急性哮喘小鼠中T-bet通过IL-23受体对Th17细胞增殖和致炎机能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分急性哮喘小鼠模型的建立与评价
     目的通过补充完善急性哮喘动物模型评价标准,探讨建立的急性哮喘小鼠模型是否成功。
     方法35只SPF级雌性BALB/c小鼠随机分为两组:哮喘组(20只)以OVA致敏、激发;正常对照组(15只)以等体积的PBS代替OVA致敏、激发,末次激发24 h后处理小鼠。查看小鼠的一般行为活动;雾化吸入Ach行支气管激发试验,有创肺阻抗法测定小鼠的气道反应性;BALF行细胞学分类、计数;HE染色观察肺组织的病理变化。研磨小鼠脾脏制成单个核细胞悬液,裂解红细胞,免疫磁珠分离小鼠脾源性CD4+T细胞,悬于加有胎牛血清的RPMI 1640培养液,ConA和PMA刺激培养24小时后,计算脾源性CD4+T细胞总数;流式仪检测Th17细胞的阳性率;ELISA测定BALF和脾源性CD4+T细胞培养上清中IL-4和IL-17的浓度。
     结果
     (1)哮喘组小鼠出现类似于人的哮喘发作症状,而正常对照组小鼠表现正常。
     (2)与正常对照组相比,哮喘组小鼠对Ach的刺激反应明显,浓度反应曲线上移(均P<0.01)。
     (3)与正常对照组相比,哮喘组小鼠肺组织支气管及血管周围大量炎性细胞(包括中性粒细胞、嗜酸性粒细胞、淋巴细胞和单核细胞)浸润(P<0.01)。
     (4)与正常对照组相比,哮喘组小鼠BALF中白细胞总数、Neu(%)、Eos(%)和Lym(%)显著增多(均P<0.01)。
     (5)与正常对照组相比,哮喘组小鼠脾源性CD4+T细胞总数和Th17细胞阳性率显著增高(均尸<0.01)。
     (6)与正常对照组相比,哮喘组小鼠BALF和脾源性CD4+Υ细胞培养上清中IL-4和IL-17的浓度显著增高(均P<0.01)。
     (7)急性哮喘小鼠BALF中IL-17的浓度与Neu(%)显著正相关(r=0.903,P<0.01)。
     结论
     1.对脾源性CD4+T细胞总数、Th17细胞阳性率和细胞培养上清中IL-17浓度的检测,可做为急性哮喘动物模型的评价标准。
     2.本实验中建立的急性哮喘小鼠模型是成功的。
     第二部分IL-23受体对急性哮喘小鼠脾源性Th17细胞增殖和致炎机能的影响
     目的通过检测IL-23受体的表达、Th17细胞阳性率和IL-17的浓度,探讨IL-23受体对急性哮喘小鼠脾源性Th17细胞增殖和致炎机能的影响。
     方法Th17细胞的阳性率反应其增殖情况,细胞培养上清中1L-17的浓度反应Th17细胞的致炎机能。免疫磁珠分离的小鼠脾源性CD4-T细胞悬于加有胎牛血清的RPMI-1640培基、ConA和PMA刺激培养24小时,real-time PCR和WB测定小鼠脾源性CD4+T细胞亚群Th17细胞中1L-23受体的表达,流式仪测定Th17细胞的阳性率,ELISA测定脾源性CD4+T细胞培养上清中IL-17的浓度,并分析哮喘组小鼠IL-23受体的表达和Th17细胞阳性率、IL-17浓度的相关性。
     结果
     (1)与正常对照组相比,哮喘组小鼠脾源性CD4+T细胞中IL-23受体mRNA的表达显著增高(P<0.01)。
     (2)与正常对照组相比,哮喘组小鼠脾源性CD4+T细胞中IL-23受体蛋白的表达显著增高(P<0.01)。
     (3)与正常对照组相比,哮喘组小鼠脾源性CD4+T细胞中Th17细胞的阳性率显著增高(P<0.01)。
     (4)与正常对照组相比,哮喘组小鼠脾源性CD4+T细胞培养上清中IL-17的浓度显著增高于(P<0.01)。
     (5)哮喘组小鼠脾源性CD4+T细胞中IL-23受体mRNA的表达与Th17细胞的阳性率显著正相关(Υ=-0.789,P<0.05);与IL-17的浓度显著正相关(Υ=0.788,P<0.05)。
     (6)哮喘组小鼠脾源性CD4+T细胞中IL-23受体蛋白的表达与Th17细胞的阳性率显著正相关(r=0.828,P<0.01);与IL-17的浓度显著正相关(r=0.802,P<0.05)。
     结论
     1.急性哮喘小鼠脾源性CD4+T细胞中IL-23受体的表达、Th17细胞的阳性率和IL-17的浓度均显著增高。
     2.急性哮喘小鼠中IL-23受体的表达可能影响Th17细胞的增值和致炎机能。
     第三部分下调T-bet表达通过影响1L-23受体促进Th17细胞的增殖和致炎机能
