胚胎后肾间充质细胞尾静脉移植对慢性血清病肾炎大鼠肾损伤的修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的分离、培养大鼠脾脏T细胞、胚胎后肾间充质细胞,体外诱导培养骨髓源性树突细胞,为后续体外模拟胚胎后肾间充质细胞的免疫调节作用、细胞移植研究提供细胞来源及依据。
     方法(1)健康SD雌性大鼠,10%水合氯醛麻醉后无菌条件下取出股骨和胫骨,RPM I 1640基本培养基冲洗骨髓腔获骨髓腔冲洗液,密度梯度分离后将单个核细胞用含GM-CSF、TNF-α和IL 4完全营养液混悬后与37℃、体积分数为0.05的CO2孵箱中培养,并进行免疫表型鉴定。(2)取SD大鼠,麻醉后无菌条件下取脾,研磨成脾细胞悬液,密度梯度离心取单核细胞层,以RPMI 1640基本培养基制成2×106/ml淋巴细胞悬液,置37℃、体积分数为0.05的CO2孵箱中培养,并进行流式细胞检测。(3)孕14天大鼠胚胎,分离胚胎肾脏,去除输尿管芽,消化后置37℃、5%CO2、饱和湿度的培养箱中培养。取传至第3代的MMS倒置相差显微镜下观察培养细胞,并行HE染色、电镜观察、生长曲线测定;ABC免疫酶染色法检测波形蛋白、角蛋白、nestin、CD133、CD34。另取传12代细胞及冻存复苏后细胞(传5代)培养,形态观察,并波形蛋白、角蛋白检测。
     结果(1)骨髓单个核细胞诱导后呈现典型树突细胞形态,表现为毛刺状突起、半贴壁生长,并表达CD11C、CD86、MHC-Ⅱ等树突细胞表面标志。(2)由脾脏分离的T淋巴细胞,经流式细胞仪检测,CD3阳性率为75%,CD4阳性率为48%,CD8阳性率为31%(3)MMS形态为成纤维细胞样,贴壁生长,48-72小时达生长高峰;波形蛋白、nestin、CD133表达阳性;角蛋白、CD34、DB表达阴性。传12代细胞及冻存复苏后细胞形态观察及波形蛋白、角蛋白检测较前无改变。
     结论体外培养的树突细胞具有典型树突细胞的形态学表现,脾源性T培养细胞纯度达到试验要求,后肾间充质细胞,纯度、稳定性较高并符合干细胞特征。
     目的观察胚胎后肾间充质细胞和抗IL-10抗体对T细胞、树突细胞增殖以及对IL-4、INF-γ、穿孔素以及颗粒酶B表达的影响,探讨其可能机制
     方法(1)体外培养大鼠骨髓源性树突细胞、脾源性T细胞和胚胎后肾间充质细胞;(2)建立混合培养体系,观察胚胎后肾间充质细胞和抗IL-10抗体对脾源性T细胞、树突细胞以及树突细胞诱导的T细胞增殖的影响;(3)建立Transwell培养体系,胚胎后肾间充质细胞和抗IL-10抗体对脾源性T细胞、树突细胞以及树突细胞诱导的T细胞增殖的影响;(4)建立混合培养体系,观察胚胎后肾间充质细胞和抗IL-10抗体对树突细胞诱导的T细胞IL-4、INF-γ、穿孔素以及颗粒酶BmRNA和蛋白表达的影响;(5)建立Transwell培养体系,观察胚胎后肾间充质细胞和抗IL-10抗体对树突细胞诱导的T细胞IL-4、INF-γ、穿孔素以及颗粒酶BmRNA和蛋白表达的影响。
     结果(1)混合培养体系中,与对照组相比,试验组T淋巴细胞增殖活性、树突细胞增殖活性、树突细胞诱导的T细胞增殖活性均降低,在R:S比值1:80范围内成剂量依赖关系,(P值均<0.05)。细胞增殖抑制率在1:80、1:160两组之间没有显著性差异,(P>0.05)。与R:S(1:80)组相比,Anti-IL-10组T细胞增殖率明显增加,(P<0.05),与阳性对照组相比,增殖率明显降低(P<0.05);(2)Transwell培养体系中,与对照组相比,试验组T淋巴细胞增殖活性、树突细胞增殖活性、树突细胞诱导的T细胞增殖活性均降低,与R:S比值成剂量依赖关系,随R:S的减小,T细胞的增殖率逐渐下降,(P值均<0.05)。细胞增殖抑制率在1:80、1:160两组之间没有显著性差异,(P>0.05)。与R:S(1:80)组相比,Anti-IL-10组T细胞增殖率明显增加,(P<0.05),与阳性对照组相比,增殖率明显降低(P<0.05);(3)混合培养体系中,与对照组相比,试验组树突细胞诱导的T细胞IL-4、INF-γ、穿孔素以及颗粒酶B mRNA和蛋白表达均明显下降,在R:S比值1:80范围内成剂量依赖关系。细胞增殖抑制率在1:80、1:160两组之间没有显著性差异,(P>0.05)。与R:S(1:80)组相比,Anti-IL-10组T细胞增殖率明显增加,(P<0.05),与阳性对照组相比,增殖率明显降低(P<0.05);(4) Transwell培养体系中,与对照组相比,试验组树突细胞诱导的T细胞IL-4、INF-γ、穿孔素以及颗粒酶B mRNA和蛋白表达均明显下降,在R:S比值1:20-1:80范围内成剂量依赖关系。细胞增殖抑制率在1:80、1:160两组之间没有显著性差异,(P>0.05)。与R:S(1:80)组相比,Anti-IL-10组T细胞增殖率明显增加,(P<0.05),与阳性对照组相比,增殖率明显降低(P<0.05)。
     结论胚胎后肾间充质细胞可能通过直接接触和旁分泌作用抑制树突细胞、T细胞以及树突细胞诱导的T细胞的增殖,抑制树突细胞诱导的T细胞IL-4、INF-γ、穿孔素以及颗粒酶B mRNA和蛋白的表达。
     目的探讨胚胎后肾间充质细胞对慢性血清病肾炎大鼠免疫调节作用以及对肾脏损伤的治疗作用。
     方法(1)体外原代培养胚胎后肾间充质细胞,GFP标记;(2)建立慢性血清病肾炎模型大鼠;(3)大鼠分为5组:空白对照组、阴性对照组、模型组、MMS预处理组和MMS移植干预组;(4)荧光显微镜定位GFP标记的胚胎后肾间充质细胞在大鼠体内的分布;(5)常规病理染色观察五组大鼠肾脏病理变化;(6)流式细胞术检测五组大鼠外周血T细胞亚群;(7)ELISA法检测五组大鼠血清IL-4、INF-γ水平;(8)RT-PCR法检测五组大鼠外周血单个核细胞IL-4、INF-γ、穿孔素和颗粒酶B mRNA的表达。
     结果(1)模型复制结束时,与空白对照组和阴性对照组相比,模型组、MMS预处理组大鼠尿蛋白明显升高,总蛋白水平、白蛋白水平明显降低,总胆固醇水平明显增加(P<0.05); MMS预处理组尿蛋白水平较模型组明显降低(P<0.05)。(2)实验结束时,与模型组相比,MMS移植组尿蛋白水平均较模型组明显下降(P<0.05),预处理组下降更明显(P<0.01)。与移植组相比,预处理组尿蛋白水平明显降低(P<0.05)。(3)GFP标记的MMS向肝脏、脾脏和肾脏归巢,但不能向脑组织以及心脏归巢。(4)与模型组比较,MMS移植组肾脏病理损伤减轻;与MMS移植组相比,MMS预处理组肾脏病理损伤减轻。(5)与空白对照组和阴性对照组相比,模型组、MMS预处理组和MMS移植组大鼠外周血Th细胞比例下降、Ts细胞比例升高,Th/Ts比例下降,差别具有显著性意义(P<0.05)。与模型组比较,MMS预处理组和MMS移植组大鼠外周血Th细胞比例下降、Ts细胞比例升高,差别无统计学意义(P>0.05),Th/Ts比例下降,差别具有显著性意义(P<0.05)。与MMS预处理相比,MMS移植组大鼠Th/Ts比例下降,差别具有显著性意义(P<0.05)。(6)与空白对照组和阴性对照组相比,模型组大鼠外周血IL-4水平明显增高,INF-γ水平明显降低,差别具有显著性意义(P<0.01), MMS预处理组和MMS移植组大鼠外周血IL-4水平明显增高,INF-γ水平明显降低,差别具有显著性意义(P<0.05)。与模型组比较,MMS预处理组和MMS移植组大鼠外周血IL-4水平降低,INF-γ水平明显升高,差别有统计学意义(P<0.05)。与MMS预处理相比,MMS移植组大鼠大鼠外周血IL-4水平增高,INF-γ水平明显降低,差别具有显著性意义(P<0.05)。(7)与空白对照组和阴性对照组相比,模型组大鼠外周血单个核细胞IL-4、穿孔素、颗粒酶BmRNA表达增高,INF-γmRNA表达明显减低,差别具有非常显著性意义(P<0.01), MMS预处理组和MMS移植组大鼠外周血IL-4、穿孔素、颗粒酶BmRNA表达增高,INF-γmRNA表达明显减低,差别具有显著性意义(P<0.05)。与模型组比较,MMS预处理组和MMS移植组大鼠外周血IL-4、穿孔素、颗粒酶B mRNA表达表达水平降低,INF-γmRNA表达明显增高,差别有统计学意义(P<0.05)。与MMS预处理相比,MMS移植组大鼠大鼠外周血IL-4、穿孔素、颗粒酶B mRNA表达水平增高,INF-γmRNA表达水平降低,差别具有显著性意义(P<0.05)。
     结论胚胎后肾间充质细胞可以调节慢性血清病肾炎大鼠免疫状态,减轻肾脏损伤。
     结论胚胎后肾间充质细胞可以一定程度上纠正慢性血清病肾炎大鼠免疫紊乱,减轻肾脏损伤。
Part 1 Isolation, cultivation and identification of bone marrowme derived dentritic cells, spleen derived T cells and metanephric mesenchymal cells
     Abstract Objective To isolate and culture rat spleen T cells, embryonic metanep-hric mesenchymal cells, and bone marrow-derived dendritic cells in vitro as the cell source for the following research including the immune regulation and transplantation.
     Methods (1)The mononuclear cells obtained from the bone marrow of SD rats after anesthetized by 10% chloral hydrate, were cultured in with complete RPMI1640 medium containing GM-CSF, IL-4 and TNF-a in 37℃and 5% CO2 incubator and cellular immunochemistry was performed to test the special antigens. (2) The spleen was obtained from SD rats under sterile conditions after anesthesia and was grinded into the suspension followed by density gradient centrifugation to get the T cells which were cultured at 37℃,0.05% CO2 incubator. The flow cytometry was performed to determine the cells antigen expression. (3) Rats were anaesthetized on gestation day 14 and metanephric balstemata were separated from ureteric buds by microdissection. Cells were grown in DMEM containing 10% fetal calf serum at 37℃in a 5% CO2 atmosphere. The morphology of MMS were observed by inverted phase contrast microscope, HE staining, and electronic microscope. The surface antigen phenotypes were identified by immunocytochemistry, and the purification was identified by flow cytometry. A growth curve to be used for studying the characteristics of growing. The morphology and the surface antigen phenotypes (vimentin, cytometry) of MMS at passage 12 and resused MMS at passage 5 were also observed.
