孕酮调控内皮祖细胞水平促进弥漫性轴索损伤大鼠神经功能修复的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本课题组先期研究已证实提高循环血内皮祖细胞(endothelial progenitor cells, EPCs)水平能改善创伤性颅脑损伤的预后。本实验进一步研究弥漫性轴索损伤(diffuse axonal injury, DAI)的EPCs的变化趋势。结合临床患者和DAI大鼠模型,我们观察了循环血EPCs在DAI的变化规律并尝试通过孕酮(progesterone, PROG)调节DAI大鼠的循环血EPCs水平,以观察孕酮促进DAI大鼠损伤区脑组织的血管生成和神经功能恢复的作用。
     方法:1)选取DAI患者15例和出血性脑外伤(traumatic intracerebral hemorrhage, TIH)患者26例。利用流式细胞仪测定患者伤后1d、4d、7d、14d、21d的循环血EPCs数量,以格拉斯哥预后评分(GOS)为患者伤后6个月的预后评价标准。2)建立Marmarou DAI大鼠模型,选用Wistar雄性大鼠,随机分为假手术组、单纯DAI组、DAI安慰剂组和DAI孕酮治疗组。其中孕酮治疗组于伤后1h立即给予腹腔注射孕酮16mg/kg,随后于伤后6h,24h给予皮下注射相同剂量的孕酮,随后每日一次连续给予5d;安慰剂组在相同的给药时间点给予等量安慰剂(二甲基亚砜,DMSO);假手术组与单纯DAI组均不予任何治疗。应用流式细胞仪测定大鼠伤后3h,6h,24h,3d,7d,14d循环血中的EPCs数量。取损伤脑组织应用免疫荧光进行CD34染色,以观察创伤区脑组织血管新生情况。伤后1d、7d、14d和21d利用改良神经损伤评分法(Modified Neurological Severity Scores, mNSS)连续对四组大鼠进行评分,评定其行为学功能变化。伤后14d开始连续5d以Morris水迷宫(MWM)试验检测各组大鼠定位航行试验的逃避潜伏期和空间搜索试验的目标象限逗留时间百分比及跨越原平台位置次数。第20天记录大鼠脑部穿通纤维到海马齿状回通路的长时程增强(long-term potentiation, LTP),结果以兴奋性突触后电位(excitatory post-synaptic potential, EPSP)斜率与EPSP基线值比较的百分数表示。
     结果:1)DAI患者与前期TBI和同期TIH患者一样,其循环血EPCs水平呈现先升高后降低的变化趋势,但是增加的幅度不如TIH患者明显,且于7d、14d和21d与TIH患者的差异有统计学意义(P<0.05)。Logistic回归分析、线性相关分析以及受试者工作特征曲线(ROC)均发现,EPCs数量与DAI预后相关性不强。2)分别用HE染色和p-淀粉样前体蛋白(β-APP)免疫组织化学染色检查结合伤后24h的MRI,证实成功建立了DAI动物模型。检测单纯DAI组和安慰剂组大鼠的EPCs变化与DAI患者相似,呈现相对平坦的趋势,而同一个时间点的孕酮治疗组的大鼠的EPCs水平明显升高,并于治疗7d后到达高峰(P<0.05),后逐渐下降,但仍然维持在一个较高水平一直持续到伤后14d。孕酮治疗组伤后7d创伤区周围及伤侧海马的CD34+细胞与安慰剂组相比较均不同程度升高,有统计学意义(P<0.05)。mNSS评分结果显示,与安慰剂组比较,孕酮治疗组大鼠伤后7d的行为学功能得到明显改善(P<0.05)。水迷宫检测发现,孕酮治疗组大鼠伤后14d的逃避潜伏期明显少于安慰剂组和单纯DAI组,而目标象限逗留时间百分比和跨越原平台位置次数明显比安慰剂组和单纯DAI组升高(P<0.05)。长时程增强实验显示孕酮治疗组大鼠伤后20d的LTP明显高于安慰剂组和单纯DAI组(P<0.05)。
     结论:DAI患者的循环血EPCs水平在伤后没有明显升高,呈现相对平坦的趋势。我们分析正是由于DAI患者EPCs总体水平持续性偏低,可能是导致临床上DAI患者预后不良的一个重要因素,但具体机制还需要进一步研究。我们在成功建立的DAI大鼠模型上发现了同样的EPCs变化趋势。在给予DAI大鼠孕酮治疗后,结果显示PROG能明显增强DAI大鼠骨髓EPCs的动员。在其后的行为学和神经电生理的结果显示PROG能促进脑创伤区周围及海马区周围的血管新生,改善DAI大鼠行为学功能和学习记忆功能。这一结果验证了我们最初的假设,即通过上调EPCs数量能够改善DAI预后。同时,药物性干预上调EPCs可能成为促进DAI后血管修复与神经再生的新策略。
Objective:
     The previous research by our group has confirmed that circulating endothelial progenitor cells (EPCs) can improve the prognosis of traumatic brain injury (TBI). This study aims to identify correlations between circulating EPCs levels and outcomes in diffuse axonal injury (DAI) patients, then to explore the effects of progesterone on EPCs levels, lesion revascularization and neurological function recovery in rats with DAI.
     Methods:
     1) EPCs levels in15patients with DAI and26cases of traumatic intracerebral hemorrhage (TIH) brain injury were counted by FACS (Fluorescence Activating Cell Sorter) at Id,4d,7d,14d, and21d post-injury, and the patients prognosis were evaluated by Glasgow Outcome Scale (GOS) at6months after discharge.
     2) Male Wistar rats were randomly divided into4groups:sham operation group (SHAM), DAI alone group (DAI), DAI placebo group (placebo) and DAI progesterone treatment group (PROG). DAI rat models were established as Marmarou's descripition. Rats in PROG group recieved16mg/kg progesterone intraperitoneally within1h post-insult, then subcutaneously after6h and24h and a once-daily dose for up to5d. Same amount of dimethyl sulfoxide (DMSO) were administered via same route and at same time points to placebo group. The circulating EPCs levels were enumerated by FACS after3h,6h,24h,3d,7d, and14d. Lesion angiogenesis were identified by immunofluorescence stained for CD34. At1d,7d,14d and21d after injury, changes of motor functions were evaluated by the Modified Neurological Severity Score (mNSS). From the14th day after injury, the Morris water maze (MWM) experiment was performed to assess the spatial learning and memory functions of the four groups. At day20after the-operation, the rats were subjected to long-term potentiation (LTP) recording in hippocampus to measure the percentage of slope and baseline of excitatory post-synaptic potential (EPSP).
