone marrow-derived mesenchymal stem cells on a vitamin C functionalized polymer. Biomaterials. 2006; 27: 3265-3273.
    31. Long X, Olszewski M, Huang W, et al. Stem Cells Dev. 2005 Feb;14(1):65-9. Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells.
    32. Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 2003; 5: 485-489.
    33. Gothot A, Giet O, Huygen S, et al. Binding and migration across fibronectin and VCAM-1 of cycling hematopoietic progenitor cells. Leuk Lymphoma 2003; 44:1379-1383.
    34. Daniel ADU, Zeni A, Plfonso AZ, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunoogy Letters 2003; 89: 267-270.
    35. Tatebe M, Nakamura R, Kagami H, et al. Differentiation of transplanted mesenchymal stem cells in a large osteochondral defect in rabbit. Cytotherapy 2005; 7:520-30.
    36. Wang Y, Deng Z, Lai X, et al. Differentiation of human bone marrow stromal cells into neural-like cells induced by sodium ferulate in vitro. Cell Mol Immunol 2005; 2:225-229.
    37. Wagner W, Feldmann RE Jr, Seckinger A, et al. The heterogeneity of human mesenchymal stem cell preparations-Evidence from simultaneous analysis of proteomes and transcriptomes. Exp Hematol 2006; 34: 536-548.
    38. Reyes M, Verfaillie CM. Characterization of multipotent adult progenitor cells, asubpopulation of mesenchymal stem cells. Ann N Y Acad Sci USA 2001; 938: 231-233.
    39. Ribatti D. The crucial role of vascular permeability factor/vascular endothelial growth factor in angiogenesis: a historical review. Br J Haematol 2005; 128: 303-309.
    40. Dai W, Hale SL, Martin BJ, et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation 2005; 112: 214-223.
    41. Tsai MS, Hwang SM, Tsai YL, et al. Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol repord 2006; 74: 545-551.
    42. Majumdar MK, Thiede MA, Haynesworth SE, et al. Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res 2000; 9: 841–848.
    43. Ngelopoulou M, Novelli E, Grove JE, et al. Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Exp Hematol 2003; 31: 413-420.
    44. Majumdar MK, Thiede MA, Mosca JD, et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 1998; 176: 57–66.
    45. Zhang Y, Li CD, Jiang XX, et al. Comparison of mesenchymal stem cells from human placenta and bone marrow. Chin Med J (Engl). 2004; 117: 882-887.
    46. Noort WA, Kruisselbrink AB, Anker PS, et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34+ cells in NOD/SCID mice. Exp Hematol 2002; 30: 870-878.
    47. Broudy VC. Stem cell factor and Hematopoiesis. Blood 1997; 90: 1345-1364.
    48. Panzenbock B, Bantunek P, Mapara MY, et al. Growth and differentiation of human stem cell factor/erythroid progenitor cell in vitro. Blood 1998; 92: 3685-368.
    49. Westwood NB, Chumy R, Emmerson A, et al. The in vitro effects of stem cell factor: interleukin-3 and granulocyte-macrophage colony stimulating factor on hematopoitic progenitor stem cells from premature infant. Br J Haemotol 1994; 86: 468-474.
    50. Teshima T, Reddy P, Lowler KP, et al. Flt3 ligand therapy for recipients of allogeneic bone marrow transplants expands host CD8+ a dendritic cells and reduces experimental acute graft-versus-host disease. Blood 2002; 99: 1825-2832.
    51. Maraskovsky E, Daro E, Roux E, et al. In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood 2000; 96: 878-884.
    52. Hirayama Y, Sakamaki S, Mastsunaga T, et al. Concentration of thrombopoietin of bone marrow in normal subjects and in patients with idiopathic thrombocytopenic purpura, aplastic anemia, and essential thrombocythemia correlate with its m RNA expression of bone marrow stromal cells. Blood 1998;92: 46-52.
    53. Shih CC, Hu MC, Hu J, et al. A secreted and LIF-mediated stromal cell-derived activity that promotes ex vivo expansion of human hematopoietic stem cells. Blood 2000; 95: 1957-1966.
