伏隔核MRI形态学及海洛因成瘾静息态fMRI研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1、探讨伏隔核3.0T磁共振容积扫描的最佳扫描参数。
     2、利用3.0T磁共振探寻显示伏隔核的最佳方式。
     3、利用3.0T磁共振分析正常伏隔核体积双侧差异及性别差异。
     4、研究海洛因成瘾者在静息态下默认脑功能网络与健康者的差异。
     方法:
     1、健康志愿者72人,平均分为12组。利用T1WI三维快速扰相梯度回波序列,在其它参数固定的情况下,分别采用4个不同准备时间与3种矩阵组合成的12种方案对伏隔核进行容积扫描。测量伏隔核与其邻近脑白质的对比噪声比(CNR)并进行分析。
     2、对32名健康志愿者进行常规及容积扫描。将容积扫描图像进行不同角度重建,分为12组。对各组重建伏隔核图像进行打分评价并分析。
     3、健康志愿者42人(男24,女18),年龄范围18-55岁,中位数年龄25岁,利用磁共振对伏隔核进行常规扫描、冠状位容积扫描。在容积扫描图像上对伏隔核分割并进行体积测量,比较双侧体积差异及性别间差异。
     4、海洛因成瘾者14人和与之年龄、性别、体重、左右利手及受教育程度均相配的健康者14人接受3.0T磁共振扫描。所得MRI数据以腹前侧扣带回(vACC)为感兴趣区(ROI)构建全脑的功能网络连接图并比较成瘾组与对照组的差别。
     结果:
     1、在所有组中第1组所得的图像CNR最高(P<0.05)。当矩阵为256×256时,第1组图像CNR最高(P<0.05);当矩阵为342×342时,第5-8组之间不存在统计学差异;当矩阵为512×512时,第9组的图像CNR分别最高(P<0.05)。
     2、男女性别间分值差异无统计学意义,与前后连合连线垂直的90°组与其它角度组间的差异均有统计学意义(P<0.05)。
     3、所有志愿者以及男、女性志愿者伏隔核平均体积均右侧大于左侧(P<0.001)。男女之间伏隔核总体积不存在统计学差异(P>0.05)。
     4、以vACC为ROI建立的全脑连接图,成瘾者功能连接图较健康被试活动增强的区域有:双侧岛叶、左侧海马、右侧海马旁回、双侧舌回、额下回、颞上回;成瘾者较健康被试功能连接图活动减弱的区域有:后扣带回、左侧背外侧前额叶皮层、双侧楔前叶、小脑、胼胝体下回、右侧伏隔核。(P<0.01)
     结论:
     1、利用3.0T磁共振三维快速扰相梯度回波序列扫描伏隔核时,在TR=8.1ms /TE=3.6ms /FOV=24cm×19.6cm /层厚=1.4mm /层间距=-0.7mm /翻转角=20°/NEX=2的情况下,较合适的矩阵应为342×342,准备时间为350-500ms之间。
     2、3.0T磁共振可以较好显示伏隔核,扫描伏隔核最佳方案应为垂直于前后连合连线的冠状位扫描。
     3、健康成人右侧伏隔核体积大于左侧,性别之间伏隔核总体积无明显差异。
     4、成瘾者与健康被试在静息态下与vACC有功能连接的区域存在明显差异。静息态fMRI研究为海洛因成瘾机制的研究提供了新的方向。
Objective
     1. To explore the optimal 3.0T MR Volume Scan Parameter of Nucleus Accumbens.
     2. To search for the best way in displaying nucleus accumbens by means of 3.0T MRI scanner.
     3. To measure the volume of nucleus accumbens by means of 3.0T MR scanner and analyze the difference between two sides and between males and females.
     4. To investigate the differences between heroin addicts and normal controls in the default mode functional connectivity in the resting-state brain.
     Methods
     1. 72 healthy volunteers ,divided into 12 groups,undertook MR scan using 3D fast spoiled gradient recall (3D-FSPGR)sequence.With the other parameters fixed,4 different preparation time and 3 matrix were combined respectively contributing to 12 protocols.Contrast-noise ratio (CNR) of nucleus accumbens and nearby white matter was measured and analyzed.
     2. 32 healthy volunteers underwent the routine and volume MR imaging examination of brain and then the volume images were reconstructed and classified into 12 groups based on the different reconstructing angles. The reconstructed images of each group were scored according to the degrees of whether the nucleus accumbens was completely displayed or not.
     3. 42 healthy volunteers(24males and 18femals),ranging from 18 years to 55 years ,medial age 25 years old, underwent the routine and volume MR imaging examination of the brain. The volume of nucleus accumbens on both sides was measured and the difference between both sides and different gender was analyzed.