     Results:
     1) Circulating EPCs levels in DAI patients showed an initial up-regulation and subsequent reduction. However, these dynamic changes were significantly more pronounced in TIH patients than DAI paitents (P<0.05) at7d,14d and21d post-injury. Regression analysis, linear correlation analysis and receiver operating characteristic curve (ROC) failed to establish significant correlation between the EPCs level and outcomes, while the placebo group and the DAI patients had comparable changes in EPCs levels.
     2) The EPCs level in progesterone-treated rats increased significantly compared to placebo rats (P<0.05), peaked after7days of treatmentand then gradually decreased, but remained higher than the placebo group through14d post-injury. Rats treated with progesterone for7d after injury had significantly increased numbers of CD34+cells in lesion and ipslateral hippocampus (P<0.05). The mNSS indicated significantly improved behavioral function in the progesterone-treated rats at7d post-injury, compared with the placebo group and DAI alone group (P<0.05). Progesterone-treated rats showed significantly less escape latencies, higher target quadrant time staying percentage and the number of times the original platform position was crossed after14d (P<0.05), and higher LTP at20d post-injury, than the placebo group and DAI alone group (P<0.05).
     Conclusion:
     The circulating EPCs levels in the DAI patients did not experience signifincantly fluctuations after injury or correlated with paitents outcome. And same changes were found in DAI rat model. Progesterone administration significantly enhanced mobilization of EPCs, promoted angiogenesis in lesion and hippocampus and thus improved behavioral function and learning and memory abilities. Therapies targeting to increase EPCs levels may provide a new efficient strategy for promoting vascular repair and nerve regeneration in DAI patients.
引文
[1]Thurman DJ, Alverson C, Dunn KA, et al. Traumatic brain injury in the United States:A public health perspective [J]. J Head Trauma Rehabil,1999,14 (6): 602-615.
    [2]杨树源.孕酮对颅脑创伤后的脑保护作用[J].中国现代神经疾病杂志,2010,10(6):671-673.
    [3]Stein DG. Progesterone in the treatment of acute traumatic brain injury:a clinical perspective and update [J]. Neuroscience,2011,191:101-106.
    [4]Stein DG. Brain damage, sex hormones and recovery:a new role for progesterone and estrogen? [J]. Trends Neurosci,2001,24 (7):386-391.
    [5]Jones KJ. Steroid hormones and neurotrophism:relationship to nerve injury [J]. Metab Brain Dis,1988,3 (1):1-18.
    [6]Groswasser Z, Cohen M, Keren O. Female TBI patients recover better than males [J]. Brain Inj,1998,12 (9):805-808.
    [7]Alkayed NJ, Murphy SJ, Traystman RJ, et al. Neuroprotective effects of female gonadal steroids in reproductively senescent female rats [J]. Stroke,2000,31 (1): 161-168.
    [8]Roof RL, Duvdevani R, Stein DG. Gender influences outcome of brain injury: progesterone plays a protective role [J]. Brain Res,1993,607 (1-2):333-336.
    [9]Stein DG. Gender, progesterone and the early stages of brain injury [J]. Restor Neurol Neurosci,1995,8 (1):105.
    [10]Brinton RD, Thompson RF, Foy MR, et al. Progesterone receptors:form and function in brain [J]. Front Neuroendocrinol,2008,29 (2):313-339.
    [11]Garcia-Segura LM, Melcangi RC. Steroids and glial cell function [J]. Glia,2006, 54 (6):485-498.
    [12]Schumacher M, Guennoun R, Stein DG, et al. Progesterone:therapeutic opportunities for neuroprotection and myelin repair [J]. Pharmacol Ther,2007, 116(1):77-106.
    [13]Roof RL, Duvdevani R, Stein DG. Progesterone treatment attenuates brain edema following contusion injury in male and female rats [J]. Restor Neurol Neurosci,1992,4 (6):425-427.
    [14]Garcia-Estrada J, Del Rio JA, Luquin S, et al. Gonadal hormones down-regulate reactive gliosis and astrocyte proliferation after a penetrating brain injury [J]. Brain Res,1993,628 (1-2):271-278.
    [15]Roof RL, Duvdevani R, Braswell L, et al. Progesterone facilitates cognitive recovery and reduces secondary neuronal loss caused by cortical contusion injury in male rats [J]. Exp Neurol,1994,129 (1):64-69.
    [16]Nara NXiong Y, Mahmood A, Chopp M. Angiogenesis, neurogenesis and brain recovery of function following injury [J]. Curr Opin Investing Drugs,2010, 11(3):298-308.
    [17]Liu L, Liu H, Jiao J, et al. Changes in circulating human endothelial progenitor cells after brain injury [J]. J Neurotrauma,2007,24(6):936-943.
    [18]Parr AM, Kulbatski I, Zahir T, et al. Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury [J]. Neuroscience,2008,155(3):760-770.
    [19]Xue S, Zhang HT, Zhang P, et al. Functional endothelial progenitor cells derived from adipose tissue show beneficial effect on cell therapy of traumatic brain injury [J]. Neurosci Lett,2010,473(3):186-191.
    [20]Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis [J]. Science,1997,275:964-967.
    [21]Bahlmann FH, De Groot K, Spandau JM, et al. Erythropoietin regulates endothelial progenitor cells [J]. Blood,2004,103:921-926.
    [22]Glod J, Kobiler D, Noel M, et al. Monocytes form a vascular barrier and participate in vessel repair after brain injury [J]. Blood,2006,107:940-946.
    [23]Guo X, Liu L, Zhang M, Angela B, Zhang J. Correlation of CD34+cells with Tissue Angiogenesis after Traumatic Brain Injury in a Rat Model [J]. J Neurotrauma,2009,26(8):1337-1344.
    [24]Li Z, Wang B, Kan Z, et al. Progesterone Increases Circulating Endothelial Progenitor Cells and Induces Neural Regeneration after Traumatic Brain Injury in Aged Rats [J]. J Neurotrauma,2012,29:343.