    54. Scott CL, Robb L, Papaevangebion B, et al. Reassessment of interations between hematopoietic receptors using common beta-chain and interleukin-3-specific receptors for erythropoietin, granulocyte colony-stimulating factor or stem cell factor. Blood 2000; 96: 1588-1590.
    55. Lazzari L, Lucchi S, Rebulla P, et al. Long-term expansion and maintenance of cord blood hematopoietic stem cells using thrombpoietin, Flt-3 ligand, interleukin(IL)-6, IL-11 in a serum-free culture system. Br J Haematol 2001; 112: 397-404.
    56. Caldwell J, Emerson SG. IL-1a, TNF-a act synergenically to stimulate production of myeloid colony-stimulating factors by cultured human bone marrow stromal cells and cloned stromal cell lines. J Cell Physiol 1997; 159: 221-228.
    57. Fortunel N, Batard P, Hatzfeld A, et al. High proliferative potential-quiescent cells: a working model to study primitive quiescent hematopoietic cells. J Cell Sci 1998; 111: 1867-1875.
    58. Petzer AL, Hogge DE, Landsdorp PM et al. Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in vitro and their expansion in defined medium. Proc Natl Acad Sci U S A. 1996; 93: 1470-1474.
    59. Gan OI, Murdoch B, Larochelle A, et al. Differential maintenance of primitive human SCID-repopulating cells, clonogenic progenitors, and long-term culture-initiating cells after incubation on human bone marrow stromal cells. Blood 1997; 90: 641-650.
    60. Robinson S, Niu T, de Lima M et al. Ex vivo expansion of umbilical cord blood. Cytotherapy 2005; 7: 243-250.
    61. Bennaceur-Griscelli A, Pondarre C, Schiavon V, et al. Stromal cells retard the differentiation of CD34 (+) CD38 (low/neg) human primitive progenitors exposed to cytokines independent of their mitotic history. Blood 2001; 97: 435-441.
    62. Dao MA, Pepper KA, Nolta JA. Long-term cytokine production from engineered primary human stromal cells influences human Hematopoiesis in an in vivo xenograft model. Stem Cells 1997; 78: 110-117.
    63. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 2004; 95: 343-353.
    1. Ryan JM, Barry FP, Murphy JM, et al. Mesenchymal stem cells avoid allogeneic rejection. Inflamm (Lond). 2005; 2: 8-16.
    2. Klyushnenkova E, Mosca JD, Zernetkina V et al. T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci. 2005; 12: 47-57.
    3. Le Blanc K, Tammik L, Sundberg B, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003; 57: 11-20.
    4. Bacigalupo A, Palandri F. Management of acute graft versus host disease (GvHD). Hematol J. 2004; 5: 189-196.
    5. Le Blanc K, Ringden O. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2005; 11: 321-334.
    6. Luescher IF, Vivier E, Layer A, et al. CD8 modulation of T-cell antigen receptor-ligand interactions on living cytotoxic T lymphocytes. Nature, 1995; 373: 353-6.
    7. Umlauf SW, Beverly B, Lantz O, et al. Regulation of interleukin 2 gene expression by CD28 costimulation in mouse T-cell clones: both nuclear and cytoplasmic RNAs are regulated with complex kinetics. Mol Cell Biol 1995; 15: 3197 - 3205.
    8. Chirmule N, McCloskey TW, Hu R, et al. HIV gp120 inhibits T cell activation by interfering with expression of costimulatory molecules CD40 ligand and CD80 (B71). J Immunol 1995; 155: 917 - 924.
    9. Freeman GJ, Gray GS, Gimmi CD, et al. Structure, expression, and T cell costimulatory activity of the murine homologue of the human B lymphocyte activation antigen B7. J. Exp. Med 1991; 174: 625 – 631.
    10. Mauri D, Wyss-Coray T, Gallati H, et al. Antigen-presenting T cells induce thedevelopment of cytotoxic CD4+ T cells: Involvement of the CD80-CD28 adhesion molecules. J Immunol 1995; 155: 118-127.
    11. King CL, Stupi RJ, Craighead N, et al. CD28 activation promotes Th2 subset differentiation by human CD4+ cells. Eur J Immunol 1995; 25: 587-595.