     目的通过抑制T-bet的表达,观察对急性哮喘小鼠脾源性Th17细胞增殖和致炎机能的影响。
     方法T-bet为观察对象,IL-23受体为联系T-bet和Th17细胞的桥梁,Th17细胞的阳性率反应其增殖情况,细胞培养上清中IL-17的浓度反应Th17细胞的致炎机能。三对siRNA-T-bet片断和阴性对照,分别瞬时转染哮喘组小鼠脾源性CD4+T细胞后,Western Blot和real-timePCR检测T-bet的表达,筛选出具有最佳沉默效果的片断,此片断转染哮喘组小鼠脾源性CD4+T细胞。3组细胞:正常对照组、未转染哮喘组和转染最佳沉默siRNA片断哮喘组的脾源性CD4-T细胞,悬于加有胎牛血清的RPMI-1640培基、ConA和PMA刺激培养24小时,检测各组细胞中T-bet的表达、IL-23受体的表达、Thl7阳性率和细胞培养上清中IL-17浓度,并分析转染最佳沉默siRNA片断哮喘组的脾源性CD4-T细胞中T-bet的表达与IL-23受体的表达、Th17阳性率、IL-17浓度的相关性。
     结果
     (1)三对siRNA片断中以siRNA-T-bet-429沉默效果最为显著(P<0.01)。
     (2)与正常对照组相比,未转染哮喘组和转染siRNA-T-bet-429哮喘组的脾源性CD4+T细胞中T-bet mRNA的表达显著降低(均P<0.01);与未转染哮喘组相比,转染siRNA-T-bet-429哮喘组的脾源性CD4+T细胞中T-bet mRNA的表达显著降低(P<0.01)。
     (3)与正常对照组相比,未转染哮喘组和转染siRNA-T-bet-429哮喘组的脾源性CD4-T细胞中T-bet蛋白的表达显著降低(均P<0.01);与未转染哮喘组相比,转染siRNA-T-bet-429哮喘组的脾源性CD4+T细胞中T-bet蛋白的表达显著降低(P<0.01)
     (4)与正常对照组相比,未转染哮喘组和转染siRNA-T-bet-429哮喘组的脾源性CD4+T细胞中IL-23受体mRNA的表达显著增高(均P<0.01);与未转染哮喘组相比,转染siRNA-T-bet-429哮喘组的脾源性CD4+T细胞中IL-23受体:mRNA的表达显著增高(P<0.01)。
     (5)与正常对照组相比,未转染哮喘组和转染siRNA-T-bet-429哮喘组的脾源性CD4+T细胞中IL-23受体蛋白的表达显著增高(均P<0.01);与未转染哮喘组相比,转染siRNA-T-bet-429哮喘组的脾源性CD4+T细胞中IL-23受体蛋白的表达显著增高(P<0.01)。
     (6)与正常对照组相比,未转染哮喘组和转染siRNA-T-bet-429哮喘组的脾源性CD4+T细胞中Th17的阳性率显著增高(均P<0.01);与未转染哮喘组相比,转染siRNA-T-bet-429哮喘组的脾源性CD4+T细胞中Th17的阳性率显著增高(P<0.01)
     (7)与正常对照组相比,未转染哮喘组和转染siRNA-T-bet-429哮喘组的脾源性CD4+T细胞培养上清中IL-17的浓度显著增高(均P<0.01);与未转染哮喘组相比,转染siRNA-T-bet-429哮喘组的脾源性CD4+T细胞培养上清中IL-17的浓度显著增高(P<0.01)
     (8)转染siRNA-T-bet-429哮喘组的脾源性CD4+T细胞中T-bet mRNA的表达与IL-23受体mRNA的表达显著负相关(Υ=-0.786,P<0.05),与Thl7阳性率显著负相关(Υ=-0.882,P<0.01),与IL-17的浓度显著负相关(Υ=-0.893,P<0.01)。
     (9)转染siRNA-T-bet-429哮喘组的脾源性CD4+T细胞中T-bet蛋白的表达与IL-23受体蛋白的表达显著负相关(Υ=-0.873,P<0.01),与Th17阳性率显著负相关(Υ=-0.786,P<0.05),与IL-17的浓度显著负相关(r=-0.939,P<0.01)。
     结论
     1.急性哮喘中下调T-bet的表达可促进Th17细胞的增值和IL-17的分泌。
     2.急性哮喘中T-bet可能通过IL-23受体影响Th17细胞的增值和致炎机能。
Part I Establishment of Acute Asthmatic Mouse Model and Confirmation of its Reliability
     Objective:To confirm the reliability of established acute asthmatic mouse model with modified evaluation criterion.