     4. 28 volunteers participated this study ,14 of whom were heroin addicts and 14 of whom were healthy adults.The two groups were matched in age,gender,weight,right handedness and education.Both groups undertook MR scanning and the data was acquired and processed.The ventrolateral anterior cingulate cortex was defined as the region of interest(ROI) based on which the functional connectivity map of the whole brain was built and compared.
     Results
     1. Of all the groups ,the CNR of the first group was the best(P<0.05).When the matrix was 256×256, the CNR of the first group was the best(P<0.05).When the matrix was 342×342, no significant statistical difference was found among the fifth to the eighth group(P>0.05). When the matrix was 512×512, the CNR of the ninth group was the best(P<0.05).
     2. Between male and female, the display of nucleus accumbens had no statistical significance, but it did have between the group with the reconstructing angle 900 and other groups.
     3. Among males ,females or total volunteers the average volume of nucleus accumbens on the right side is significantly larger than it is on the left (P<0.001).No significant difference of the total volume between males and females was found(P>0.05).
     4. The vACC showed more significant resting-state connectivity with the following regions in the heroin addicts group than in the normal group: insula bilaterally,left hippocampus, right parahippocampal gyrus, lingual gyrus bilaterally,inferior frontal gyrus bilaterally and superior temporal gyrus bilaterally.And it showed more significant resting-state connectivity with the following regions in the normal group than in the heroin addicts group:PCC, left DLPFC, precuneus bilaterally,cerebellum bilaterally,subcallosal gyrus bilaterally and right nucleus accumbens.(P<0.01)
     Conclusions
     1. To acquire excellent images of nucleus accumbens by means of 3D-FSPGR with 3.0T MR scanner, the proper matrix and preparation time should be 342×342, 350-500ms when the other parameters is TR=8.1ms /TE=3.6ms /FOV=24cm×19.6cm /slice thickness=1.4mm /spacing=-0.7mm /flip angle=20°/NEX=2.
     2. 3.0T MRI can display nucleus accumbens effectively and excellently. The best method to show the nucleus accumbens is the coronal scan, its plane should be vertical to the line between anterior-posterior commissure.
     3. Among healthy adults,the volume of nucleus accumbens on the right side is larger than it is on the left. There is no significant difference of total volume of nucleus accumbens between males and females.
     4. Significant difference exists between heroin addicts and healthy adults in functional connectivity maps based on vACC in the resting-state brain.The method of resting-state brain fMRI study shed light on the study of addiction mechanism.
引文
1 Hyman SE, Malenka RC. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci, 2001,2:695-703.
    2 Hutcheson DM, Everitt BJ, Robbins TW, et al. The role of withdrawal in heroin addiction: enhances reward or promotes avoidance?. Nat Neurosci, 2001,4:943-7.
    3 Robinson TE, Berridge KC. Addiction. Annu Rev Psychol, 2003,54:25-53.
    4何维为,王铁民,魏孝琴.人脑伏核的应用解剖学研究.中国医科大学学报, 2007,36:1-4.
    5 Meredith GE, Pattiselanno A, Groenewegen HJ, et al. Shell and core in monkey and human nucleus accumbens identified with antibodies to calbindin-D28k. J Comp Neurol, 1996,365:628-39.
    6 Ballmaier M, Toga AW, Siddarth P, et al. Thought disorder and nucleus accumbens in childhood: a structural MRI study. Psychiatry Res, 2004,130:43-55.
    7 Walhovd KB, Moe V, Slinning K, et al. Volumetric cerebral characteristics of children exposed to opiates and other substances in utero. Neuroimage, 2007,36:1331-44.
    8 Schiffer B, Peschel T, Paul T, et al. Structural brain abnormalities in the frontostriatal system and cerebellum in pedophilia. J Psychiatr Res, 2007,41:753-62.
    9 Paul RH, Brickman AM, Navia B, et al. Apathy is associated with volume of the nucleus accumbens in patients infected with HIV. J Neuropsychiatry Clin Neurosci, 2005,17:167-71.
    10 Filipek PA, Richelme C, Kennedy DN, et al. The young adult human brain: an MRI-based morphometric analysis. Cereb Cortex, 1994,4:344-60.
    11 Bloch F. Nuclear induction. Phys Rev, 1946,70:460.
    12 Purcell EM, Torrey HC, Pound RV. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev, 1946,69:37.
    13 Kumar A, Welti D, Ernst R. NMR Fourier zeumatography. J Magn Reson, 1975,18:69.
    14 Damadian R. Tumor detection by nuclear magnetic resonance. Science, 1971,171:1151-3.
    15 Damadian R, Goldsmith M, Minkoff L. NMR in cancer: XVI. FONAR image of the live human body. Physiol Chem Phys, 1977,9:97-100, 108.
    16赵喜平(主编).磁共振成像.北京:科学出版社,2004. 3-43.