     Results (1) the bone marrow mononuclear cells showed a typical dendritic cell morphology, such as burr-like protrusions, semi-adherent growth, and expressed CD11C, CD86, MHC-II after the induction (2) T-lymphocytes isolated from the spleen showed that CD3-positive rate was 75%, CD4-positive rate was 48%, CD8-positive rate was 31% by flow cytometry,(3) MMS grew adherencely as fibroblast-like, positive for vimentin, nestin, and CD 133. Instead, they were negative for keratin, CD34 and Dolichos Biflorus (DB). The flow cytometry showed a single peak of MMS. The morphology and the surface antigen phenotypes (vimentin, cytometry) of MMS at passage 12 and resused MMS at passage 5 had no changes.
     Conclusion dendritic cells cultured showed a typical morphology of dendritic cells in vitro, spleen-derived T cell got a considerate purity to meets the test requirements, matenephric mesenchymal cells hold a qualified purity, stability and showed stem cell characteristics.
     Objective To observe the effect of metanephric mesenchymal stem cells and anti-IL-10 antibody on the proliferation of T cells, dendritic cells and T cells induced by dentric cells and the expression of IL-4, INF-γ, perforin and granzyme B in T cells. To explore the mechanism.
     Methods (1) Culture the bone marrow derived dendritic cells, spleen derived T cells and the metanephric mesenchymal stem cells in vitro. (2) The establishment of mixed-culture system was performed and the influence of metanephric mesenchymal cells and anti-IL-10 antibody to the proliferation rate of spleen-derived T cells, dendritic cells and T cells induced after dendritic cell was recorded. (3) The establishment of Transwell culture system was performed and the influence of metanephric mesenchymal cells and anti-IL-10 antibody to the proliferation rate of spleen-derived T cells, dendritic cells and T cells induced after dendritic cell was recorded. (4) The establishment of mixed-culture system was performed and the influence of metanephric mesenchymal cells and anti-IL-10 antibody to the expression of IL-4, INF-γ, perforin and granzyme B in T cells after induced by dendritic cells were recorded. (5) The establishment of mixed-culture system was performed and the influence of metanephric mesenchymal cells and anti-IL-10 antibody to the expression of IL-4, INF-γ, perforin and granzyme B in T cells after induced by dendritic cells were recorded.
     Results (1) Compared with that in control, the proliferation rate of T lymphocytes, dendritic cells, T cells after dendritic cells stimulation in mixed culture system decreased in the intervention group with a dose-dependent pattern within the R:S ratio1:20-1:80(P<0.05). The difference of cell proliferation rate in the 1:80 andl:160 groups held no obvious significance (P> 0.05). Compared with R:S (1:80) group, the cell proliferation rate in anti-IL-10 group increased significantly (P<0.05), while decreased significantly when compared with that in control group (P<0.05);(2) Compared with that in control, the proliferation rate of T lymphocytes, dendritic cells, T cells after dendritic cells stimulation in Transwell culture system decreased in the intervention group with a dose-dependent pattern within the R:S ratio1:20-1:80(P<0.05). The difference of cell proliferation rate in the 1:80 and1:160 groups were comparable(P> 0.05). Compared with R:S (1:80) group, the cell proliferation rate in anti-IL-10 group increased significantly (P<0.05), while decreased significantly when compared with that in control group (P<0.05);(3) Compared with that in control, the expression of IL-4, INF-y, perforin and granzyme B mRNA and protein T lymphocytes after dendritic cells stimulation in mixed culture system decreased in the intervention group with a dose-dependent pattern within the R:S ratio1:20-1:80(P<0.05). The difference of cell proliferation rate in the 1:80 andl:160 groups held no obvious significance (P> 0.05). Compared with R:S (1:80) group, the cell proliferation rate in anti-IL-10 group increased significantly (P<0.05), while decreased significantly when compared with that in control group (P<0.05);(4) Compared with that in control, the expression of IL-4, INF-y, perforin and granzyme B mRNA and protein T lymphocytes after dendritic cells stimulation in transwell culture system decreased in the intervention group with a dose-dependent pattern within the R:S ratio1:20-1:80(P<0.05). The difference of cell proliferation rate in the 1:80 andl:160 groups held no obvious significance (P> 0.05). Compared with R:S (1:80) group, the cell proliferation rate in anti-IL-10 group increased significantly (P<0.05), while decreased significantly when compared with that in control group (P <0.05).