     Methods:35 SPF female BALB/c mice were randomly divided into control group and asthmatic group. The asthmatic model was reproduced by sensitization with intraperitoneal injection of OVA, followed by repeated inhalation of OVA. The control group received only PBS in the same manner. After 24 hours of the last inhalation, asthmatic symptoms were observed. The changes in airway responseveness were determined by lung resistance(RL) stimulated by acetylcholine(Ach); the white cell count, neutrophils(%), eosinophils(%), lymphocytes(%) were measured from bronchoalveolar lavage fluid (BALF); Lung tissue sections were stained for general pathology. Spleenic mononuclear cells from acute asthmatic mouse model were removed red blood cells, followed by being isolated CD4+T cells using immuno-magnetic beads. Spleenic CD4+T cells were cultivated in RPMI-1640 with 10% Fetal Bovine Serum, stimulated by ConA and PMA. After 24 hours, the total spleenic CD4+T cells and ratio of positive Thl7 cells were detected; the levels of IL-4 and IL-17 concentration obtained from BALF and spleenic CD4+T culture supernatant were examined.
     Results:
     (1) Asthmatic symptoms were more severe in asthmatic group as compared with controls.
     (2) Total Lung Resistance was obviously increased in asthmatic group as compared with controls (p<0.01).
     (3) More extensive inflammatory cells infiltrated around the bronchi and mucus deposition in airway lumen were found in asthmatic group as compared with controls (p<0.01).
     (4) White cell count, Neu(%), Eos (%) and Lym(%) in the BALF of asthmatic group were obviously increased in sthmatic group as compared with controls (respectively p<0.01).
     (5) Spleenic CD4+T cell count and the ratio of positive Th17 cells were obviously increased in asthmatic group as compared with controls (p<0.01).
     (6) IL-4 and IL-17 concentration were significantly elevated in BALF and spleenic CD4+T culture supernatant from asthmmtic group as compared with controls (respectively p<0.01).
     (7) IL-17 concentration in BALF form asthmatic group positively correlated with Neu(%) (r=0.903,P<0.01).
     Conclusions:Acute asthmatic mouse model reproduces successfully according to modified evaluation criteria.
     PartⅡEffect of IL-23 Receptor on Proliferation and Inflammation of Th17 Cells from Acute Asthmatic Mouse Model
     Objective:To detect the effect of interleukin-23 receptor(IL-23 Receptor) on proliferation and inflammation of Th17 cells, a subset of spleenic CD4+T cells from acute asthma mouse model.
     Methods:Spleenic CD4+T cells isolated using immuno-magnetic beads and cultured in RPMI-1640 with 10% Fetal Bovine Serum, stimulated by ConA and PMA. After 24 hours, the expression of IL-23 receptor mRNA and IL-23 receptor protein were detected by real-time PCR and Western blotting respectively; the ratio of positive Th17 cells was detected by flow cytometer (FCM); IL-17 concentration was detected by ELISA. Finally, the correlation between IL-23 receptor expression with the ratio of positive Th17 cells and IL-17 concentration were analyzed.
     Results:
     (1) The expression of IL-23 receptor mRNA in spleenic CD4+T cells from asthmatic group was significantly elevated as compared with controls (p<0.01).
     (2) The expression of IL-23 receptor protein in spleenic CD4+T cells from asthmatic group was significantly elevated as compared with controls (p<0.01).
     (3) The ratio of positive Thl7 cells in asthmagc group was obviously higher than that of controls (p<0.01).
     (4) The more extensive IL-17 concentration was found in asthmtic group as compared with controls (p<0.01)
     (5) The IL-23 receptor mRNA expression in asthmatic group positively correlated with the ratio of positive Th17 cells(r=0.789, P<0.05) and the IL-17 concentration (r=0.788, P<0.05)。
     (6) The IL-23 receptor protein expression in asthmatic group positively correlated with the ratio of positive Th17 cells (r=0.828, p<0.01) and the IL-17 concentration (r=0.802, P<0.05)。
     Conclusions:IL-23 receptor expression is significantly increased in spleenic CD4+T cells from acute asthmatic mouse model and associates with proliferation and inflammation of Th17 cells.