    12. Riha GM, Lin PH, Lumsden AB et al. Review: application of stem cells for vascular tissue engineering. Tissue Eng. 2005; 11: 1535-52.
    13. Klyushnenkova En, Mosca J, McIntosh KR. Human mesenchymal stem cells suppress allogeneic T cell responses in vitro: implications for allogeneic transplantation. Blood 1998; 92:642a.
    14. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferationin vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30:42-48.
    15. Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439-1441.
    16. Djouad F, Bony C, H?upl T, et al. Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Art Res & Ther 2005; 6: 1304-1315.
    17. Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101:3722-3729.
    18. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromalcells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99:3838-3843.
    19. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105:1815-1822.
    20. Djouad F, Plence P, Bony C, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003;102:3837-3844.
    21. Rasmusson I, Ringden O, Sundberg B, et al. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 2003; 76:1208-1213.
    22. Thompson C, Powrie F. Regulatory T cells. Curr Opin Pharmacol 2004; 4:408-414.
    23. K Le Blanc, Tammik L, Sundberg B, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scandi J Immunol 2003; 57: 11-20.
    1. Ryan JM, Barry FP, Murphy JM, et al. Mesenchymal stem cells avoid allogeneic rejection. Inflamm (Lond) 2005; 2: 8-16.
    2. Klyushnenkova E, Mosca JD, Zernetkina V et al. T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 2005; 12: 47-57.
    3. Le Blanc K, Tammik L, Sundberg B, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003; 57: 11-20.
    4. Bacigalupo A, Palandri F. Management of acute graft versus host disease (GvHD). Hematol J 2004; 5: 189-196.
    5. Kenneth RC, Lester K, Thomas RM et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: 1 the roles of minor H antigens and endotoxin. Blood 1996; 8: 3230-3239.
    6. Hill GR, Cooke KR, Teshima T et al. Interleukin-11 promotes T cells polarrization and prevents acute graft-versus-host disease after allogeneic bone marrow transplantation. J Clin Invest 1998; 102: 115-123.
    7. Margalit M, Ilan Y, Ohana M, et al. Adoptive transfer of small number of DX5+ cells alleviates graft-versus-host disease in a murine model of semiallogeneic bone marrow transplantation: a potential role for NKT lymphocytes. Bone marrow transplant 2005; 35: 191-197.
    8. Teshima T, Ferrara JLM. Understanding the alloresponse: new approaches to graft-versus-host disease prevention. Semin Hematol 2002; 39: 15-22.
    9. Antin JH, Ferrara JLM. Cytokine dysregulation in acute graft-versus-host disease. Blood 1992; 80: 2964-2968.
    10. Blazar BR, Korngold R, Vallera DA. Recent advantages in graft-versus-host disease (GVHD) prevention. Immunol Rev 1997; 157:79-109.
    11. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature 1996; 383:787-793.
    12. Johnson BD, Becker EE, Truitt RL. Graft-vs.-host and graft-vs.-leukemia reactions after delayed infusions of donor T-subsets. Biol Blood Marrow Transplant 1999; 5: 123-132.
    13. Soiffer RJ, Alyea EP, Hochberg E,et al. Randomized trial of CD8+ T-cell depletion in the prevention of graft-versus-host disease associated with donor lymphocyte infusion. Biol Blood Marrow Transplant 2002; 8: 625-632.
    14. Riddell SR, Berger C, Murata M, et al. The graft versus leukemia response after allogeneic hematopoietic stem cell transplantation. Blood Rev 2003; 17: 153-162.
    15. Nicholas C, Tao D, Katja K,et al. The liver as a site of T-cell apoptosis: graveyard, or killing field? Immunological reviews 2000; 174: 47-62.
    16. Calne RY. Induction of immunological tolerance by porcine liver allografts. Nature 1969; 223: 472-476.
    17. Kamada N, Davies HFS, Roser B. Reversal of tranplantation immunity by liver grafting. Nature 1981; 292: 840-842.
    18. Kobayashi E, Kamada N, Endosawa S et al. Prevention by liver transplantation of the graft-versus-host reaction and allograft rejection in a rat model of small bowel transplantation. Transplantation 1994; 57: 177-181.