    [25]Martin Smith. Diffuse axonal injury in adults [J]. Trauma,2003,5(10):227-234.
    [26]A Vik, KA Kvistad. Diffuse axonal injury in traumatic brain injury [J]. Trauma, 2006,126(22):2940-2944.
    [27]惠国桢,吴思荣.弥漫性脑损伤的研究与治疗[J].中华创伤杂志,2004,20: 323-324.
    [28]贺晓生,章翔,易声禹.弥漫性轴索损伤[J].中华神经外科杂志,1999,15(1):58-60.
    [29]Strich SJ. Diffuse degeneration of the cerebral white matter in severe dementia following head injury [J]. J Neural Neurosurg Psychiatry,1956,19:163-174.
    [30]Adams JH, Graham DI, Murray LS, et al. Diffuse axonal injury due to nonmissile head injury in humans:an anlysis of 45 cases [J]. Ann Neural,1982, 12(6):557-563.
    [31]Hukkelhoven CW, Steyerberg EW, Habbema JD, et al. Predicting outcome after traumatic brain injury:development and validation of a prognostic score based on admission characteristics [J]. J neurotrauma,2005,22(10):1025-1039.
    [32]Levi L, Guilburd JN, Linn S, et al. The association between skull fracture, intracranial pathology and outcome in pediatric head injury [J]. Br J Neurosurg, 1991,5(6):617-625.
    [33]Gentry LR, Godersky JC, Thompson B. MR imaging of head trauma:review of the distribution and radiopathologic features of traumatic lesions [J]. AJR Am J Roentgenol,1988,150(3):663-672.
    [34]赵锋,赵永生,曲艳,等.脑弥漫性轴索损伤的MRI诊断[J].中国医学影像技术,2000,16(11):947-948.
    [35]郭会利,张敏,李树新,等.脑弥漫性轴索损伤的MRI诊断价值[J].临床放射学杂志,2003,22(4):270-273.
    [36]庄伯蓁,林清池,杨天和,等.脑弥漫性轴索损伤的MRI特征[J].临床放射学杂志,1997,16(5):265-267.
    [37]Trop S, Tremblay ML, Bourdeau A. Modulation of bone marrow-derived endothelial progenitor cell activity by protein tyrosine phosphatases [J]. Trends Cardiovasc Med,2008,18:180-186.
    [38]Kaplan RN, Psaila B, Lyden D. Niche-to-niche migration of bone-marrow-derived cells [J]. Trends Mol Med,2007,13:72-81.
    [39]Gill M, Dias S, Hattori K, et al. Vascular trauma induces rapid but transient mobilization of vegfr2(+)ac133(+) endothelial precursor cells [J]. Circ Res,2001, 88:167-174.
    [40]Lee DY, Cho TJ, Kim JA, et al. Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis [J]. Bone,2008,42:932-941.
    [41]Cignarella A, Fadini GP. Enhancing endothelial progenitor cell function through selective estrogen receptor modulation:A potential approach to cardiovascular risk reduction [J]. Cardiovasc Hematol Agents Med Chem,2010,8:147-155.
    [42]Dei Cas A, Spigoni V, Franzini L, et al. Lower endothelial progenitor cell number, family history of cardiovascular disease and reduced HDL-cholesterol levels are associated with shorter leukocyte telomere length in healthy young adults [J]. Nutr Metab Cardiovasc Dis,2011 [Epub].
    [43]Griese DP, Ehsan A, Melo LG, et al. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: Implications for cell-based vascular therapy [J]. Circulation,2003,108:2710-2715.
    [44]Voelkel NF, Cool C. Pathology of pulmonary hypertension [J]. Cardiol Clin, 2004,22:343-351, v
    [45]Zhao YD, Courtman DW, Deng Y, et al. Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells:Efficacy of combined cell and enos gene therapy in established disease [J]. Circ Res,2005,96:442-450.
    [46]Churdchomjan W, Kheolamai P, Manochantr S, et al. Comparison of endothelial progenitor cell function in type 2 diabetes with good and poor glycemic control [J]. BMC Endocr Disord,2010,10:5.
    [47]Sobrino T, Hurtado O, Moro MA, et al. The increase of circulating endothelial progenitor cells after acute ischemic stroke is associated with good outcome [J]. Stroke,2007,38:2759-2764.
    [48]Nakamura K, Tsurushima H, Marushima A, et al. A subpopulation of endothelial progenitor cells with low aldehyde dehydrogenase activity attenuates acute ischemic brain injury in rats [J]. Biochem Biophys Res Commun,2012,418(1): 87-92.
    [49]Gong D, Zhang S, Liu L, et al. Dynamic changes of vascular endothelial growth factor and angiopoietin-1 in association with circulating endothelial progenitor cells after severe traumatic brain injury [J]. J Trauma,2011,70:1480-1484.
    [50]Liu L, Wei H, Chen F, et al. Endothelial progenitor cells correlate with clinical outcome of traumatic brain injury [J]. Crit Care Med,2011,39:1760-1765.
    [51]Li S, Wei M, Zhou Z, et al. SDF-1 alpha induces angiogenesis after traumatic brain injury [J]. Brain Res,2012,1444:76-86.
    [52]Cremer OL, Moons KG, van Dijk GW, et al. Prognosis following severe head injury:Development and validation of a model for prediction of death, disability, and functional recovery [J]. J Trauma,2006,61(6):1481-1491.
    [53]Pang BC, Kuralmani V, Joshi R, et al. Hybrid outcome prediction model for severe traumatic brain injury [J]. J neurotrauma,2007,24(1):136-146.
    [54]贾叶华,陈心,熊建华,张建宁.创伤性脑损伤患者血小板、白细胞的动态变化及临床意义[J].中华创伤杂志,2009,25(8):725-728.
    [55]Giulian D, Chen J, Ingeman JE, et al. The role of mononuclear phagocytes in would healing after traumatic injury to adult traumatic mammaliam brain [J]. J Neurosci,1989,9(12):4416-4429.
    [56]Hartl R, Medary MB, Ruge M, et al. Early white blood cell dynamics after traumatic brain injury:effects on the cerebral microcirculation [J]. J Cereb Blood FlowMetab,1997,17(11):1210-1220.