     PartⅢDown-regulating of T-bet Affects the Promotion the Poliferation and Inflammation of Th17 Cells througth IL-23 Receptor in acute asthma
     Objective:To investigate the effect of down-regulating T-bet on proliferation and inflammation of Th17 cells from acute asthmatic mouse model.
     Methods:Spleenic CD4+T cells from acute asthmatic mouse model were transient transfected with three chemosynthesis siRNA sequences by Lipofectamine2000. After culture and stimulation with cytokine(ConA and PMA), the best efficient siRNA-T-bet choosn by detection of T-bet expression, was trasnsfected into spleenic CD4+T cells from asthmatic group. Cells divided into three groups:control group, untransfected asthmatic group and transfected asthmatic group. The expression of IL-23 receptor and T-bet mRNA were analyzed by real-time PCR. The expression of IL-23 receptor and T-bet protein were analyzed by Western blotting. The ratio of positive Th17 cells was measured by FCM. The IL-17 concentration was detected by ELISA. Finally, the correlation between T-bet expression with IL-23 receptor expression, the ratio of positive Th17 cells and IL-17 concentration were analyzed.
     Results:
     (1) siRNA-T-bet-429 had better silencing effect than other siRNA sequences (p<0.01).
     (2) The expression of T-bet mRNA in spleenic CD4+T cells from transfected asthmatic and transfected siRNA-T-bet-429 group were lower than that of controls (p<0.01). The expression of T-bet mRNA in transfected siRNA-T-bet-429 group was lower than that of transfected asthmatic group (p<0.01).
     (3) The expression of T-bet protein in spleenic CD4+T cells from transfected asthmatic and transfected siRNA-T-bet-429 group were lower than that of controls (p<0.01). The expression of T-bet protein in transfected siRNA-T-bet-429 group was lower than that of transfected asthmatic group (p<0.01).
     (4) The expression of IL-23 receptor mRNA in spleenic CD4+T cells from transfected asthmatic and transfected siRNA-T-bet-429 group were lower than that of controls (p<0.01). The expression of IL-23 receptor mRNA in transfected siRNA-T-bet-429 group was lower than that of transfected asthmatic group (p<0.01).
     (5) The expression of IL-23 receptor protein in spleenic CD4+T cells from transfected asthmatic and transfected siRNA-T-bet-429 group were lower than that of controls (p<0.01). The expression of IL-23 receptor protein in transfected siRNA-T-bet-429 group was lower than that of transfected asthmatic group (p<0.01).
     (6) The ratio of positive Th17 cells in transfected asthmatic and transfected siRNA-T-bet-429 group significantly elevated as compared with controls (p<0.01). The ratio of positive Th17 cells in transfected siRNA-T-bet-429 group significantly elevated as compared with transfected asthmatic group (p<0.01).
     (7) The IL-17 concentration of spleenic CD4+T culture supernatant in transfected asthmatic and transfected siRNA-T-bet-429 group significantly elevated as compared with controls (p<0.01). The IL-17 concentration of spleenic CD4+T culture supernatant in transfected siRNA-T-bet-429 group significantly elevated as compared with transfected asthmatic group (p<0.01).
     (8) The T-bet mRNA expression in transfected siRNA-T-bet-429 group negatively correlated with IL-23 receptor mRNA expression (r=-0.786,p<0.05), and the ratio of positive Thl7 cells (r=-0.882, P     (9) The T-bet protein expression in transfected siRNA-T-bet-429 group negatively correlated with IL-23 receptor protein expression (r=-0.873,P<0.01), and with the ratio of positive Thl7 cells (r=-0.786,P<0.05), and the IL-17 concentration (r=-0.939,p<0.01).
     Conclusions:Down-regulation of T-bet can promote the proliferation and inflammation of Th17 cells through IL-23 receptor in acute asthma.
引文
[1]Temelkovski J, Hogan SP, Shepherd DP, et al. An improved murine model of asthma:selective airway inflammation, epithelial lesions and increased methacholine responsiveness following chronic exposure to aerosolised allergen. Thorax,1998,53(10):849-856.
    [2]Harrington LE, Hatton RD, Mangan PR et al. Interleukin 17-producingCD4+ effector T cells develop via a lineage distinct from the T helper typel and 2 lineages. Nat Immunol,2005; 6(11):1123-1132.
    [3]韩根成,沈倍奋.Th17细胞分化、调节及效应研究进展.生物化学与生物物理进展.2008,35(2):117-123.