    19. Schitt HJ. Presistence of donor lymphocytes in liver alograft recipients. Transplantation 1993; 56: 1001-1007.
    20. Belz GT, Altrnan JD, Doherty PC. Characteristics of virus-specific CD8+ T cells in the liver during the control and resolution phases of influenza pneumonia. Proc Nad Acad Sci USA 1998: 95: 13812-13817.
    21. Nicholas C, Tao D, Katja K, et al. The liver as a site of T-cell apoptosis: graveyard, or killing field? Immunological reviews 2000; 174: 47-62.
    22. Devine SM, Bartholomew AM, Mahmud N, et al. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemicinfusion.Exp Hematol 2001; 29:244-55.
    23. Mosca J, Hendricks J, Buyaner D, et al. Mesenchymal stem cells as vehicles for gene delivery.Clin Orthop Relat Res.2000;(379 Suppl):S71-90.
    24. Saito T, Kuang JQ, Bittira B, et al. Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann Thorac Surg 2002; 74:19–24.
    25. 侯玲玲,郑敏,王冬梅等。人骨髓间充质干细胞在成年大鼠脑内的迁移及分化。生理学报 2003;55:153-159。
    26. Djouad F, Bony C, H?upl T, et al. Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Art Res & Ther 2005; 6: 1304-1315. .
    1. Kemp KC, Hows J, Donaldson C. Bone marrow-derived mesenchymal stem cells. Leuk Lymphoma 2005; 46:1531-1544.
    2. Le Blanc K, Pittenger M. Mesenchymal stem cells: progress toward promise. Cytotherapy 2005; 7: 36-45.
    3. Hu Y, Liao LM, Wang QY, et al. Isolation and identification of mesenchymal stem cells from human fetal pancreas. J Lab Clin Med 2003; 141: 342-349.
    4. In 't Anker PS, Noort WA, Scherjon SA, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 2003; 88: 845-852.
    5. Lee OK, Kuo TK, Chen WM, et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004; 103: 1669-1675.
    6. Romanov YA, Svintsitskaya VA, Smirnov VN, et al. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 2003; 21: 105-110.
    7. Majumdar MK, Keane-Moore M, Buyaner D, et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. Journal of Biomedical Science 2003; 10: 228–241.
    8. Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 1991; 78:55–62.
    9. Barry F, Boynton R, Murphy M, et al. The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells.Biochemical and Biophysical Research Communications 2001; 289: 519–524.
    10. Barry FP, Murphy JM: Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 2004; 36:568-584.
    11. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284:143-147.
    12. Mackay AM, Beck SC, Murphy JM, et al. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow.Tissue Eng 1998;4: 415-28.
    13. Wang JS, Shum-Tim D, et al. Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages.J Thorac Cardiovasc Surg 2000; 120:999-1005.
    14. Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons.J Neurosci Res 2000;61:364-370.
    15. Kang XQ, Zang WJ, Song TS. Rat bone marrow mesenchymal stem cells differentiate into hepatocytes in vitro. World J Gasstroenterol 2005;11: 3479-3484.
    16. Pawelec G, Rehbein A, Schlotz E, et al. Cytokine modulation of TH1/TH2 phenotype differentiation in directly alloresponsive CD4+ human T cells. Transplantation 1996; 62:1095-1101.
    17. Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol 2003; 3:199-210.
    18. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30:42-48.
    19. Deng W, Han Q, Liao L, et al. Allogeneic bone marrow-derived flk-1+Sca-1- mesenchymal stem cells leads to stable mixed chimerism and donorspecific tolerance. Exp Hematol 2004; 32:861-867.
    20. Potian JA, Aviv H, Ponzio NM, et al. Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J Immunol 2003; 171:3426-3434.
    21. Zhang W, Ge W, Li C, et al.Effects of Mesenchymal Stem Cells on Differentiation, Maturation, and Function of Human Monocyte-Derived Dendritic Cells. Stem Cells Dev 2004; 13:263-271.
    22. Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101:3722-3729.