     Conclusion Metanephric mesenchymal stem cells inhibited the proliferation rate of dendritic cells, T lymphocytes and T lymphocytes after dendritic cell stimulation, inhibited IL-4, INF-y, Perforin and granzyme B mRNA and protein expression in T lymphocytes after dendritic cells stimulation. And the direct contact depression and paracrine could be responsible for the inhibition influence.
     Objective To investigate the immunomodulation of metanephric mesenchymal stem cells in chronic serum sickness nephritis rats as well as the therapeutic effects on renal injury.
     Methods (1) The metanephric mesenchymal stem cells were cultured and labelled by GFP in vitro, (2) The chronic serum sickness nephritis establishment in rats was performed, (3) Rats were divided into 5 groups: blank control, negative control, model, MMS preconditioning group and MMS transplantation group; (4) The localization of MMS labeled by GFP in rats was determined by fluorescence microscope, (5) Renal pathological changes in rats was observed by conventional pathological staining, (6) T cell subsets of rats from five groups were detected by flow cytometry, (7) ELISA assay was employed to detect serum IL-4, INF-y concentration; (8) RT-PCR assay was employed to detected IL-4, INF-y, perforin and granzyme B mRNA expression of mononuclear cells from rats perpheral blood of five groups.
     Results (1) Compared with that from blank control and negative control rats, rats from model and MMS preconditioning group showed increased urinary protein and cholesterol level and decreased total protein and albumin concentration when the chronic serum sickess nrphritis model was finished. Compared wth the model rats, MMS preconditioning rats displayed a lower urinary protein(P<0.05). (2) Compared with that in the model rats, a decreased urinary protein level was found in MMS transplantation rats showed (P<0.05) and MMS preconditioning rats(P<0.01). Compared with the MMS transplantion rats, MMS preconditioning rats showed a decreased urinary protein levels(P<0.05). (3) GFP labeled MMS were found in the liver, spleen and kidney, without heart and the brain tissue. (4) Compared with model rats, MMS transplantation rats displayed a slight kidney damage and even slighter in MMS preconditioning rats. (5) Compared with the blank control and negative control rats, model rats, MMS preconditioning rats and MMS transplantation rats showed a decreased Th cells and Th/Ts ratio, increased Ts cell ratio in peripheral blood(P<0.05). Compared with model rats, the decreased Th cells and increased Ts cell ratio in MMS and MMS preconditioning rats did not holded significance(P>0.05), while Th/Ts ratio decreased significantly(P<0.05). Compared with the MMS preconditioning rats, MMS transplantion rats held a decreased Th/Ts ratio(P<0.05). (6) Compared with that in the blank control rats and and negative control rats, an increased IL-4 and decreased INF-γconcentration in peripheral blood were found in model rats (P<0.01) and MMS preconditioning rats and MMS transplantation rats(P<0.05). Compared with the model rats, MMS preconditioning rats and MMS transplantation rats got a reduced level of IL-4 and increased INF-y levels in peripheral blood(P<0.05). Compared with MMS preconditioning rats, MMS transplantation rats held an higher IL-4 and lower INF-γconcentration in peripheral blood(P<0.05). (7) Compared with that in the blank control rats and and negative control rats, an increased IL-4, perforin, granzyme B mRNA expression and reduced INF-γmRNA expression was abtained in mononuclear cells of peripheral blood were found in model rats(P<0.01) and in MMS preconditioning rats and MMS transplantation rats(P<0.05). Compared with the model rats, MMS preconditioning rats and MMS transplantation rats got a reduced level of IL-4 perforin, granzyme B mRNA expression and increased INF-ymRNA expression in peripheral blood(P<0.05). Compared with MMS preconditioning rats, MMS transplantation rats held an higher IL-4, perforin, granzyme B mRNA expression in a lower level of expression,and lower INF-γconcentration in peripheral blood(P<0.05).
     Conclusion Metanephric mesenchymal cells could perform the immunomodulation in serum sickness nephritis rats and reduce the renal damage.
引文
[1].翁志媛,钟志敏,王丽娜,等.儿童肾病综合征SIL-2R与T细胞亚群变化的意义.实用医学杂志.2002,18(12):1289-1290.
    [2].朱光华,何威逊,罗运九,等.肾病综合征患儿血清白细胞介素-13、-18测定及其意义.实用儿科临床杂志.2003,18(5):359-360.
    [3].Printza N, Papachristou F, Tzimouli V, et al. IL-18 is correlated with type-2 immune response in children with steroid sensitive nephrotic syndrome.Cytokine. 2008,44(2):262-268.
    [4].Colleen Olive, Catherine, Falk. Michael C. Apoptosis and expression of cytotoxi T lymphocyte effector molecules in renal allografts. Transplant Immunology. 1999,7(1):27-36.
    [5].Altimari A, Gruppioni E, Capizzi E, et al. Blood monitoring of granzyme B and perforin expression after intestinal transplantation: considerations on clinical relevance. Transplantation.2008,85(12):1778-1783.
    [6].Nakajima H, Sun E. FTY720 inhibits the mRNA expression of intragraft cytotoxic molecules, leading to cardiac allograft survival Transplant Prec. 1998,30(5):2217-2220.
    [7].Gilbert M, Marie M T, Jean M W, et al. The dendritic cell lineage:A ubiquitous antigen-presenting organization. Ann Thorac Surg.1996,61(1):252.
    [8].周同,吴开胤,孙桂芝,等.树突状细胞在肾小管间质纤维化中作用及缬沙坦的干预调节.细胞生物学杂志.2007,29(5):736-742.
    [9]. Aaltonen P, Luimula P, Astrom E, et al. Changes in the expression of nephrin gene and protein in experimental diabetic nephropathy. Lab Invest. 2001,81(9):1185-1190.
    [10].Barison L, Kriz W, Mundd P, et al. The dysregulate dpodocyte phenotype:a novel concept in the pathogenesis of collapsing idiopathicfocal segmental glomerulosclerosisand HIV associated nephropathy. J Am Soc Nephrol. 1999,10(1):51-61.
    [11].Lin F, Cordes K, Li L, et al. Hemotopoietic stem cells contribute to the regeneration of renal tubules after renal ischemic-reperfusion injury in mice[J Am Soc Nephrol.2003,14(5):1181-1199.
    [12].Ito T, Suzuki A, Imai E, et al. Bone marrow is a reservoir of repolulating mesangial cells during glomerular remoding. J Am Soc Nephrol. 2003,14(5):1181-1199.
    [13].Hayakawam, Ishizakim, Hayakawa J, et al. Role of bone marrow cells in the healing process of mouse experimental glomerulonephritis. Pediatr Res. 2005,58(2):323-328.
    [14].Prodromidi Ei, Poulsom R, Jeffery R, et al. Bone Marrow-Derived Cells Contribute to Podocyte Regeneration and Amelioration of Renal Disease in a Mouse Model of Alport Syndrome. Stem Cells.2006,24(11):2448-2455.