    [4]Cheung PF, Wong CK, Lam CW, et al. Molecular Mechanisms of Cytokine and Chemokine Release from Eosinophils Activated by IL-17A, IL-17F, and IL-23: Implication for Th17 Lymphocytes-Mediated Allergic Inflammation. J. Immunol,2008;180(8):5625-5635.
    [5]Michelle LN, Nivedita K, Philip AM, et al. Functionally Important Role for Arginase 1 in the Airways Hyperresponsiveness of Asthma. Am J Physiol Lung Cell Mol Physiol, Mar 2009; 10.1152/ajplung.00025.2009.
    [6]Locke NR., Royce SG., Wainewright JS, et al. Comparison of Airway Remodeling in Acute, Subacute, and Chronic Models of Allergic Airways Disease. Am. J. Respir. Cell Mol. Biol,2007,36:625-632.
    [7]Wild JS,Sigounas A,Sur N,et al. IFN-gamma-inducing Factor(IL-18)increases allergic sensitization,serum IgE,Th2 cytokines,and airway eosinophilia in a mouse model of allergic asthma. J Immunol.2000,1; 164(5):2701-2710.
    [8]Guo M, Huang T, CuY i, et al. PrPC interacts with tetraspanin-7 through bovine PrP154-182 containing alpha-helix 1. Biochem Biophys Res Commun, 2008;365(1):154-7.
    [9]Ferrada MA, Gordon EL, Jen KY, et al. (R)-albuterol decreases immune responses:role of activated T cells. Respir Res, Jan 2008;9:3.
    [10]陈黎,吕祖铭.哮喘动物模型制作的进展.泸州医学院学报,2002年,25(2): 173-175.
    [11]沈华浩,王苹莉.支气管哮喘小鼠模型应用评价.中华结核和呼吸杂志.2005,28(4):284-286.
    [12]唐艳,杨文思,黄瑾,等.小鼠实验性哮喘模型肺功能检测初步探讨.白 求恩医科大学学报,1999;25:131
    [13]Pauwels RA, Brusselle GJ, Kips JC. Cytokine manipulation in animal models of asthma. Am J Respir Girit Care Med,1997; 156(4):S78.
    [14]Haczku A, Takeda K, Hamelmann E, et al. CD23 exhibits negative regulatory effects on allergic sensitization and airway hyperresponsiveness. Am J Respir Cirit Core Med,2000; 161(3):952.
    [15]Carr MJ, Spalding LJ, Goldie RG, et al. Distribution of immunoreactive endothelin in the lungs of mice during respiratory viral intection. Eur Respir J, 1998; 11(1):79.
    [16]Herz U, Ruckert R, Wollenhaupt K, et al. Airway exposure to bacterial superantigen (SEB) induces lymphocyte — dependent airway inflammation associated with increased airway responsiveness—a model for non—allergic asthma. Eur J Immunol,1999; 29(3):1021.
    [17]Nagai H, Iwama T, Mori H, et al. Increase in respiratory resistance after exercise in conscious guinea pigs. As a model for exercise induced asthma. Bilo Pharm Bull,1995,18(1):37.
    [18]Velasco G, Campo M, Manrique OJ, et al. Toll-Like Receptor 4 or 2 Agonists Decrease Allergic Inflammation. Am J Respir Cell Mol Biol,2005, 32(3):218-224.
    [19]Thomas Glaab, Angelika Daser, Armin Braun, et al. Tidal midexpiratory flow as a measure of airway hyperresponsiveness in allergic mice. Am J Physiol Lung Cell Mol Physiol,2001; 280:565.
    [20]何胜东,赖克方,姚卫民等.小鼠哮喘模型气道反应性检测方法的建立.广东医学,2006,27(11):1659-1661.
    [21]Toumoy KG, Kips JC, Schou C, et al. Airway eosinophilia is not a requirement for allergen — induced airway hyperrespansiveness. Clin Exp Allergy,2000; 30(1):79
    [22]卢瑜,刘志刚,林雪怡,等.蛔虫变应原致喘豚鼠后外周血血液流变性的动态变化.中国血液流变学杂志,1999:9:195
    [23]Nagase T, Dallaire MJ, Ludwing MS. Airway and tissue responses during hyper pane—induced constriction in guinea pigs. J Respir Crit Care Med, 1994; 149(5):1342.
    [24]施焕中.正确认识和合理应用支气管哮喘的动物模型.中华结核和呼吸杂志,2005,28(11):749-750.
    [25]何权瀛.对我国哮喘动物实验研究的评价与思考.国外医学呼吸系统分册2005,25(9):718-719.
    [26]Bisset LR. Schmid-Grendelmeier P. Chemokines and their receptors in the pathogenesis of allergic asthma:progressand perspective. Curr Opin Pulm Med,2005,11(1):35-42.