    [57]Kriz J. Inflammation in ischemic brain injury:timing is important [J]. Crit Rev Neurobiol,2006,18(1-2):145-157.
    [58]Affonseca CA, Carvalho LF, Guerra SD, et al. Coagulation disorder in children and adolescents with moderate to severe traumatic brain injury [J]. J Pediatr (Rio J),2007,83(3):274-282.
    [59]Harhangi BS, Kompanje EJ, Leebeek FW, et al. Coagulation disorders after traumatic brain injury [J]. Acta Neurocchir (Wien),2008,150(2):165-175.
    [60]Sanchez CM, Suarez MA, Nebra A, et al. Early activation of coagulation and fibrinolysis in traumatic brain injury and spontaneous intracerebral hemorrhage: a comparative study [J]. Neurologia,2004,19(2):44-52.
    [61]Marmarou A, Foda MA, van den Brink W, et al. A new model of diffuse brain injury in rats. Part I:Pathophysiology and biomechanics [J]. J Neurosurg,1994, 80(2):291-300.
    [62]Foda MA, Marmarou A. A new model of diffuse brain injury in rats. Part II: Morphological characterization [J]. J Neurosurg,1994,80(2):301-313.
    [63]Vorhees CV, Williams MT. Morris water maze:procedures for assessing spatial and related forms of learning and memory [J]. Nat Protoc,2006,1:848-858.
    [64]Xiong Y, Mahmood A, Meng Y, et al. Delayed administration of erythropoietin reducing hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome following traumatic brain injury in rats: comparison of treatment with single and triple dose [J]. J Neurosurg,2010, 113(3):598-608.
    [65]Su ZJ, Han DD, Sun B, et al. Heat Stress Preconditioning Improves Cognitive Outcome after Diffuse Axonal Injury in Rats [J]. J Neurotrauma,2009,26: 1695-1706.
    [66]苏章杰,韩大东,张涛,等.中药回神颗粒对弥漫性轴索损伤大鼠学习记忆功能的影响[J].中华医学杂志,2008,88(42):3003-3007.
    [67]Koizumi H, Povlishock JT. Posttraumatic hypothermia in the treatment of axonal damage in animal model of traumatic axonal injury [J]. J Neurosurg,1998,89: 303-309.
    [68]Reichard RR, Smith C, Graham DI. The significance of beta-APP immunoreactivity in forensic practice [J]. Neuropathol Appl Neurobiol,2005, 31(3):304-313.
    [69]Hoshino S, Kobayashi S, Furubawa T, et al. Multiple immunostaining methods to detect traumatic axonal injury in the rat fluid-percussion brain injury model [J]. Neurol Med Chir,2003,43(4):165-173.
    [70]Leclercq PD, Stephenson MS, Murray LS, et al. Simple morphonetry of axonal swellings cannot be used in isolation for dating lesions after traumatic brain injury [J]. J Neurotrauma,2002,19(10):1183-1192.
    [71]Zhu JL, Zhu SH, Ren L. Expression of beta-amyloid precursor protein in diffuse axonal injury of rats [J]. Fa Yi Xue Za Zhi,2005,21(3):165-168.
    [72]Gill M, Dias S, Hattori K, et al. Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells [J]. Circ Res, 2001,88:167-174.
    [73]Massa M, Rosti V, Ferrario M, et al. Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction [J]. Blood,2005,105:199-206.
    [74]Wojakowski W, Tendera M, Zebzda A, et al. Mobilization of CD34(+), CD117(+), CXCR4(+), c-met(+) stem cells is correlated with left ventricular ejection fraction and plasma NT-proBNP levels in patients with acute myocardial infarction [J]. Eur Heart J,2006,27:283-289.
    [75]Laing AJ, Dillon JP, Condon ET, et al. Mobilization of endothelial precursor cells:systemic vascular response to musculoskeletal trauma [J]. J Orthop Res, 2007,25:44-50.
    [76]George J, Goldstein E, Abashidze A, et al. Erythropoietin promotes endothelial progenitor cell proliferative and adhesive properties in a PI 3-kinase-dependent manner [J]. Cardiovasc Res,2005,68:299-306.
    [77]Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells [J]. Embo J,1999,18:3964-3972.
    [78]Werner N, Priller J, Laufs U, et al. Bone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation:effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition [J]. Arterioscler Thromb Vasc Biol,2002,22:1567-1572.
    [79]Xu Y, Tian Y, Wei HJ, et al. Erythropoietin increases circulating endothelial progenitor cells and reduces the formation and progression of cerebral aneurysm in rats [J]. Neuroscience,2011,181:292-299.
    [80]Takahashi T, Kalka C, Masuda H, et al. Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization [J]. Nat Med,1999,5:434-438.
    [81]Strehlow K, Werner N, Berweiler J, et al. Estrogen increases bone marrow-derived endothelial progenitor cell production and diminishes neointima formation [J]. Circulation,2003,107:3059-3065.
    [82]Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand [J]. Cell,2002,109:625-637.
    [83]Aicher A, Heeschen C, Mildner-Rihm C, et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells [J]. Nat Med,2003, 9:1370-1376.
    [84]Heissig B, Werb Z, Rafii S, et al. Role of c-kit/kit ligand signaling in regulating vasculogenesis [J]. Thromb Haemost,2003,90:570-576.
    [85]Aicher A, Zeiher AM, Dimmeler S. Mobilizing endothelial progenitor cells [J]. Hypertension,2005,45:321-325.
    [86]Rafii S, Avecilla S, Shmelkov S, et al. Angiogenic factors reconstitute hematopoiesis by recruiting stem cells from bone marrow microenvironment [J]. AnnN Y Acad Sci,2003,996:49-60.
    [87]Nakamura Y, Tajima F, Ishiga K, et al. Soluble c-kit receptor mobilizes hematopoietic stem cells to peripheral blood in mice [J]. Exp Hematol,2004,32: 390-396.
    [88]Duan H, Cheng L, Sun X, et al. Lfa-1 and vla-4 involved in human high proliferative potential-endothelial progenitor cells homing to ischemic tissue [J]. Thromb Haemost,2006,96:807-815.
    [89]Carmona G, Chavakis E, Koehl U, et al. Activation of epac stimulates integrin-dependent homing of progenitor cells [J]. Blood,2008,111:2640-2646.