    23. Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105:4120-4126.
    24. Le Blanc K, Tammik C, Rosendahl K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003; 31:890-896.
    25. Tse WT, Pendleton JD, Beyer WM, et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003; 75:389-397.
    26. Saito T, Kuang JQ, Bittira B, et al. Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann Thorac Surg 2002; 74:19-24.
    27. Koc ON, Day J, Nieder M, et al. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 2002; 30:215-222.
    28. Horwitz EM, Prockop DJ, Gordon PL, et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 2001; 97:1227-1231.
    29. Le Blanc K, Ringden O. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2005; 11:321-334.
    30. Carlin LM, Eleme K, McCann FE, et al. Intercellular transfer and supramolecular organization of human leukocyte antigen C at inhibitory natural killer cell immune synapses. J Exp Med 2001; 194:1507-1517.
    31. Onfelt B, Nedvetzki S, Yanagi K, et al. Cutting edge: Membrane nanotubes connect immune cells. J Immunol 2004; 173:1511-1513.
    32. Vanherberghen B, Andersson K, Carlin LM, et al. Human and murine inhibitory natural killer cell receptors transfer from natural killer cells to target cells. Proc Natl Acad Sci USA 2004; 101:16873-16878.
    33. Luescher IF, Vivier E, Layer A, et al. CD8 modulation of T-cell antigen receptor-ligand interactions on living cytotoxic T lymphocytes. Nature 1995; 373: 353-356.
    34. Umlauf SW, Beverly B, Lantz O, et al. Regulation of interleukin 2 gene expression by CD28 costimulation in mouse T-cell clones: both nuclear and cytoplasmic RNAs are regulated with complex kinetics. Mol Cell Biol 1995; 15: 3197 - 3205.
    35. Chirmule N, McCloskey TW, Hu R, et al. HIV gp120 inhibits T cell activation by interfering with expression of costimulatory molecules CD40 ligand and CD80 (B71). J Immunol 1995; 155: 917 - 924.
    36. Freeman GJ, Gray GS, Gimmi CD, et al. Structure, expression, and T cell costimulatory activity of the murine homologue of the human B lymphocyte activation antigen B7. J. Exp Med 1991; 174: 625 – 631.
    37. Mauri D, Wyss-Coray T, Gallati H, et al. Antigen-presenting T cells induce the development of cytotoxic CD4+ T cells: Involvement of the CD80-CD28 adhesion molecules. J Immunol 1995; 155: 118-127.
    38. King CL, Stupi RJ, Craighead N, et al. CD28 activation promotes Th2 subset differentiation by human CD4+ cells. Eur J Immunol 1995; 25: 587-595.
    39. Kang HS, Habib M, Chan J, et al. A paradoxical role for IFN-gamma in the immune properties of mesenchymal stem cells during viral challenge. Exp Hematol 2005; 33: 796-803.
    40. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003; 31:890-896.
    41. Steinman RM, M Pack and K Inaba. Dendritic cells in the T-cell areas of lymphoid organs. Immunol Rev 1997; 156: 25-37.
    42. Steinman RM, K Inaba, S Turley, P Pierre and I Mellman. Antigen capture, processing, and presentation by dendritic cells: recent cell biological studies. Hum Immunol 1999; 60: 562-567.
    43. Sallusto F and Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 1994; 179: 1109-1118.
    44. Sousa CR, A Sher and P Kaye. The role of dendritic cells in the induction and regulation of immunity to microbial infection. Curr Opin Immunol 1999; 11: 392-399.
    45. Cella M, A Engering, V Pinet, et al. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 1997; 388: 782-787.
    46. Lutz MB, RM Suri, M Niimi, et al. Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur J Immunol 2000; 30: 1813-1822.
    47. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferationin vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30:42-48.
    48. Steinman RM, Nussenzweig MC: Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci USA 2002; 99:351-358.
    49. Zhang W, Ge W, Li C, et al. Effects of Mesenchymal Stem Cells on Differentiation, Maturation, and Function of Human Monocyte-Derived Dendritic Cells. Stem Cells Dev 2004; 13:263-271.