    [27]Park H, Li Z, Yang XO, et al. A distinct lineage of CD4+T cells regulates tissue inflammation by producing interleukin-17. Nat Immunol,2005,6:1133-1141.
    [28]Muller KM, Jaunin F, Masouye I, et al. Th2 cells mediate IL-4-dependent local tissue inflammation. J Immunol,1993,150(2):5576-5584.
    [29]Silvia SC, Dieudonnee T, Isabelle C,et al. Interleukin-17 is a negative regulator of established allergic asthma. JEM,2006,203(12):2715-2725.
    [30]Oliveira FA, Lima-Jumior RC, Cordeiro WM, et al. Pentacyclic triterpenoids, alpha, beta-amurins, suppress the scratching behavior in a mouse model of prurutus. Pharmacol Biochem Behav,2004,78(4):719-725.
    [31]Glaab T, Daser A, Braun A, et al. Tidal midexpiratory flow as ameasure of airway hyperresponsiverness in allergic mice. Am J Physiol Lung Cell Mol Physiol,2001,280(3):L565-L573.
    [32]Ewart SL, Kuperman D, Schadt E, et al. Quantitative trait loci controlling allergen -induced airway hyperresponsiveness in inbred mice. Am J Respir Cell Mol Biol,2000,239(4):537-545.
    [33]Oboki K, Ohno T, Saito H, et al. Th17 and allergy. Allergol Int,2008 Jun; 57(2):121-34.
    [34]Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity,2000,13(5):715-725.
    [35]Zhang Z, Zheng M, Bindas J, et al. Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflamm Bowel Dis,2006,12(5):382~388.
    [36]Parham C, Chirica M, Timans J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbetal and a novel cytokine receptor subunit, IL-23R. J Immunol,2002,168(11):5699-5708.
    [37]中华医学会呼吸病学分会哮喘学组.支气管哮喘防治指南(支气管哮喘的定义、诊断、治疗及教育和管理方案).中华结核和呼吸杂志,2003,26:132-138.
    [38]Wild JS, Sigounas A, Sur N. IFN gamma-induoing factor (IL-18) increases allergic sensitization, Serum IgE, TH2 cytokines, and airway eosinophilia in a mouse model of allergic asthma. J Immunol,2000; 164(5):2701-2710.
    [39]Van der Pouw, Kraan TC, Van der Zee Js, et al. Department of Auto-Immune Diseases, Central laboratory of the Netherlands Red Cross Blood Transfusion service, Amsterdam. Clin Exp Immunol,1998,111(1):129-135.
    [40]罗征秀,肖玲,刘恩梅,等.哮喘儿童不同时期痰液细胞的变化及意义.临床儿科杂志,2005,23(9):615-617.
    [41]Ordonez CL, Shaughnessy TE, Matthay MA, et al. Increased neutrophil numbers and IL-8 levels in airway secretions in acute severe asthma:clinical and biologic significance. Am J Respir Crit Care Med,2000,161(4 Pt 1): 1185-1190.
    [42]Holgate ST, Polosa R. The mechanisms, diagnosis, and management of severe asthma in adults. Lancet,2006,368(9537):780-793.
    [43]Phyllis F. Y. Cheung, Chun K. Wong, and Christopher W. K. Lam. Molecular Mechanisms of Cytokine and Chemokine Release from Eosinophils Activated by IL-17A, IL-17F, and IL-23:Implication for Th17 Lymphocytes-Mediated Allergic Inflammation. J. Immunol, Apr 2008;180:5625-5635.
    [44]Hata K, Andoh A, Shimada M, et al. IL-17 stimulates inflammatory responses via NF-kappaB and MAP kinase pathways in human colonic myofibroblasts. Am J Physiol Gastrointest Liver Physiol,2002,182(6): G1035-G1044.
    [45]Molet S, Hamid Q, Davoine F, et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol.2001,108(3):430-8.
    [46]Prause O, Laan M, Lotvall J, et al. Pharmacological modulation of interleukin -17-induced GCP -2-, GRO-alpha- and interleukin-8 release in human bronc- hial epithelial cells. Eur J Pharmacol,2003; 462 (1-3):193-8.
    [47]Wakashin H, Hirose K, Maezawa Y, et al. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med,2008,15;178 (10):1023-32.
    [48]Aleksandra VR, Anna MH, Reiko H, et al. Cutting Edge:NKT Cells Constitutively Express IL-23 Receptor and RORyt and Rapidly Produce IL-17 upon Receptor Ligation in an IL-6- Independent Fashionl. J Immunol, 2008,15;180(8):5167-5171.