    17 Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A, 1990,87:9868-72.
    18唐孝威(主编).脑功能成像.合肥:中国科技大学出版社,1999. 60-89.
    19 Shulman GL,Fiez JA, Corbetta M et al. Common blood flowchanges across visula tasksⅡdecrease in cerebral cortex. J Cogn Neurosci, 1997,9:648-663.
    20 Binder JR, Frost JA, Hammeke TA, et al. Conceptual processing during the conscious resting state. A functional MRI study. J Cogn Neurosci, 1999,11:80-95.
    21 Mazoyer B, Zago L, Mellet E, et al. Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull, 2001,54:287-98.
    22 Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brainfunction. Proc Natl Acad Sci U S A, 2001,98:676-82.
    23 Gusnard DA, Akbudak E, Shulman GL, et al. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci U S A, 2001,98:4259-64.
    24 Greicius MD, Krasnow B, Reiss AL, et al. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A, 2003,100:253-8.
    25 Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A, 2005,102:9673-8.
    26 Burton H, Snyder AZ, Raichle ME. Default brain functionality in blind people. Proc Natl Acad Sci U S A, 2004,101:15500-5.
    27 Kruger G, Glover GH. Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med, 2001,46:631-7.
    28 Biswal BB, Van Kylen J, Hyde JS. Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR Biomed, 1997,10:165-70.
    29 Kiviniemi V, Ruohonen J, Tervonen O. Separation of physiological very low frequency fluctuation from aliasing by switched sampling interval fMRI scans. Magn Reson Imaging, 2005,23:41-6.
    30 Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci, 2002,3:201-15.
    31 Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage, 1998,7:119-32.
    32 Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in themotor cortex of resting human brain using echo-planar MRI. Magn Reson Med, 1995,34:537-41.
    33 D'Argembeau A, Collette F, Van der Linden M, et al. Self-referential reflective activity and its relationship with rest: a PET study. Neuroimage, 2005,25:616-24.
    34 Lee TM, Zhou WH, Luo XJ, et al. Neural activity associated with cognitive regulation in heroin users: A fMRI study. Neurosci Lett, 2005,382:211-6.
    35 Goldstein RZ, Tomasi D, Rajaram S, et al. Role of the anterior cingulate and medial orbitofrontal cortex in processing drug cues in cocaine addiction. Neuroscience, 2007,144:1153-9.
    36 Franken IH. Drug craving and addiction: integrating psychological and neuropsychopharmacological approaches. Prog Neuropsychopharmacol Biol Psychiatry, 2003,27:563-79.
    37 Forman SD, Dougherty GG, Casey BJ, et al. Opiate addicts lack error-dependent activation of rostral anterior cingulate. Biol Psychiatry, 2004,55:531-7.
    38 Ahn MS, Breeze JL, Makris N, et al. Anatomic brain magnetic resonance imaging of the basal ganglia in pediatric bipolar disorder. J Affect Disord, 2007,104:147-54.
    39 Ray H Hashemi,William G Bradley, Christopher J Lisanti. MRI:The Basics(second edition),2004. 283.
    40 Ahn MS, Breeze JL, Makris N, et al. Anatomic brain magnetic resonance imaging of the basal ganglia in pediatric bipolar disorder. J Affect Disord, 2007.
    41 Koikkalainen J, Hirvonen J, Nyman M, et al. Shape variability of the human striatum--Effects of age and gender. Neuroimage, 2007,34:85-93.
    42夏军,陈军,周义成,等.抑郁症患者海马及杏仁核容积异常的MRI研究.中华放射学杂志, 2005,39:140-143.
    43 Ahsan RL, Allom R, Gousias IS, et al. Volumes, spatial extents and a probabilistic atlas of the human basal ganglia and thalamus. Neuroimage, 2007,38:261-70.
    44 Anastasi G, Cutroneo G, Tomasello F, et al. In vivo basal ganglia volumetry through application of NURBS models to MR images. Neuroradiology, 2006,48:338-45.
    45 Giedd JN, Snell JW, Lange N, et al. Quantitative magnetic resonance imaging of human brain development: ages 4-18. Cereb Cortex, 1996,6:551-60.
    46 Raz N, Torres IJ, Acker JD. Age, gender, and hemispheric differences in human striatum: a quantitative review and new data from in vivo MRI morphometry. Neurobiol Learn Mem, 1995,63:133-42.
    47 Peterson BS, Riddle MA, Cohen DJ, et al. Human basal ganglia volume asymmetries on magnetic resonance images. Magn Reson Imaging, 1993,11:493-8.
    48 McDonald WM, Husain M, Doraiswamy PM, et al. A magnetic resonance image study of age-related changes in human putamen nuclei. Neuroreport, 1991,2:57-60.