    [15]Julie Perry, Stephanie Tam, Keqin Zheng, et al. Type IV Collagen Induces Podocytic Features in Bone Marrow Stromal Stem Cells In Vitro. J Am Soc Nephrol.2006,17(1):66-76.
    [16].Niemeyer P, Seckinger A, Siman K H G, et al. Allogenie transplantation of human mesenehymal stem cells for tissue engineering pupurseses:an in vitro study. Orthpade.2004,33(12):1346-1353.
    [17].Deans R J, B. Moseley A. Mesenehymal stem cells:biology and potential clinical use Exp Hematol.2000,28(8):875-884.
    [18].Garcia-Olmo D, Garcia-Olmo D. Stem cells:promises and realities in cancer research. Clin Transl Oncol.2006,8(5):301-302.
    [19]. Djouad F, Plence P, Bony C. Immunosuppressive efect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood.2003,102(10):3837-3844.
    [20].Fiorina P, Jurewicz M, Augello A, et al.Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol.2009,15,183(2):993-1004.
    [21].Oliver Ja, Barasch J, Yang J, et al. Metanephric mesenchyme contains embryonic renal stem cells. Am J Physiol Renal Physiol.2002,283(4):799-809.
    [22]. Levashova ZB, Plisov SY, Perantoni AO. Conditionally immortalized cell line of inducible metanephric mesenchyme. Kidney Int.2003,63(6):2075-2087.
    [23].Vega-Warner V, Ransom RF, Vincent AM, et al.Induction of antioxidant enzymes in murine podocytes precedes injury by puromycin aminonucleoside. Kidney Int. 2004,66(5):1881-1889.
    [24].匡裕玖,周建华.氧自由基在大鼠阿霉素肾病发生中的作用探讨.中华医学研究杂志.2004,4(2):103-105.
    [25].张五星,陈香美,魏日胞,等.大鼠慢性血清病肾炎模型的改进研究.中国比较医学杂志.2003,13(3):138-141.
    [26].陈敬民,李友娣.金樱子醇提物对血清病型肾炎大鼠的药理作用.时珍国医国药.2006,17(8):1404-1405.
    [27].Eddy A, M. Symons. Nephrotic syndrome in childhood. Lancet.2003,362 (9384):629-639.
    [28].王云甫,孙圣刚,何国厚,等.体外诱导扩增大鼠树突状细胞及其特性鉴定.细胞与分子免疫学杂志.2005,21(1):76-78.
    [29]. Ross EA, Williams MJ, Hamazaki T, et al. Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol. 2009,20(11):2338-2347.
    [30]. Bernstein J, Cheng F, Roszka J.Glomerular differentiation in metanephric culture. Lab Invest.1981,45(2):183-190.
    [31].Yang J, Blum A, Novak T, et al. An epithelial precursor is regulated by the ureteric bud and by the renal stroma. Developmental Biology. 2002,246(2):296-310.
    [32].Romao EA, Coimbra TM, Costa RS, et al. Renal disorders involved in the pathophysiology of urinary excretion of a-1 microglobulin in patients with glomerulopathies. Clin Nephrol.2009,72(6):473-481.
    [33].Radounikli A, Sahl T, Bergmann L, et al. Characterization of the mononuclear cell infiltrate in the glomerulus of rats with glomerulonephritis. Nephrol Dial Transplant.1995,10(2):185.
    [34].Couserw G, Nangaku M, Shankland S, et al. Molecularmechanisms of experimental glomerulonephritis:an overview. Neprology.1997,3(2):633.
    [35].Bruneau S, J. Dantal. New insights into the pathophysiology of idiopathic nephrotic syndrome. Clin Immunol.2009,133(1):13-21.
    [36].Nakashima H. Membranous nephropathy is developed under Th2 environment in chronic graft-versus-host disease. Med Hypotheses.2007,69(4):787-791.
    [37].刘振翔,杜华.原发性肾病综合征患儿外周血T淋巴细胞亚群的观察.广西医学,2003,25(10):1856-1857.
    [38].Musial K, Ciszak L, Kosmaczewska A, et al. Zeta chain expression in T and NK cells in peripheral blood of children with nephrotic syndrome. Pediatr Nephrol. 2010,25(1):119-127.
    [39].张琳琳,赵学兰,肖青,等.肾病综合征T细胞亚群检测的临床意义.潍坊医学院学报.2008,30(1):14-15.133
    [40].刘从江,张磊,刘剑华.慢性肾病患者治疗前后血浆VEGF和外周血B细胞、T细胞亚群检测的临床意义.放射免疫学杂志.2006,19(6):523-524.
    [41]. Le B L, Bruneau S, Naulet J, et al. Induction of T regulatory cells attenuates idiopathic nephrotic syndrome. J Am Soc Nephrol.2009,20(l):57-67.
    [42].Uda S, Nakayama T, Hirose M, et al. Minimal change nephrotic syndrome. Nippon Rinsho.2004,62(10):1829-1836.
    [43].Tucci M, Lombardi L, Richards HB, et al. Overexpression of interleukin-12 and T helper 1 predominance in lupus nephritis. Clin Exp Immunol.2008,154 (2):247-54.
    [44].Song CY, Kim BC, Hong HK, et al. TGF-beta type Ⅱ receptor deficiency prevents renal injury via decrease in ERK activity in crescentic glomerulonephritis. Kidney Int.2007,71(9):882-888.
    [45].Kaneko K, Tuchiya K, Fujinaga S, et al. Thl/Th2 balance in childhood idiopathic nephrotic syndrome. Clin Nephrol.2002,58(6):393-397.
    [46].浦立勇,王学浩,李相成,等.免疫磁珠两步法分离大鼠脾脏CD4+CD25+调节性T细胞.中国普外基础与临床杂志.2006,13(3):275-278.
    [47].杨矍,傅晓岚,尚小云,等.免疫磁珠负性分离纯化小鼠脾脏CD8-+T细胞免疫学杂志.2007,1(23):91-93.
    [48].郑峻松,吴军,黄文华,等.严重烫伤对小鼠脾脏T淋巴细胞经TCRα/βCD28活化通路和T细胞功能的影响.第三军医大学学报.2001,23(12):1430-1432.
    [49].Silvia D B, Luigi B, Pietro P, et al. Peripheral blood dendritic cells and monocytes are differently regulated in the elderly Clin Immunol. 2007,122(2):220-228.
    [50].曹云新,曲萍,杨安钢.人脾脏树突状细胞的培养及鉴定.第四军医大学学报.2005,26(10):881-883.
    [51].李奇灵,卜宁,李亚玲,等.两种来源的树突状细胞体外培养及免疫学特征比较.现代肿瘤医学.2006,14(7):787-790.
    [52].王东海,李新钢,曲迅,等.Wistar大鼠树突状细胞的体外培养、扩增与鉴定.山东大学学报(医学版).2006,44(6).
    [53].Kufner S, Zitzelsberger H, Kroell T, et al. Leukemia-derived dendritic cells can be generated from blood or bone marrow cells from patients with acute myeloid leukaemia: a methodological approach under serum-free culture conditions.. Scand J Immunol.2005,62.(1):86-98.
    [54].Guo Ym, Hirokawa M, Takahashi N, et al. Delayed addition of tumor necrosis factor (TNF) antagonists inhibits the generation of CD 11c+ dendritic cells derived from CD34+ cells exposed to TNF-alpha. Int J Hematol.2010,91(1):61-68.
    [55].周剑峰,袁发焕,李娜,等.大鼠后肾间充质细胞的体外培养.中华肾脏病杂志.2007,23(10):668-672.