    [49]Craig AM, Claire LL, Chen Y, et al. Divergent Pro-and Antiinflammatory Roles for IL-23 and IL-12 in Joint Autoimmune Inflammation. J. Exp. Med, 2003; 198:1951-1957.
    [50]Amanda KH, Eric MJ, Krystian J, et al. Interleukin (IL)-23 Receptor Is a Major Susceptibility Gene for Graves'Ophthalmopathy:The IL-23/T-helper 17 Axis Extends to Thyroid Autoimmunity. J. Clin, Endocrinol. Metab. Mar 2008; 93:1077-1081.
    [51]Chakir H, Wang H, Lefebvre DE, et al.T-bet/GATA-3 ratio as a measure of Th1/Th2 cytokine profile in mixed cell populations:predominant role of GATA-3. J Imunol Methods,2003,278(1-2):157-169.
    [52]Hannon GJ. RNA interference. Nature,2002,418(6894):244-251.
    [53]Smith J. Brachyury and the T-box genes. Curr Opin Genet Dev,1997; 7(4): 474-80
    [54]Szabo SJ, Kim ST, Costa GL, et a 1. A novel transcription factor, T-bet, directs Thl lineage commitment. Cell,2000,100(7):655-669
    [55]Lugo-Vilarino G, Maldonado-Lopez R, Possemato R, et al. T-bet is required for optimal production of IFN-y and antigen-specific T cell activation by dendritic cells. Proc Natl Acad Sci USA,2003,100(13):7749-7754.
    [56]Szabo SJ, Sullivan BM, Sternmarm C, et al. Distinct effects of T-bet in Thl lineage commitmentand IFN-gamma production in CD4+ and CD8+T cells. Science,2002,295(5553):338-342.
    [57]黄玲,向旭东,王文军,等.罗格列酮对支气管哮喘急性发作期患者T淋巴细胞转录因子T-bet/GATA-3表达的调控.中华结核和呼吸杂志.2007,30(2):116-120.
    [58]杨海华,王文军,向旭东,等PPAR-γ激动剂对哮喘急性发作期患者T淋巴细胞磷酸化STAT6影响的体外实验研究.中华呼吸与危重临床杂志,2008,7(5):346-349.
    [59]Rangachari M, Mauermann N, Marty RR, et al. T-bet negatively regulates autoimmune myocarditis by suppressing local production of interleukin-17. J Exp Med,2006,203(8):2009-2019.
    [60]Gocke AR, Cravens PD, Ben LH et al. T-bet regulates the fate of Thl and Thl7 lymphocytes in autoimmunity. J Immunol,2007,1;178(3):1341-8.
    [61]Chen Y, Claire LL, McKenzie M, et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J. Clin. Invest,2006; 116(5):1317-1326.
    [62]Mathur A N, Chang HC, Zisoulis DG, et al. T-bet is a critical determinant in the instability of the II-17-secreting T helper phenotype. Blood,2006,108 (5): 1595-1601.
    [1]Oppmann B, Lecley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12[J]. Immunity,2000,13(5):715-725.
    [2]Joseph RP, Kewang L, Sherri YC, et al. Alloantigen-reactive Th1 development in IL-12-deficient mice[J]. J.Immunol, Feb 1998;160:1132-1138.
    [3]Parham C, Chirica M, Timans J, et al. A Receptor for the Heterodimeric ytokine IL-23 Is Composed of IL-12Rβ1 and a Novel Cytokine Receptor Subunit, IL-23R[J]. J.Immunol, Jun.2002; 168:5699-5708.
    [4]Zhang XY, Zhang HJ, Zhang Y, et al. Identification and expression analysis of alternatively spliced isoforms of human interleukin-23 receptor gene in normal lymphoid cells and selected tumor cells[J]. Immunogenetics,2006; 57:934-943.
    [5]Luisa O, Maria P, Ilkka H, et al. SNP discovery by mismatch-targeting of Mutransposition[J]. Nucleic Acids Res, Mar 2007;35:e44.
    [6]Amanda KH, Eric MJ, Krystian J, et al. Interleukin (IL)-23 Receptor Is a Major Susceptibility Gene for Graves'Ophthalmopathy:The IL-23/T-helper 17 Axis Extends to Thyroid Autoimmunity[J]. J. Clin, Endocrinol. Metab. Mar 2008;93:1077-1081.
    [7]Aleksandra VR, Anna MH, Reiko H, et al. Cutting Edge:NKT Cells Constitutively Express IL-23 Receptor and RORyt and Rapidly Produce IL-17 upon Receptor Ligation in an IL-6-Independent Fashion[J] 1. J Immunol,2008 April 15; 180(8):5167-5171.