    50. Beyth S, Borovsky Z, Mevorach D, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 2005; 105:2214-2219.
    51. Zeis M, Uharek L, Hartung G, et al. IL-2 Graft-vs-leukemia activity and graft-vs-host disease induced by allogeneic Th1- and Th2-type CD4+ T cells in mice. Hematol J. 2001; 2:136-144.
    52. Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101:3722-3729.
    53. Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991; 9:271-296.
    54. Steinman RM, Inaba K, Turley S, et al. Antigen capture, processing, and presentation by dendritic cells: recent cell biological studies. Hum Immunol 1999; 60:562-567.
    55. Mahon BP, Katrak K, Nomoto A, et al. Poliovirus-specific CD4+ Th1 clones with both cytotoxic and helper activity mediate protective humoral immunity against a lethal poliovirus infection in transgenic mice expressing the human poliovirus receptor. J Exp Med 1995; 181:1285-1292.
    56. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99:3838-3843.
    57. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105:1815-1822.
    58. Mills KH. Regulatory T cells: friend or foe in immunity to infection? Nat Rev Immunol 2004; 4:841-855.
    59. van den Eynde B, Gaugler B, van der Bruggen P, et al. Human tumor antigens recognized by T cells: perspectives for new cancer vaccines. Biochemical society transactions 1995; 23: 81-686.
    60. Masson D, Tschopp J. A family of serine esterases in lytic granules of cytolytic T lymphocytes. Cell 1987, 49:679-685.
    61. Ljunggren HG, Karre K. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol Today 1990; 11:237-244.
    62. Djouad F, Plence P, Bony C, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102:3837-3844.
    63. Rasmusson I, Ringden O, Sundberg B, et al. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 2003; 76:1208-1213.
    64. Glennie S, Soeiro I, Dyson PJ, et al. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005; 105:2821-2827.
    65. Dormady SP, Bashayan O, Dougherty R, et al. Immortalized multipotential mesenchymal cells and the hematopoietic microenvironment. J Hematother Stem Cell Res 2001; 10:125-140.
    66. Zhang Y, Li CD, Jiang XX, et al. Comparison of mesenchymal stem cells from human placenta and bone marrow. Chin Med J (Engl) 2004; 117:882-887.
    67. Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol 1996; 166:585-592.
    68. Silva WAJ, Covas DT, Panepucci RA, et al. The profile of gene expression of human marrow mesenchymal stem cells. Stem Cells 2003; 21:661-669.
    69. Barry FP, Murphy JM, English K, et al. Immunogenicity of adult mesenchymal stem cells: lessons from the fetal allograft. Stem cells and development 2005; 14:252-265.
    70. Le Blanc K, Rasmusson I, Gotherstrom C, et al. Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol 2004; 60:307-315.
    71. Neuss S, Becher E, Woltje M, et al. Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells 2004; 22:405-414.
    72. Kuroiwa T, Kakishita E, Hamano T, et al. Hepatocyte growth factor ameliorates acute graft-versusJournal of Inflammation 2005;2:8 -15.
    73. Taniguchi F, Harada T, Deura I, et al. Hepatocyte growth factor promotes cell proliferation and inhibits progesterone secretion via PKA and MAPK pathways in a human granulosa cell line. Mol Reprod Dev 2004; 68:335-344.
    74. Xin X, Yang S, Ingle G, et al. Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Am J Pathol 2001; 158:1111-1120.
    75. Ono I, Yamashita T, Hida T, et al. Local administration of hepatocyte growth factor gene enhances the regeneration of dermis in acute incisional wounds. J Surg Res 2004; 120:47-55.
    76. Chunmeng S, Tianmin C, Yongping S, et al.Effects of dermal multipotent cell transplantation on skin wound healing. J Surg Res 2004; 121:13-19.
    77. Azuma H, Takahara S, Matsumoto K et al. Hepatocyte growth factor prevents the development of chronic allograft nephropathy in rats. J Am Soc Nephrol 2001; 12:1280-1292.
    78. Rasmusson I, Ringden O, Sundberg B, et al. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp Cell Res 2005; in press.