    [56].刘厚奇,蔡文琴.医学发育生物学(第二版).北京:科学出版社,.2007:360-380.
    [57].徐剑,郑树森,梁廷波,等.环孢素对大鼠同种胚胎后肾移植的影响.中华医学杂志.2005,85(18):1238-1242.
    [58].Osafune K, Takasato M, Kispert A, et al. Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony-forming assay. Development. 2006,133(1):151-161.
    [59].Bertelli E, Regoli M, Fonzi L, et al. Nestin expression in adult and developing human kidney. Histochem Cytochem,.2007,55(4):411-421.
    [60].Kubiak-Wlekly A, Niemir Z I. The involvement of neprilysin in the pathogenesis of glomerulopathies, Pol Merkur Lekarski.2009,27(159):239-241.
    [61].Bagavant H, Fu SM. Pathogenesis of kidney disease in systemic lupus erythematosus. Curr Opin Rheumatol.2009,21(5):489-494.
    [62].Radounikli A, Sahl Ta, Bergmann L, et al. Characterization of the mononuclear cell infiltrate in the glomerulus of rats with glomerulonephritis. Nephrol Dial Transplant.1995,10 (2):185-190.
    [63].Hughes G C, Martin D, Zhang K, et al. Decrease in glomerulonephritis and Thl-associated autoantibody production after progesterone treatment in NZB/NZW mice.Arthritis Rheum.2009,60(6):1775-1784..
    [64].Lama G, Luongo I, Tirino G, et al. T-lymphocyte populations and cytokines in childhood nephrotic syndrome. Am J Kidney Dis.2002, May;39((5):958-965.
    [65].王惠萍,毛云英,王玲.原发性肾病综合征患儿T细胞亚群与激素耐药的关系.中国儿童保健杂志,2007,15(2):152-154.
    [66].Komatsuda A, Wakui H, Iwamoto K, et al. GATA-3 is upregulated in peripheral blood mononuclear cells from patients with minimal change nephrotic syndrome. Clin Nephrol.2009,71(6):608-616.
    [67].Kemper MJ, Meyer-Jark T, Lilova M, et al. Combined T- and B-cell activation in childhood steroid-sensitive nephrotic syndrome. Clin Nephrol.2003,60 (4):242-247.
    [68].Dekel B, Bocher WO, Marcus H, et al. Acute cellular rejection of human renal tissue by adoptive transfer of allogeneic human peripheral blood mononuclear cells into chimeric rats:sequential gene expression of cytokines, chemokines and cytolytic effector molecules, and their regulation by CTLA-4-Ig. Int Immunol. 1999,11(10):1673-1683.
    [69].Yannaraki M, Rebibou JM, Ducloux D, et al.Urinary cytotoxic molecular markers for a noninvasive diagnosis in acute renal transplant rejection. Transpl Int,2006,19(9):759-768.
    [70].Dipanjan C, Judy L. Death by a Thousand Cuts:Granzyme Pathways of Programmed Cell Death. Annu Rev Immunol 2008,26:389-420.
    [71].Thiery J, Keefe D, Saffarian S, et al. Perforin activates clathrin and dynamin-dependent endocytosis, which is required for plasma membrane repair and delivery of granzyme B for granzyme-mediated apoptosis. Blood. 2010,115(8):1582-1593.
    [72].Jahrsdorfer B, Vollmer A, E. Blackwell S, et al. Granzyme B produced by human plasmacytoid dendritic cells suppresses T-cell expansion. Blood. 2010,115(6):1156-1165.
    [73].Liu Y. Dendritic cell subsets and lineages, and their functions in innate and adaptive irnmumt. Cell.2001,106(3):255.
    [74].孙文学,戴勇,黄朝兴,等.原发性肾病综合征时血树突状细胞的变化.实用医学杂志.2005,21(2):2601-2603.
    [75].Little M. Regrow or repair: potential regenerative therapies for the kidney. J Amer Soc Nephrol.2006,17(9):2390-2401.
    [76].Hopkins C, Li J, Rae F, et al. Stem cell options for kidney disease. J Pathol. 2009,217(2):265-281.
    [77].Thomson J, Etskovitz-Eldor J, Shapiro S, et al. Embryonic stem cell lines from human blastocysts. Science.1998,282(5391):1145-1147.
    [78].Sueblinvong V, Weiss D J. Cell therapy approaches for lung diseases:current status. Curr Opin Pharmacol.2009,9(3):268-273.
    [79].Hematti P. Role of mesenchymal stromal cells in solid organ transplantation. Transplant Rev (Orlando).2008,22(4):262-273.
    [80].刘厚奇,蔡文琴.医学发育生物学(第二版).2007,北京:科学出版社:360-380.
    [81].Dekel B, Y Reisner. Embryonic committed stem cells as a solution to kidney donor shortage. Expert Opin Biol Ther.2004,4:(4):443-454.
    [82].Rogers Sa, Liapis H, Hammerman Mr. Transplantation of metanephroi across the major histocompatibility complex in rat. Am J Physiol Regul Inter Comp Physiol. 2001,280(1):R132-136.
    [83].Fiorentino D, Bond M, Mosmann T. Two types of mouse T helper cell. Ⅳ. Th2 clones secrete a factor that inhibits cytokine production by Thl clones. J Exp Med Dec,.1989,170(6):2081-2095.
    [84].Moore K, De Waal Malefyt R, Coffman R, et al. Interleukin-10 and the interleukin-10 receptor[J]. Annu Rev Immunol.2001,19:683-765.
    [85].Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol.2003,3(2):133-136.
    [86].邱文洪,王国华,朱慧芬,等.hIL-10修饰树突状细胞对实验动物淋巴细胞增殖及胞毒效应的影响.中国免疫学杂志.2003,19(8):527-529.
    [87].Roelen D, Schuurhuis D, Van D B, et al. Prolongation of skin graft survival by modulation of the alloimmune response with alternatively activated dendritic cells. Transplantation.2003,76(11):1608-1615.
    [88].张道杰,段朝霞.IL-10的研究进展.国外医学免疫学分册.2003,26(1):39-41.
    [89].Liang D, Ma W, Yao C, et al. Imbalance of interleukin 18 and interleukin 18 binding protein in patients with lupus nephritis. Cell Mol Immunol. 2006,3(4):303-306.
    [90].Woroniecki R, Shatat I, Supe K, et al. Urinary cytokines and steroid-responsiveness in idiopathic nephrotic syndrome of childhood. Am J Nephrol. 2008,28(1):83-90.
    [91].Lai K, Wei C, Tan L, et al. Overexpression of interleukin-13 induces minimal change-like nephropathy in rats. J Am Soc Nephrol.2007,18(5):1476-1485.
    [92].Camici M. The Nephrotic Syndrome is an immunoinflammatory disorder. Med Hypotheses.2007,68((4):):900-905.
    [93].Kilis-Pstrusinska K, Medynska A, Zwolinska D, et al. Interleukin-18 in urine and serum of children with idiopathic nephrotic syndrome. Kidney Blood Press Res.2008,31(2):122-126.
    [94].Huang Z, Wen Q, Zhou S, et al. Differential chemokine expression in tubular cells in response to urinary proteins from patients with nephrotic syndrome. Cytokine.2008,42(2):222-233.
    [95].Rees A, Kain R. Interferon-beta: a novel way to treat nephrotic syndrome? J Am Soc Nephrol.2007,18(11):2797-2798.
    [96].Bauvois B, Mothu N, Nguyen J, et al. Specific changes in plasma concentrations of matrix metalloproteinase-2 and -9, TIMP-1 and TGF-betal in patients with distinct types of primary glomerulonephritis. Nephrol Dial Transplant,.2007 22(4):1115-1122.