    [8]Cho ML, Kang JW, Moon YM, et al. STAT3 and NF-κB Signal Pathway Is Required for IL-23-Mediated IL-17 Production in Spontaneous Arthritis Animal Model IL-1 Receptor Antagonist-Deficient Mice[J]. J. Immunol, May 2006; 176:5652-5661.
    [9]Chen Y, Claire LL, McKenzie M, et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis[J]. J. Clin. Invest. May 2006;116(5):1317-1326.
    [10]Gocke AR, Cravens PD, Ben LH et al. T-bet regulates the fate of Th 1 and Th 17 lymphocytes in autoimmunity[J]. J Immunol,2007 Feb 1; 178(3):1341-8.
    [11]Carla SRL, David MF, et al. A unique role for IL-23 in promoting cellular immunity[J]. J. Leukoc. Biol, Jan 2003;73:49-56.
    [12]Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation [J]. J Clin Invest, 2006 May;116(5):1218-22.
    [13]Shanker A, Sayers T. Sensitizing tumor cells to immune-mediated cytotoxicity[J]. Adv Exp Med Biol, Jan 2007;601:163-71.
    [14]Langowski JL, Kastelein RA, Oft M. Swords into plowshares:IL-23 repurposes tumor immune surveillance [J]. Trends Immunol,2007 May;28(5):207-12.
    [15]Teruo K, Marimo S, Hide K, et al. Systemic Administration of IL-23 Induces Potent Antitumor Immunity Primarily Mediated through Thl-Type Response in Association with the Endogenously Expressed IL-12[J]. J. Immunol, Jun 2007;178:7571-7580.
    [16]Craig AM, Claire LL, Chen Y, et al. Divergent Pro- and Antiinflammatory Roles for IL-23 and IL-12 in Joint Autoimmune Inflammation[J]. J. Exp. Med, Dec 2003; 198:1951-1957.
    [17]Liu FL, Chen CH, Chu SJ, et al. Interleukin (IL)-23 p19 expression induced by IL-1β in human fibroblast-like synoviocytes with rheumatoid arthritis via active nuclear factor-KB and AP-1 dependent pathway [J]. Rheumatology, Aug 2007; 46:1266-1273.
    [18]David Y, Jeanne C, Heleen S, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6[J]. Clin Invest,2006 May 1;116(5):1310-1316.
    [19]Bruno G, Zhang GX, Yu Sh, er al. IL-12p35-Deficient Mice Are Susceptible to Experimental Autoimmune Encephalomyelitis:Evidence for Redundancy in the IL-12 System in the Induction of Central Nervous System Autoimmune Demyelination[J]. J. Immunol, Dec 2002; 169:7104-7110.
    [20]Zhang GX, Bruno G, Shuo Y, et al. Induction of Experimental Autoimmune Encephalomyelitis in IL-12 Receptor-[32-Deficient Mice:IL-12 Responsiveness Is Not Required in the Pathogenesis of Inflammatory Demyelination in the Central Nervous System[J]. J. Immunol, Feb 2003; 170:2153-2160.
    [21]Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation[J]. J. Exp. Med, Jan 2005;201:233-240.
    [22]Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation[J]. J Clin Invest,2006 May; 116(5):1218-22.
    [23]Gamze P, Jan DB, Marcel BMT, et al. In Vitro and In Situ Expression of IL-23 by Keratinocytes in Healthy Skin and Psoriasis Lesions:Enhanced Expression in Psoriatic Skin[J]. J. Immunol, Feb 2006;176:1908-1915.
    [24]Wakashin H, Hirose K, Maezawa Y, et al. IL-23 and Th17 cells enhance Th2-cell- mediated eosinophilic airway inflammation in mice[J]. Am J Respir Crit Care Med,2008 Nov 15; 178 (10):1023-32.
    [25]Stefan I, Steven B, Apostolos B, et al. Functional Relevance of the IL-23-IL-17 Axis in Lungs In Vivo[J]. Am. J. Respir, Cell Mol. Biol. Apr 2007; 36: 442-451.
    [26]Molet S, Hamid Q, Davoine F, et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines[J]. J Allergy Clin Immunol. Sep 2001;108 (3):430-8.
    [27]Prause O, Laan M, Lotvall J, et al. Pharmacological modulation of interleukin-17-induced GCP-2-, GRO-alpha-and interleukin-8 release in human bronchial epithelial cells[J]. Eur J Pharmacol, Feb 2003; 462 (1-3):193-8.