    79. Asseman C, Powrie F. Interleukin 10 is a growth factor for a population of regulatory T cells. Gut 1998; 42:157-158.
    80. Akasaki Y, Liu G, Chung NH, et al. Induction a CD4+ T regulatory type 1 response by cyclooxygenase- 2-overexpressing glioma. J Immunol 2004; 173:4352-4359.
    81. Colgan SP. Lipid mediators in epithelial cell-cell interactions. Cell Mol Life Sci 2002; 59:754-760.
    82. Weston LE, Geczy AF, Briscoe H. Production of IL-10 by alloreactive sibling donor cells and its influence on the development of acute GVHD. Bone Marrow Transplant. 2006; 37:207-212.
    83. Mitra R, Singh S, Khar A. Antitumour immune responses. Expert Rev Mol Med 2003; 2003:1-22.
    84. Fujiwara K, Higashi T, Nouso K, et al. Decreased expression of B7 costimulatory molecules and major histocompatibility complex class-I in human hepatocellular carcinoma. J Gastroenterol Hepatol 2004; 19:1121-1127.
    85. Jung D, Hilmes C, Knuth A, et al. Gene transfer of the Co-stimulatory molecules B7-1 and B7-2 enhances the immunogenicity of human renal cell carcinoma to a different extent. Scand J Immunol 1999; 50:242-249.
    86. Ninomiya T, Akbar SM, Masumoto T, et al. Dendritic cells with immature phenotype and defective function in the peripheral blood from patients with hepatocellular carcinoma. J Hepatol 1999; 31:323-331.
    87. Rosenberg SA. The development of new immunotherapies for the treatment of cancer using interleukin-2. Ann Surg 1988; 208:121-135.
    88. Nakamura K, Kitani A, Fuss I, et al. TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol 2004; 172:834-842.
    89. Ranges GE, Figari IS, Espevik T et al. Inhibition of cytotoxic T cell development by transforming growth factor beta and reversal by recombinant tumor necrosis factor alpha. J Exp Med 1987; 166:991-998.
    90. van der Pouw Kraan TC, Boeije LC, Snijders A, et al. Regulation of IL-12 production by human monocytes and the influence of prostaglandin E2. Ann N Y Acad Sci 1996, 795:147-157.
    91. Mahon BP, Ryan M, Griffin F, et al. IL-12 is produced by macrophages in response to live or killed Bordetella pertussis and enhances the efficacy of an acellular pertussis vaccine by promoting the induction of Th1 cells. Infect Immun 1996; 64:5295-5301.
    92. Walker PR, Saas P, Dietrich PY et al. Role of Fas ligand (CD95L) in immune escape: the tumor cell strikes back. J Immunol 1997; 158:4521-4524.
    93. O'Connell J, O'Sullivan GC, Collins JK, et al. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med 1996; 184:1075-1082.
    94. Niehans GA, Brunner T, Frizelle SP, et al. Human lung carcinomas express Fas ligand. Cancer Res 1997; 57:1007-1012.
    95. Liu J, Lu XF, Wan L, et al. Suppression of human peripheral blood lymphocyte proliferation by immortalized mesenchymal stem cells derived from bone marrow of Banna Minipig inbredline. Transplant Proc 2004; 36:3272-3275.
    1. Wang J, Shaw JL, Mullen CA. Down-regulation of antihost alloreactivity after bone marrow transplant permits relapse of hematological malignancy. Cancer Res 2002; 62:208-212.
    2. Wilke M, Pool J, Vermeulen C, et al. The hematopoietic system-specific minor histocompatibility antigen HA-1 shows aberrant expression in epithelial cancer cells. J Exp Med 2002; 196: 359-368.
    3. Dolstra H, Fredrix H, Preijers F, et al. Recognition of a B cell leukemia-associated minor histocompatibility antigen by CTL. J Immunol 1997; 158:560-565.
    4. Falkenburg JHF, Marijt WAF, Heemskerk MHM, et al. Minor hiscompatibility antigens as targets of graft-versus-leukemia reactions. Curr Opin Hematol 2002; 9:497-502.
    5. Mori S, El-Baki H, Mullen CA. Analysis of immunodominance among minor histocompatibility antigens in allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplantation 2003; 31: 865-875.