    [97].Rizk M, El-Nawawy A, Abdel-Kareem E, et al. Serum interleukins and urinary microglobulin in children with idiopathic nephrotic syndrome. East Mediterr Healt J. 2005,11(5-6):993-1002.
    [98].Tomlinson L, Davies K, Wright D, et al. Granulomatous interstitial nephritis treated with a tumour necrosis factor-alpha inhibitor. Nephrol Dial Transplant,. 2006,21(8):2311-2314.
    [99].Araya C, Wasserfall C, Brusko T, et al. A case of unfulfilled expectations. Cytokines in idiopathic minimal lesion nephrotic syndrome. Pediatr Nephrol. 2006,21(5):603-610.
    [100].Wasilewska A, Zoch-Zwierz W, Tomaszewska B, et al. Relationship of serum interleukin-7 concentration and the coagulation state in children with nephrotic syndrome. Pediatr Int.2005 47(4):424-429.
    [101].Shimoyama H, Nakajima M, Naka H, et al. Up-regulation of interleukin-2 mRNA in children with idiopathic nephrotic syndrome. Pediatr Nephrol. 2004,19(10):1115-1121.
    [102].Schachter A D. The pediatric nephrotic syndrome spectrum: clinical homogeneity and molecular heterogeneity. Pediatr Transplant.2004,8(4):344-348.
    [103].张薇,赵菲.黄芪对原发肾病患儿TH1/TH2细胞平衡的影响.光明中医.2007,22(1):49-51.
    [104].Szegedi A, Simics E, Aleksza M, et al. Ultraviolet-A1 phototherapy modulates Thl/Th2 and Tcl/Tc2 balance in patients with systemic lupus erythematosus. Rheumatology (Oxford).2005,44(7):925-931.
    [105].Masutani K, Taniguchi M, Nakashima H, et al. Up-regulated interleukin-4 production by peripheral T-helper cells in idiopathic membranous nephropathy. Nephrol Dial Transplant,.2004,19(3):580-586.
    [106].Poggi A, Mr. Zocchi. Mechanisms of tumor escape:role of tumor microenvironment in inducing apoptosis of cytolytic effector cells[J].. Arch Immunol Ther Exp (Warsz).2006,54(5):323-333.
    [107].盛慧明,崔磊,李宁丽.间充质干细胞免疫负调节机制研究进展现代免疫学.2007,27(2):161-164.
    [108].Sheu B C, Chang W C, Cheng C Y, et al. Cytokine regulation networks in the cancer microenvironment[J]. Front Biosci 2008,13(1):6255-6268.
    [109].Mosser D, X. Zhang. Interleukin-10:new perspectives on an old cytokine[J]. Immunol Rev.2008,226:205-218.
    [110].Tse W T, Pendleton J D, Beyer W M, et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells:implications in transplantation. Transplantation.2003,75(3):389-397.
    [111].Aggarwal S, Pittenger M. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood.2005,105(4):1815-1822.
    [112].Spaggiari GM, Abdelrazik H, Becchetti F, et al. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs:central role of MSC-derived prostaglandin E2. Blood. 2009,113(26):6576-6583.
    [113].Magatti M, De Munari S, Vertua E, et al. Amniotic mesenchymal tissue cells inhibit dendritic cell differentiation of peripheral blood and amnion resident monocytes. Cell Transplant.2009,18(8):899-914.
    [114].Deng C, Li F, Wang X, et al. The effect of murine mesenchymal stem cells on the differentiation and function of allogenetic bone marrow-derived dendritic cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi.2009,25(12):1098-1100.
    [115].English K, Barry F, Mahon B. Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol Lett. 2008,115(1):50-58.
    [116].唐波,张捷.穿孔素和颗粒酶B在移植排斥中的研究进展.医学综述.2009,15(8):1133-1135.
    [117].叶春华,程志清.病毒性心肌炎心肌颗粒酶B表达的实验研究.岭南心血管病杂志卷.2009,15(5):387-392.
    [118].张波,王禾,张更,等.尿穿孔素和粒酶BmRNA检测在诊断移植肾AR中的意义.中华泌尿外科杂志.2003,24(8):527-553.
    [119].Hailemariam S. Kidney transplantation: what does biopsy contribute? Schweiz Med Wochenschr.2000,130(25):952-956.
    [120].王业华,姜英,顾沈阳,等.外周血淋巴细胞穿孔素、颗粒酶B在大鼠肾移植急性排斥的表达及意义.南京医科大学学报(自然科学版).2006,26(1):55-59.
    [121].王惠萍,毛云英,辛芳琴,等.肾病综合征患儿IL-4与激素敏感关系的研究.实用医技杂志.2006,13(16):2894-2896.
    [122].肖景莹,蔡连顺,代月,等.细胞因子IL-4对小鼠骨髓来源树突状细胞培养的影响.黑龙江医药科学.2009,32(5):1-2.
    [123].Couser W G. Pathogenesis of glomerular damage in glomerulonephritis. Nephrol Dial Transplant.1998,13(1):
    [124].Le Berre L, Herve C, Buzelin F, et al. Renal macrophage activation and Th2 polarization precedes the development of nephrotic syndrome in Buffalo/Mna rats. Kidney Int.2005,68(5):2079-2090.
    [125].Grimbert P, Audard V, Remy P, et al. Recent approaches to the pathogenesis of minimal-change nephrotic syndrome.Nephrol Dial Transplant.2003,18 (2):245-248.
    [126].张悦,魏民,王谦,等.阿霉素复制大鼠微小病变肾病模型的研究.北京中医药大学学报.2002,25(2):16-18.
    [127]Jonathan R D, Joseph V B, K Morris J. A role for oxygen free radicals in aminonucleoside nephrosis. Kindey Int.1986,29(2):478-483.
    [128].张五星,陈香美,魏日胞,等.复方肾华治疗大鼠改良慢性血清病肾炎的实验研究,北京中医药大学学报,2003,26(2):232-35
    [129].孔心涓,白丰沛,孔心冰,等.野玫瑰根多糖对家兔急性血清病型肾炎肿瘤坏死因子水平的影响,佳木斯医学院学报,1996,19(4):15-16
    [130].Qiao J, Cohen D, D. Herzlinger. The metanephric blastema differentiates into collecting system and nephron epithelia in vitro. Development. 1995,121(10):3207-3214.
    [131].贾慧,邹万忠.改良慢性血清病性大鼠系膜增生性肾炎模型的建立.肾脏病与透析肾移植杂志.1996,5(3):21-25.
    [132].李荣山,主编.现代肾脏病实验技术.北京:军事医学科学出版社.2006,第一版:66-67.
    [133].熊建平,何念海.小儿肾病综合征血清皮质醇及T细胞亚群检测的临床意义.重庆医学,2006,35(22):2023-2024
    [134].梁丽俊,陆彪,邓璐璐,等.原发性肾病综合征患儿T细胞亚群及体液免疫变化及意义.西北五省(区)第六届儿科学术交流大会论文汇编.2008:205-206.
    [135].黄建亭.单纯性肾病综合征患儿T淋巴细胞亚群及体液免疫变化.实用儿科临床杂志.2005,20(1):53-54.
    [136].罗晓菊,李秋.儿童肾病综合征体液免疫指标与疗效观察.重庆医学.2005,34(2):171-172.
    [137].Errico A D, Corti B, Pinna A D, et al. Granzyme B and Peforin as predictive markers for acute rejective in human intestinal transplantation. Transplant Proc. 2003,35(8):3061-3065.