    [90]Shen L, Gao Y, Qian J, et al. A novel mechanism for endothelial progenitor cells homing:The SDF-1/CXCR4-rac pathway may regulate endothelial progenitor cells homing through cellular polarization [J]. Med Hypotheses,2011,76:256-258.
    [91]Matsubara Y, Matsubara K. Estrogen and progesterone play pivotal roles in endothelial progenitor cell proliferation [J]. Reprod Biol Endocrinol,2012,10:2.
    [92]Dang J, Mitkari B, Kipp M, et al. Gonadal steroids prevent cell damage and stimulate behavioral recovery after transient middle cerebral artery occlusion in male and female rats [J]. Brain, Behavior, and Immunity,2011,25:715.
    [93]Wu J, Richer J, Horwitz KB, et al. Progestin-dependent induction of vascular endothelial growth factor in human breast cancer cells:preferential regulation by progesterone receptor B [J]. Cancer Res,2004,64:2238.
    [94]Thurston G, Kitajewski J. VEGF and Delta-Notch:interacting signalling pathways in tumour angiogenesis [J]. Br J Cancer.2008,99:120.
    [95]Singh M. Mechanisms of progesterone-induced neuroprotection [J]Ann N Y Acad Sri,2005,1052:145-151.
    [96]Bimonte-Nelson HA, Singleton RS, Williams BJ, et al. Ovarian hormones and cognition in the aged female rat:II. progesterone supplementation reverses the cognitive enhancing effects of ovariectomy [J]. Behav Neurosci,2004,118(4): 707-714.
    [97]Resnick SM, Maki PM, Rapp SR, et al. Effects of combination estrogen plus progestin hormone treatment on cognition and affect [J]. J Clin Endocrinol Metab,2006,91(5):1802-1810.
    [98]Lynch MA. Long-term potentiation and memory [J]. Physiol Rev,2004,84:87-136.
    [99]Buki A, Povlishock JT. All roads lead to disconnection?-Traumatic axonal injury revisited [J]. Acta Neurochir (Wien),2006,148:181-193.
    [100]D'Hooge R, De Deyn PP. Application of the Morris water maze in the study of learning and memory [J]. Brain Res Brain Res Rev,2001,36:60-90.
    [101]Bingman VP, Sharp PE. Neuronal implementation of hippocampal-mediated spatial behavior:a comparative evolutionary perspective [J]. Behav Cogn Neurosci Rev,2006,5:80-91.
    [102]Gibson CL, Gray LJ, Bath PM, et al. Progesterone for the treatment of experimental brain injury; a systematic review [J]. Brain,2008,131(Pt 2):318-328.
    [103]Jones KJ. Steroid hormones and neurotrophism:relationship to nerve injury [J]. Metab Brain Dis,1988,3 (1):1-18.
    [104]Lisman J. Long-term Potentiation:outstanding questions and attempted synthesis [J]. Philos Trans R Soc Lond B Biol Sci,2003,358:829-842.
    [105]Miyamoto E. Molecular mechanism of neuronal plasticity:induction and maintenance of long-term potentiation in the hippocampus [J]. J Pharmacol Sci, 2006,100:433-442.
    [106]Stein DG. The case for progesterone [J]. Ann N Y Acad Sci,2005,1052:152-169.
    [107]Sayeed I, Parvez S, Wali B, et al. Direct inhibition of the mitochondrial permeability transition pore:a possible mechanism for better neuroprotective effects of allopregnanolone over progesterone [J]. Brain Res,2009,1263:165-173.
    [108]Shen Q, Goderie SK, Jin L, et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells [J]. Science,2004,304(5675):1338-1340.
    [109]Li Q, Ford MC, Lavik EB, et al. Modeling the neurovascular niche:VEGF-and BDNF-mediated cross-talk between neural stem cells and endothelial cells:an in vitro study [J]. J Neurosci Res,2006,84(8):1656-1668.
    [110]Bao X, Feng M, Wei J, et al. Transplantation of Flk-1+ human bone marrow-derived mesenchymal stem cells promotes angiogenesis and neurogenesis after cerebral ischemia in rats [J]. Eur J Neurosci,2011,34(1):87-98.
    [111]Taguchi A, Soma T, Tanaka H, et al. Administration of CD34+cells after stroke enhances neurogenesis via angiogenesis in a mouse model [J]. J Clin Invest,2004,114:330-338.
    [112]Gentleman SM, Greenberg BD, Savage MJ, et al. A beta 42 is the predominant form of amyloid beta-protein in the brains of short-term survivors of head injury [J]. Neuroreport,1997,8(6):1519-1522.
    [113]Morris, R. G. M. Spatial Localization Does Not Require the Presence of Local Cues [J]. Learning and Motivation,1981,12(2):239-260.
    [114]Lomo T. The discovery of long-term potentiation [J]. Philos Trans R Soc Lond B Biol Sci,2003,358(1432):617-620.
    [115]Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol,1973,232(2):331-356.
    [1]Thurman DJ, Alverson C, Dunn KA, et al. Traumatic brain injury in the United States:A public health perspective[J]. J Head Trauma Rehabil,1999, 14 (6):602-615.
    [2]杨树源.孕酮对颅脑创伤后的脑保护作用[J].中国现代神经疾病杂志,2010,10(6):671-673.
    [3]Stein DG. Progesterone in the treatment of acute traumatic brain injury:a clinical perspective and update[J]. Neuroscience,2011,191:101-106.
    [4]Feeser VR, Loria RM. Modulation of traumatic brain injury using progesterone and the role of glial cells on its neuroprotective actions[J]. J Neuroimmunol,2011,237 (1-2):4-12.
    [5]Brinton RD, Thompson RF, Foy MR, et al. Progesterone receptors:form and function in brain[J]. Front Neuroendocrinol,2008,29 (2):313-339.
    [6]Garcia-Segura LM, Melcangi RC. Steroids and glial cell function[J]. Glia, 2006,54 (6):485-498.
    [7]Schumacher M, Guennoun R, Stein DG, et al. Progesterone:therapeutic opportunities for neuroprotection and myelin repair [J]. Pharmacol Ther,2007, 116(1):77-106.