    6. Marijt WA, Heemskerk MH, Kloosterboer FM, et al. Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia Proc Natl Acad Sci USA 2003; 100 : 2742–2747.
    7. Kloosterboer FM, van Luxemburg-Heijs SA, van Soest RA, et al. Direct cloning of leukemia-reactive T cells from patients treated with donor lymphocyte infusion shows a relative dominance of hematopoiesis-restricted minor histocompatibility antigen HA-1 and HA-2 specific T cells. Leukemia 2004; 18:798-808.
    8. Choudhury A, Gajewski JL, Liang JC, et al. Use of leukemic dendritic cells for the generation of antileukemic cellular cytotoxicity against Philadelphiachromosome-positive chronic myelogenous leukemia. Blood 1997; 89:1133-1142.
    9. Mutis T, Verdi R, Schrama E, et al. Feasibility of immunotherapy of relapsed leukemia with ex vivo-generated cytotoxic T lymphocytes specific for hematopoietic system-restricted minor histocompatibility antigens Blood 1999; 93: 2336-2341.
    10. Weber M, Lange C, Gunther W, et al. Minor histocompatibility antigens on canine hemopoietic progenitor cells. J Immunol 2003; 170: 5861-5868.
    11. Dickinson AM, Wang XN, Sviland L, et al. In situ dissection of the graft-versus-host activities of cytotoxic T cells specific for minor histocompatibility antigens.Nat Med 2002; 8:410-414.
    12. Wilke M, Dolstra H, Maas F, et al. Quantification of the HA-1 gene product at the RNA level; relevance for immunotherapy of hematological malignancies. Hematol J 2003; 4: 315-320.
    13. den Haan JM, Meadows LM, Wang W, et al. The minor histocompatibility antigen HA-1: A diallelic gene with a single amino acid polymorphism. Science 1998; 279: 1054.
    14. Arostegui JI, Gallardo D, Rodriguez-Luaces M, et al. Genomic typing of minor histocompatibility antigen HA-1 by reference strand mediated conformation analysis (RSCA). Tissue Antigens 2000; 56:69-76.
    15. Wilke M, Pool J, Goulmy E. Allele specific PCR for the minor histocompatibility antigen HA-2. Tissue Antigens 2002; 59: 304-307.
    16. Mutis T, Ghoreschi K, Schrama E, et al. Efficient induction of minor histocompatibility antigen HA-1-specific cytotoxic T-cells using dendritic cells retrovirally transduced with HA-1-coding cDNA. Bilo Blood marrow transplant 2002; 8: 412-419
    17. Gillespie G, Mutis T, Schrama E, et al. HLA class I-minor histocompatibility antigen tetramers select cytotoxic T cells with high avidity to the natural ligand. Hematol J 2000; 1: 403.
    18. Oosten LE, Blokland E, Van Halteren AG, et al. Artificial antigen presenting constructs efficiently stimulate minor histocompatibility antigen-specific cytotoxic T lymphocytes.Blood 2004; 104:224-226.
    19. Verdijk RM, Mutis T, Wilke M, et al.Exclusive TCRbeta chain usage of ex vivo generated minor Hiscompatibility antigen HA-1 specific cytotoxic T cells: implication for monitoring of immunotherapy of leukemia by TCRBV spectratyping. Hematol J 2002; 3:271-275.
    20. Mutis T, Blokland E, Schrama E, et al. Generation of allo-HLA restricted minor histocompatibility antigen HA-1 specific cytotoxic T cells as tools for treatment of relapsed leukemia following HLA-mismatched stem cell transplantation. Bone Marrow Transplantation 2001(suppl 1 abstr); 27:S1
    21. Heemskerk MH, Hoogeboom M, de Paus RA, et al. Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor hiscompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region. Blood 2003; 102: 3530-3540.
    22. Heemskerk MH, Hoogeboom M, Hagedoorn R, et al. Reprogramming of Virus-specific T Cells into Leukemia-reactive T Cells Using T Cell Receptor Gene Transfer. J Exp Med 2004; 199:885-94.