    [138].Tschopp C M, Spiegl N, Didichenko S, et al. Granzyme B, a novel mediator of allergic inflammation: its induction and release in blood basophils and human asthma. Blood.2006,108(7):2290-2299.
    [139].Fehniger T A, Cai S F, Cao X, et al. Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs. Immunity.2007,26(6):798-811.
    [140].Smyth M J, Street S E, Trapani J. Cutting edge:granzymes A and B are not essential for perforin-mediated tumor rejection. J Immunol.2003,171(2):515-518.
    [141].Saito S, Murakoshi K, Kotake S, et al. Granzyme B induces apoptosis of chondrocytes with natural killer cell-like cytotoxicity in rheumatoid arthritis. J Rheumatol 2008,35(10):1932-1943.
    [142].Adrain C, Duriez P, Brumatti G, et al. The cytotoxic lymphocyte protease, granzyme B, targets the cytoskeleton and perturbs microtubule polymerization dynamics. J Biol Chem.2006,281(12):8118-8125.
    [143].张源潮,遇晓,杨清锐,等.SLE患者外周血淋巴细胞穿孔素表达及糖皮质激素对穿孔素的影响.中国免疫学会第五届全国代表大会暨学术会议.2006:219.
    [144].李鸣,张源潮.抗人CD134单抗对外周血单个核细胞穿孔素mRNA表达的影响.中华微生物学和免疫学杂志.2005,25(9):746.
    [145].Theodorou G L, Marousi S, Ellul J, et al.T helper 1 (Th1)/Th2 cytokine expression shift of peripheral blood CD4+ and CD8+ T cells in patients at the post-acute phase of stroke.Clin Exp Immunol,2008,152(3):456-463.
    [146].刘建华,何威逊.儿童原发性肾病综合征与Th1/Th2细胞失衡.中华肾脏病杂志.2002,18(2):100-102.
    [147].范兴忠,李宏,刘文峰,等.肾病综合征患者血清IL-4和IL-10水平的变化及意义.免疫学杂志.2010,26(1):56-58.
    [148].王君,付小兵,李存保.骨髓间充质干细胞的免疫逃逸机制创伤外科杂志.2006,8(5):472-474.
    [149].栾希英,张学光.间充质干细胞的免疫调节作用及其应用.中国医学科学院学报.2006,28(3):448-452.
    [150].Nishinakamura R. Stem cells in the embryonic kidney. Kidney Int,2008,73 (8):913-917
    [151].刘喜红.胚胎后肾间充质细胞移植对急性肾小管坏死再生修复的实验研究. 临床医学博士专业学位论文.湖南省长沙市:中南大学.2007.
    [1]Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. Ⅳ. Th2 clones secrete a factor that inhibits cytokine production by Thl clones. J Exp Med. Dec,1989;170(6):2081-2095.
    [2]Vieira P, de Waal-Malefyt R, Dang MN, et al. Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones:homology toEpstein-Barr virus open reading frame BCRFI. Proc Natl Acad Sci USA,1991;88(4):1172-1176.
    [3]Kuhn R, Lohler J, Rennick D, et al. Interleukin-10-deficient mice develop chronic enterocolitis[J]. Cell.1993;75(2):263-274.
    [4]Prasanna K, Johnson R, Erin L, et al. IL-10 Inhibits Inflammation and Attenuates Left Ventricular Remodeling After Myocardial Infarction via Activation of STAT3 and Suppression of HuR[J]. Circ Res,2009;104(2):e9-e18.
    [5]Commeren DL, Van Soest PL, Karimi K, et al. Paradoxical effects of interleukin-10 on the maturation of murine myeloid dendritic cells [J]. Immunology,2003;110(2):188-196.
    [6]李伟栋,倪一鸣,冯强,等.小鼠移植心心肌细胞转染白细胞介素基因减轻术后免疫排斥反应[J].中华器官移植杂志2006;27(12):748-751.
    [7]Cavaillon JM. Pro- versus anti-inflammatory cytokines:myth or reality[J]. Cell Mol Biol (Noisy-le-grand).2001;47(4):695-702.
    [8]Allan SE, Broady R, Gregori S, et al. CD4+ T-regulatory cells:toward therapy for human diseases[J]. Immunol Rev.2008;223(1):391-421.
    [9]De Waal Malefyt R, Abrams J, Bennett B, et al. Interleukin 10(IL-10)inhibits cytokine synthesis by human monocytes:an autoregulatory role of IL-10 produced by monocytes[J]. J Exp Med.1991;174(5):1209-1220.
    [10]Spits H, De Waal Malefyt R. Functional characterization of human IL-10[J]. Int Arch Allergy Appl Immunol 1992;99(1):8-15.
    [11]V Pistoia. Production of cytokines by human B cells in health and disease[J]. Immunol Today 1997;18(7):343-350.
    [12]Nakajima H, Gleich GJ, Kita H, et al. Constitutive production of IL-4 and IL-10 and stimulated production of IL-8 by normal peripheral blood eosinophils[J]. J Immunol 1996;156(12):4859-4866.
    [13]Lin TJ, Befus AD. Differential regulation of mast cell function by IL-10 and stem cell factor. J Immunol 1997;159(8):4015-4023.
    [14]Enk AH, Katz SI. Identification and induction of keratinocyte-derived IL-1O[J]. J Immunol 1992;149(1):92-95.
    [15]O'Garra A, Vieira P. T(H)1 cells control themselves by producing interleukin-10[J]. Nat Rev Immunol.2007;7(6):425-428.
    [16]Simon Fillatreau, David Gray, Stephen M, et al. Not always the bad guys:B cells as regulators of autoimmune pathology[J].. Nat Rev Immunol 2008;8 (5):391-397.
    [17]Jankovic D, Kullberg MC, Feng CG, et al. Conventional T-bet(+)Foxp3(-) Thl cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection[J].. J Exp Med.2007;204(2):273-283.
    [18]M allat Z, Heymes C, O han J, et al. Exp ression of interleukin-10 in advanced human atherosclerosis plaques:relation to inducible nitric oxide synthase expression and cell death[J]. Arterio Scler Thromb Vasc Biol,1999;9(3):611-616.
    [19]Platzer C, Docke WD, Volk HD, et al. Catecholamines trigger IL-10 release in acute systemic stress reaction by direct stimulation of itspromoter/enhancer activity in monocytic cells[J]. J Neuroimmunol 2000;105(1):31-38.
    [20]Platzer C, Fritsch E, Elstner T, et al. Cyclic adenosine onophosphate-responsive elements are involved in the transcriptional activation of the human IL-10 gene in monocytic cells[J]. Eur J Immunol 1999;29(10):3098-3104.
    [21]Platzer C, Meisel C, Vogt K, et al. Up-regulation of monocytic IL-10 by tumor necrosis factor-alpha and cAMP elevating drugs[J]. Int Immunol 1995;7(4):517-523.
    [22]Moore KW, de Waal Malefyt R, Coffman RL, et al. Interleukin-10 and the interleukin-10 receptor[J]. Annu Rev Immunol.2001; 19:683-765.
    [23]Williams LM, Ricchetti G, Sarma U, et al. Interleukin-10 suppression of myeloid cell activation--a continuing puzzle[J]. Immunology.2004 113(3):281-292.
    [24]Dillon S, Agrawal S, Banerjee K, et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance[J]. J Clin Invest.2006;116(4):916-28.
    [25]Barsig J, Kusters S, Vogt K, et al. Lipopolysaccharide-induced IL-10 in mice:role of endogenous TNF-alpha[J]. Eur J Immunol,1995;25(10):2888-2893.