    49 Dani JA, Montague PR. Disrupting addiction through the loss of drug-associated internal states. Nat Neurosci, 2007,10:403-4.
    50 Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci, 2002,3:655-66.
    51 Wang GJ, Volkow ND, Fowler JS, et al. Regional brain metabolic activation during craving elicited by recall of previous drug experiences. Life Sci,1999,64:775-84.
    52 Coghill RC, Talbot JD, Evans AC, et al. Distributed processing of pain and vibration by the human brain. J Neurosci, 1994,14:4095-108.
    53 Cechetto DF. Identification of a cortical site for stress-induced cardiovascular dysfunction. Integr Physiol Behav Sci, 1994,29:362-73.
    54 Sell LA, Morris JS, Bearn J, et al. Neural responses associated with cue evoked emotional states and heroin in opiate addicts. Drug Alcohol Depend, 2000,60:207-16.
    55 Damasio AR, Grabowski TJ, Bechara A, et al. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci, 2000,3:1049-56.
    56 Langleben DD, Ruparel K, Elman I, et al. Acute effect of methadone maintenance dose on brain FMRI response to heroin-related cues. Am J Psychiatry, 2008,165:390-4.
    57 Naqvi NH, Rudrauf D, Damasio H, et al. Damage to the insula disrupts addiction to cigarette smoking. Science, 2007,315:531-4.
    58 Contreras M, Ceric F, Torrealba F. Inactivation of the interoceptive insula disrupts drug craving and malaise induced by lithium. Science, 2007,318:655-8.
    59 Mucha RF, van der Kooy D, O'Shaughnessy M, et al. Drug reinforcement studied by the use of place conditioning in rat. Brain Res, 1982,243:91-105.
    60 Wise RA, Hoffman DC. Localization of drug reward mechanisms by intracranial injections. Synapse, 1992,10:247-63.
    61 van der Kooy D, Mucha RF, O'Shaughnessy M, et al. Reinforcing effects of brain microinjections of morphine revealed by conditioned place preference. Brain Res, 1982,243:107-17.
    62 Corrigall WA, Linseman MA. Conditioned place preference produced by intra-hippocampal morphine. Pharmacol Biochem Behav, 1988,30:787-9.
    63 White NM. Addictive drugs as reinforcers: multiple partial actions on memory systems. Addiction, 1996,91:921-49; discussion 951-65.
    64 Horn NR, Dolan M, Elliott R, et al. Response inhibition and impulsivity: an fMRI study. Neuropsychologia, 2003,41:1959-66.
    65 Hakamata Y, Iwase M, Iwata H, et al. Regional brain cerebral glucose metabolism and temperament: a positron emission tomography study. Neurosci Lett, 2006,396:33-7.
    66 Brody AL, Mandelkern MA, Olmstead RE, et al. Neural substrates of resisting craving during cigarette cue exposure. Biol Psychiatry, 2007,62:642-51.
    67 Kuchinke L, Jacobs AM, Grubich C, et al. Incidental effects of emotional valence in single word processing: an fMRI study. Neuroimage, 2005,28: 1022-32.
    68 Kesler-West ML, Andersen AH, Smith CD, et al. Neural substrates of facial emotion processing using fMRI. Brain Res Cogn Brain Res, 2001,11: 213-26.
    69 Goldin PR, Hutcherson CA, Ochsner KN, et al. The neural bases of amusement and sadness: a comparison of block contrast and subject-specific emotion intensity regression approaches. Neuroimage, 2005,27:26-36.
    70 Jenkins IH, Brooks DJ, Nixon PD, et al. Motor sequence learning: a study with positron emission tomography. J Neurosci, 1994,14:3775-90.
    71 Andreasen NC, O'Leary DS, Arndt S, et al. Short-term and long-term verbal memory: a positron emission tomography study. Proc Natl Acad Sci U S A, 1995,92:5111-5.
    72 Berman KF, Ostrem JL, Randolph C, et al. Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: a positron emission tomography study. Neuropsychologia, 1995,33:1027-46.
    73 Buckner RL, Raichle ME, Miezin FM, et al. Functional anatomic studies of memory retrieval for auditory words and visual pictures. J Neurosci, 1996,16:6219-35.
    74 Fiez JA. Cerebellar contributions to cognition. Neuron, 1996,16:13-5.
    75 Bloedel JR, Bracha V. Duality of cerebellar motor and cognitive functions. Int Rev Neurobiol, 1997,41:613-34.
    76 Kosel M, Noss RS, Hammig R, et al. Cerebral blood flow effects of acute intravenous heroin administration. Eur Neuropsychopharmacol, 2008,18:278-85.
    77 Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 2006,129:564-83.
    78 Vorel SR, Bisaga A, McKhann G, et al. Insula damage and quitting smoking. Science, 2007,317:318-9; author reply 318-9.