    [8]Roof RL, Duvdevani R, Stein DG Progesterone treatment attenuates brain edema following contusion injury in male and female rats[J]. Restor Neurol Neurosci,1992,4 (6):425-427.
    [9]Garcia-Estrada J, Del Rio JA, Luquin S, et al. Gonadal hormones down-regulate reactive gliosis and astrocyte proliferation after a penetrating brain injury[J]. Brain Res,1993,628 (1-2):271-278.
    [10]Roof RL, Duvdevani R, Stein DG Gender influences outcome of brain injury: progesterone plays a protective role[J]. Brain Res,1993,607 (1-2):333-336.
    [11]Roof RL, Duvdevani R, Braswell L, et al. Progesterone facilitates cognitive recovery and reduces secondary neuronal loss caused by cortical contusion injury in male rats[J]. Exp Neurol,1994,129 (1):64-69.
    [12]Hughes GC. Progesterone and autoimmune disease[J]. Autoimmun Rev,2011.
    [13]Murphy SJ, Littleton-Kearney MT, Hum PD. Progesterone administration during reperfusion, but not preischemia alone, reduces injury in ovariectomized rats[J]. J Cereb Blood Flow Metab,2002,22 (10):1181-1188.
    [14]Ishrat T, Sayeed I, Atif F, et al. Progesterone and allopregnanolone attenuate blood-brain barrier dysfunction following permanent focal ischemia by regulating the expression of matrix metalloproteinases[J]. Exp Neurol,2010, 226(1):183-190.
    [15]Stein DG Brain damage, sex hormones and recovery:a new role for progesterone and estrogen?[J]. Trends Neurosci,2001,24 (7):386-391.
    [16]Jones KJ. Steroid hormones and neurotrophism:relationship to nerve injury[J]. Metab Brain Dis,1988,3 (1):1-18.
    [17]Groswasser Z, Cohen M, Keren O. Female TBI patients recover better than males[J]. Brain Inj,1998,12 (9):805-808.
    [18]Alkayed NJ, Murphy SJ, Traystman RJ, et al. Neuroprotective effects of female gonadal steroids in reproductively senescent female rats[J]. Stroke, 2000,31(1):161-168.
    [19]Stein DG Gender, progesterone and the early stages of brain injury[J]. Restor Neurol Neurosci,1995,8 (1):105.
    [20]Wright DW, Bauer ME, Hoffman SW, et al. Serum progesterone levels correlate with decreased cerebral edema after traumatic brain injury in male rats[J]. J Neurotrauma,2001,18 (9):901-909.
    [21]De Nicola AF, Labombarda F, Deniselle MC, et al. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration[J]. Front Neuroendocrinol,2009,30 (2):173-187.
    [22]O'Connor CA, Cernak I, Vink R. Both estrogen and progesterone attenuate edema formation following diffuse traumatic brain injury in rats[J]. Brain Res, 2005,1062 (1-2):171-174.
    [23]Asbury ET, Fritts ME, Horton JE, et al. Progesterone facilitates the acquisition of avoidance learning and protects against subcortical neuronal death following prefirontal cortex ablation in the rat[J]. Behav Brain Res,1998,97 (1-2):99-106.
    [24]Garcia-Estrada J, Luquin S, Fernandez AM, et al. Dehydroepiandrosterone, pregnenolone and sex steroids down-regulate reactive astroglia in the male rat brain after a penetrating brain injury[J]. Int J Dev Neurosci,1999,17 (2):145-151.
    [25]Vink R, Van Den Heuvel C. Recent advances in the development of multifactorial therapies for the treatment of traumatic brain injury[J]. Expert Opin Investig Drugs,2004,13 (10):1263-1274.
    [26]Elovic E. Pharmacological therapeutics in nutritional managemen[J]. J Head Trauma Rehabil,2000,15 (3):962-964.
    [27]di Michele F, Lekieffre D, Pasini A, et al. Increased neurosteroids synthesis after brain and spinal cord injury in rats[J]. Neurosci Lett,2000,284 (1-2):65-68.
    [28]Keshavarzi Z, Hadad MK, Zahedi MJ, et al. The Effects of Female Sex Steroids on Gastric Secretory Responses of Rat Following Traumatic Brain Injury[J]. Sciences-New York,2011,14 (3):231-239.
    [29]Grossman KJ, Stein DG. Does endogenous progesterone promote recovery of chronic sensorimotor deficits following contusion to the forelimb representation of the sensorimotor cortex?[J]. Behav Brain Res,2000,116 (2): 141-148.
    [30]Inano H, Onoda M, Suzuki K, et al. Inhibitory effects of WR-2721 and cysteamine on tumor initiation in mammary glands of pregnant rats by radiation[J]. Radiat Res,2000,153 (1):68-74.
    [31]Murphy SJ, Traystman RJ, Hum PD, et al. Progesterone exacerbates striatal stroke injury in progesterone-deficient female animals[J]. Stroke,2000,31 (5): 1173-1178.
    [32]Roof RL, Hall ED. Gender differences in acute CNS trauma and stroke: neuroprotective effects of estrogen and progesterone[J]. J Neurotrauma,2000, 17 (5):367-388.
    [33]Schumacher M, Akwa Y, Guennoun R, et al. Steroid synthesis and metabolism in the nervous system:trophic and protective effects[J]. J Neurocytol,2000, 29 (5-6):307-326.
    [34]Wright DW, Kellermann AL, Hertzberg VS, et al. ProTECT:a randomized clinical trial of progesterone for acute traumatic brain injury[J]. Ann Emerg Med,2007,49 (4):391-402,402 e391-392.
    [35]Stein DG, Sayeed I. Is progesterone worth consideration as a treatment for brain injury?[J]. AJR Am J Roentgenol,2010,194 (1):20-22.
    [36]Stein DG.The case for progesterone[J]. Ann N Y Acad Sci,2005,1052:152-169.
    [37]Sandifer JP, Jones AE. Is Progesterone Therapy Beneficial for Acute Traumatic Brain Injury?[J]. Ann Emerg Med,2011.
    [38]Xiao G, Wei J, Yan W, et al. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury:a randomized controlled trial[J]. Crit Care,2008,12 (2):R61.
    [39]Stein DG. Progesterone exerts neuroprotective effects after brain injury[J]. Brain Res Rev,2008,57 (2):386-397.
    [40]Stein DG, Wright DW, Kellermann AL. Does progesterone have neuroprotective properties?[J]. Ann Emerg Med,2008,51 (2):164-172.
    [41]Melton L. What can sex hormones do for the damaged brain?[J]. Lancet,2001, 358 (9284):818.
    [42]Meyer MJ, Megyesi J, Meythaler J, et al. Acute management of acquired brain injury part Ⅱ:an evidence-based review of pharmacological interventions[J]. Brain Inj,2010,24 (5):706-721.
    [43]Marmarou A, Signoretti S, Fatouros PP, et al. Predominance of cellular edema in traumatic brain swelling in patients with severe head injuries[J]. J Neurosurg,2006,104 (5):720-730.
    [44]Papadopoulos MC, Krishna S, Verkman AS. Aquaporin water channels and brain edema[J]. Mt Sinai J Med,2002,69 (4):242-248.
    [45]Vink R, Nimmo AJ. Multifunctional drugs for head injury[J]. Neurotherapeutics,2009,6 (1):28-42.
    [46]Wojtal K, Trojnar MK, Czuczwar SJ. Endogenous neuroprotective factors: neurosteroids[J]. Pharmacol Rep,2006,58 (3):335-340.
    [47]Wright DW, Ritchie JC, Mullins RE, et al. Steady-state serum concentrations of progesterone following continuous intravenous infusion in patients with acute moderate to severe traumatic brain injury[J]. J Clin Pharmacol,2005,45 (6):640-648.
    [48]Guo Q, Sayeed I, Baronne LM, et al. Progesterone administration modulates AQP4 expression and edema after traumatic brain injury in male rats[J]. Exp Neurol,2006,198 (2):469-478.
    [49]Wang J, Jiang C, Li X, et al. The protective mechanism of progesterone on blood-brain barrier in cerebral ischemia in rats[J]. Brain Res Bull,2009,79 (6):426-430.
    [50]Meffre D, Delespierre B, Gouezou M, et al. The membrane-associated progesterone-binding protein 25-Dx is expressed in brain regions involved in water homeostasis and is up-regulated after traumatic brain injury[J]. J Neurochem,2005,93 (5):1314-1326.
    [51]Guennoun R, Meffre D, Labombarda F, et al. The membrane-associated progesterone-binding protein 25-Dx:expression, cellular localization and up-regulation after brain and spinal cord injuries[J], Brain Res Rev,2008,57 (2): 493-505.
    [52]Roof RL, Hoffman S W, Stein DG. Progesterone protects against lipid peroxidation following traumatic brain injury in rats[J]. Mol Chem Neuropathol,1997,31 (1):1-11.
    [53]Djebaili M, Hoffman SW, Stein DG. Allopregnanolone and progesterone decrease cell death and cognitive deficits after a contusion of the rat pre-frontal cortex[J]. Neuroscience,2004,123 (2):349-359.
    [54]Galani R, Hoffman SW, Stein DG Effects of the duration of progesterone treatment on the resolution of cerebral edema induced by cortical contusions in rats[J]. Restor Neurol Neurosci,2001,18 (4):161-166.
    [55]Chao TC, Van Alten PJ, Walter RJ. Steroid sex hormones and macrophage function:modulation of reactive oxygen intermediates and nitrite release[J]. Am J Reprod Immunol,1994,32 (1):43-52.
    [56]Rogers E, Wagner AK. Gender, sex steroids, and neuroprotection following traumatic brain injury[J]. J Head Trauma Rehabil,2006,21 (3):279-281.
    [57]Elo HA, Kulomaa MS, Tuohimaa PJ. Progesterone-independent avidin induction in chick tissues caused by tissue injury and inflammation[J]. Acta Endocrinol (Copenh),1979,90 (4):743-752.
    [58]Ishrat T, Sayeed I, Atif F, et al. Effects of progesterone administration on infarct volume and functional deficits following permanent focal cerebral ischemia in rats[J], Brain Res,2009,1257:94-101.
    [59]Wagner AK, McCullough EH, Niyonkuru C, et al. Acute serum hormone levels:characterization and prognosis after severe traumatic brain injury[J]. J Neurotrauma,2011,28 (6):871-888.
    [60]Grossman KJ, Goss CW, Stein DG Effects of progesterone on the inflammatory response to brain injury in the rat[J]. Brain Res,2004,1008 (1): 29-39.
    [61]Wang J, Jiang C, Liu C, et al. Neuroprotective effects of progesterone following stroke in aged rats[J]. Behav Brain Res,2010,209 (1):119-122.
    [62]Veiga S, Melcangi RC, Doncarlos LL, et al. Sex hormones and brain aging[J]. Exp Gerontol,2004,39 (11-12):1623-1631.
    [63]Jones NC, Constantin D, Prior MJ, et al. The neuroprotective effect of progesterone after traumatic brain injury in male mice is independent of both the inflammatory response and growth factor expression[J]. Eur J Neurosci, 2005,21 (6):1547-1554.
    [64]VanLandingham JW, Cutler SM, Virmani S, et al. The enantiomer of progesterone acts as a molecular neuroprotectant after traumatic brain injury[J]. Neuropharmacology,2006,51 (6):1078-1085.
    [65]Gilmer LK, Roberts KN, Scheff SW. Efficacy of progesterone following a moderate unilateral cortical contusion injury[J]. J Neurotrauma,2008,25 (6): 593-602.
    [66]Cai W, Zhu Y, Furuya K, et al. Two different molecular mechanisms underlying progesterone neuroprotection against ischemic brain damage[J]. Neuropharmacology,2008,55 (2):127-138.
    [67]Wang KK, Larner SF, Robinson G, et al. Neuroprotection targets after traumatic brain injury[J]. Curr Opin Neurol,2006,19 (6):514-519.
    [68]Cervantes M, Gonzalez-Vidal MD, Ruelas R, et al. Neuroprotective effects of progesterone on damage elicited by acute global cerebral ischemia in neurons of the caudate nucleus[J]. Arch Med Res,2002,33 (1):6-14.
    [69]Sayeed I, Parvez S, Wali B, et al. Direct inhibition of the mitochondrial permeability transition pore:a possible mechanism for better neuroprotective effects of allopregnanolone over progesterone[J]. Brain Res,2009,1263:165-173.
    [70]Sayeed I, Stein DG. Progesterone as a neuroprotective factor in traumatic and ischemic brain injury[J]. Prog Brain Res,2009,175:219-237.
    [71]Kelleher MA, Palliser HK, Walker DW, et al. Sex-dependent effect of a low neurosteroid environment and intrauterine growth restriction on foetal guinea pig brain development[J]. J Endocrinol,2011,208 (3):301-309.
    [72]Wang Z, Zuo G, Shi XY, et al. Progesterone administration modulates cortical TLR4/NF-kappaB signaling pathway after subarachnoid hemorrhage in male rats[J]. Mediators Inflamm,2011,2011:848309.
    [73]Morali G, Letechipia-Vallejo G, Lopez-Loeza E, et al. Post-ischemic administration of progesterone in rats exerts neuroprotective effects on the hippocampus[J]. Neurosci Lett,2005,382 (3):286-290.
    [74]Pinto-Almazan R, Calzada-Mendoza CC, Campos-Lara MG, et al. Effect of chronic administration of estradiol, progesterone, and tibolone on the expression and phosphorylation of glycogen synthase kinase-3beta and the microtubule-associated protein tau in the hippocampus and cerebellum of female rat[J]. J Neurosci Res,2011.
    [75]Ospina JA, Brevig HN, Krause DN, et al. Estrogen suppresses IL-1 beta-mediated induction of COX-2 pathway in rat cerebral blood vessels[J]. Am J Physiol Heart Circ Physiol,2004,286 (5):H2010-2019.
    [76]Gibson CL, Gray LJ, Bath PM, et al. Progesterone for the treatment of experimental brain injury; a systematic review[J]. Brain,2008,131 (Pt 2): 318-328.
    [77]Herson PS, Koerner IP, Hum PD. Sex, sex steroids, and brain injury[J]. Semin Reprod Med,2009,27 (3):229-239.
    [78]Schumacher M, Guennoun R, Robert F, et al. Local synthesis and dual actions of progesterone in the nervous system:neuroprotection and myelination[J], Growth Horm IGF Res,2004,14 Suppl A:S18-33.
    [79]Abdel Baki SG, Schwab B, Haber M, et al, Minocycline synergizes with N-acetylcysteine and improves cognition and memory following traumatic brain injury in rats[J]. PLoS One,2010,5 (8):e12490.
    [80]De Nicola AF, Gonzalez SL, Labombarda F, et al. Progesterone treatment of spinal cord injury:Effects on receptors, neurotrophins, and myelination[J]. J Mol Neurosci,2006,28 (1):3-15.
    [81]Rupprecht R, Holsboer F. Neuropsychopharmacological properties of neuroactive steroids[J]. Steroids,1999,64 (1-2):83-91.
    [82]Gonzalez Deniselle MC, Lopez Costa JJ, Gonzalez SL, et al. Basis of progesterone protection in spinal cord neurodegeneration[J]. J Steroid Biochem Mol Biol,2002,83 (1-5):199-209.
    [83]Sayeed I, Wali B, Stein DG Progesterone inhibits ischemic brain injury in a rat model of permanent middle cerebral artery occlusion[J]. Restor Neurol Neurosci,2007,25 (2):151-159.
    [84]Cutler SM, VanLandingham JW, Murphy AZ, et al. Slow-release and injected progesterone treatments enhance acute recovery after traumatic brain injury[J]. Pharmacol Biochem Behav,2006,84 (3):420-428.
    [85]He J, Evans CO, Hoffman SW, et al. Progesterone and allopregnanolone reduce inflammatory cytokines after traumatic brain injury[J]. Exp Neurol, 2004,189 (2):404-412.
    [86]Gonzalez SL, Labombarda F, Deniselle MC, et al. Progesterone neuroprotection in spinal cord trauma involves up-regulation of brain-derived neurotrophic factor in motoneurons[J]. J Steroid Biochem Mol Biol,2005,94 (1-3):143-149.
    [87]Cutler SM, Pettus EH, Hoffman SW, et al. Tapered progesterone withdrawal enhances behavioral and molecular recovery after traumatic brain injury[J]. Exp Neurol,2005,195 (2):423-429.
    [88]Gong D, Zhang S, Liu L, et al. Dynamic changes of vascular endothelial growth factor and angiopoietin-1 in association with circulating endothelial progenitor cells after severe traumatic brain injury[J]. J Trauma,2011,70 (6): 1480-1484.
    [89]Liu L, Wei H, Chen F, et al. Endothelial progenitor cells correlate with clinical outcome of traumatic brain injury[J]. Crit Care Med,2011,39 (7):1760-1765.
    [90]Liu L, Liu H, Jiao J, et al. Changes in circulating human endothelial progenitor cells after brain injury[J]. J Neurotrauma,2007,24 (6):936-943.
    [91]Li Z, Wang B, Kan Z, et al. Progesterone increases circulating endothelial progenitor cells and induces neural regeneration after traumatic brain injury in aged rats[J]. J Neurotrauma,2012,29 (2):343-353.
    [92]Debert CT, Ide K, Poulin MJ. Effects of estrogen and progesterone on cerebrovascular responses to euoxic hypercapnia in women[J]. Climacteric, 2011.
    [93]Littleton-Kearney MT, Klaus JA, Hum PD. Effects of combined oral conjugated estrogens and medroxyprogesterone acetate on brain infarction size after experimental stroke in rat[J]. J Cereb Blood Flow Metab,2005,25 (4):421-426.
    [94]Hoffman GE, Merchenthaler I, Zup SL. Neuroprotection by ovarian hormones in animal models of neurological disease[J]. Endocrine,2006,29 (2):217-231.
    [95]Schouten JW. Neuroprotection in traumatic brain injury:a complex struggle against the biology of nature[J]. Curr Opin Crit Care,2007,13 (2):134-142.
    [96]Kilts JD, Tupler LA, Keefe FJ, et al. Neurosteroids and self-reported pain in veterans who served in the U.S. Military after September 11,2001[J]. Pain Med,2010,11 (10):1469-1476.
    [97]Vink R, Nimmo AJ, Cernak I. An overview of new and novel pharmacotherapies for use in traumatic brain injury[J]. Clin Exp Pharmacol Physiol,2001,28 (11):919-921.