    [26]Meisel C, Vogt K, Platzer C, et al. Differential regulation of monocytic tumor necrosis factor-alpha and interleukin-10 expression[J]. Eur J Immunol 1996;26(7):1580-1586.
    [27]Mosser DM, Zhang X. Interleukin-10:new perspectives on an old cytokine[J]. Immunol Rev.2008;226:205-218.
    [28]Eskdale J, Gallagher G. A polymorphic dinucleotide repeat in the human IL-10 promoter[J]. Immunogenetics,1995;42(5):444-445.
    [29]Eskdale J, Kube D, Gallagher G. A second polymorphic dinucleotide repeat in the 5'flanking region of the human IL10 gene[J]. Immunogenetics,1996;45(1):82-83.
    [30]Eskdale J, Kube D, Tesch H, et al. Mapping of the human IL-10 gene and further characterization of the 5'flanking sequence[J]. Immunogenetics, 1997;46(2):120-128.
    [31]Turner DM, Williams DM, Sankaran D, et al. An investigation of polymorphism in the interleukin-10 gene promoter[J]. Eur J Immunogenet,1997;24(1):1-8.
    [32]Hurme M, Lahdenpohja N, Santtila S. Gene polymorphisms of interleukins 1 and 10 in infectious and autoimmune diseases[J]. Ann Med 1998;30(5):469-473.
    [33]Eskdale J, McNicholl J, Wordsworth P, et al. Interleukin-10 microsatellite polymorphisms and IL-10 locus alleles in rheumatoid arthritis susceptibility[J]. Lancet 1998;352(9136):1282-1283.
    [34]Turner DM, Grant SC, Yonan N, et al. Cytokine gene polymorphism and heart transplant rejection[J].Transplantation,1997;64(5):776-779..
    [35]孙卫民,王惠琴.细胞因子方法学[M].人民卫生出版社1999:,493-501.
    [36]Gesser B, Leffers H, Jinquan T, et al. Identification of functional domains on human interleukin 10[J]. Proc Natl Acad Sci USA 1997;94(26):14620-14625.
    [37]Donnelly RP, Dickensheets H, Finbloom DS. The interleukin-10 signal transduction pathway and regulation of gene expression in mononuclear phagocytes[J]. J Interferon Cytokine Res.1999;19(6):563-573.
    [38]Kotenko SV, Krause CD, Izotova LS, et al. Identification and functional characterization of a second chain of the interleukin-10 receptor complex[J]. EMBO J 1997;16(19):5894-5903.
    [39]Gibbs VC, Pennica D. CRF2-4:isolation of cDNA clones encoding the human and mouse proteins[J]. Gene,1997;186(1):97-101.
    [40]Kotenko SV, Krause CD, Izotova LS, et al. Identification and functional characterization of a second chain of the interleukin-10 receptor complex[J]. EMBO J 1997,;16(19):5894-5903.
    [41]Staples KJ, Smallie T, Williams LM, et al. IL-10 induces IL-10 in primary human monocyte-derived macrophages via the transcription factor Stat3[J]. J Immunol. 2007178.(8):4779-4785.
    [42]Akdis CA, Blaser K. Mechanisms of interleukin-10-mediated immune suppression[J]. Immunology,2001;103(2):131-136.
    [43]D'Andrea A, Aste-Amezaga M, Valiante NM, et al. Interleukin 10(IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells[J]. J Exp Med, 1993;178(3):1041-1048.
    [44]Cai G, Kastelein RA, Hunter CA. IL-10 enhances NK cell proliferation, cytotoxicity and production of IFN-gamma when combined with IL-18[J]. Eur J Immunol.1999 29(9):2658-2665.
    [45]Santin AD, Hermonat PL, Ravaggi A, et al. Interleukin-10 increases Thl cytokine production and cytotoxic potential in human papillomavirus-specific CD8(+) cytotoxic T lymphocytes [J]. J Virol 2000;74(10):4729-4737.
    [46]Enk AH, Jonuleit H, Saloga J, et al. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma[J]. Int J Cancer.1997;73(3):309-316.
    [47]Weber F, Byrne SN, Le S, et al. Transforming growth factor-betal immobilises dendritic cells within skin tumours and facilitates tumour escape from the immune system[J]. Cancer Immunol Immunother.2005 54(9):898-906.
    [48]Mocellin S, Wang E, Marincola FM. Cytokines and immune response in the tumor microenvironment[J]. J Immunother.2001;24(5):392-407.
    [49]Peng, Judy C;, Thomas, et al. Dendritic Cell Immunotherapy for Melanoma[J]. Reviews on Recent Clinical Trials 2006;1(16):87-102.
    [50]Jayshree RS, Sreenivas A, Tessy M, et al. Cell intrinsic and extrinsic factors in cervical carcinogenesis. Indian J Med Res 2009;130(3):286-295.
    [51]Sheu BC, Chang WC, Cheng CY, et al. Cytokine regulation networks in the cancer microenvironment[J]. Front Biosci.2008;13(1):6255-6268.
    [52]Sheu BC, Chang WC, Cheng CY, et al. Cytokine regulation networks in the cancer microenvironment[J]. Front Biosci.2008;13(1):6255-6268.
    [53]Mocellin S, Marincola FM, Young HA. Interleukin-10 and the immune response against cancer: a counterpoint[J]. J Leukoc Biol.2005;78(5):1043-1051.
    [54]Poggi A, Zocchi MR. Mechanisms of tumor escape:role of tumor microenvironment in inducing apoptosis of cytolytic effector cells[J].Arch Immunol Ther Exp (Warsz) 2006;54(5):323-333.
    [55]Marincola FM, Jaffee EM, Hicklin DJ, et al. Escape of human solid tumors from
    T-cell recognition: molecular mechanisms and functional significance[J]. Adv Immunol.2000;74(1):181-273.
    [56]Wang E, Marincola FM. A natural history of melanoma: serial gene expression analysis[J]. Immunol Today 2000;21(12):619-623.
    [57]Park YB, Lee SK, Kim DS, et al. Elevated interleukin-10 levels correlated with disease activity in systemic lupus erythematosus[J]. Clin Exp Rheumatol, 1998;16(3):283-288.
    [58]Asadullah K, Sterry W, Stephanek K, et al. IL-10 is a key cytokine in psoriasis:proof of principle by IL-10 therapy-a new therapeutic approach[J]. J Clin Investig,1998;101(4):783-794.
    [59]Kuhn R, Lohler J, Rennick D, et al. Interleukin-10-deficient mice develop chronic enterocolitis[J]. Cell,1993,;75(2):263-274.
    [60]Lindsay JO, Hodgson HJ. Review article:the immunoregulatory cytokineIL-10-a therapy for Crohn's disease[J]? Aliment Pharmacol Ther 2001;15(11):1709-1716.
    [61]Takanashi S, Hasegawa Y, Kanehira Y, et al. Interleukin-10 level in sputum is reduced in bronchial asthma,COPD and in smokers[J]. Eur Respir J 1999,;14(2):309-314.
    [62]蒋东波,李华强,史源,等.哮喘患儿外周血白细胞介素10水平及其对白细胞介素2等的调节作用[J].中华儿科杂志1999;37(1):28-31.
    [63]Borish L, Aarons A, Rumbyrt J, et al. Interleukin-10 regulation in normal 76 subjects and patients with asthma[J]. J Allergy Clin Immunol, 1996;97(6):1288-1296.
    [64]Tillie L I, Pugin J, Marquette CH, et al. Balance between proinflammatory cytokines and their inhibitors in bronchial lavage from patients with status asthmaticus[J]. Am J Respir Crit Care Med,1999;159(2):487-494.
    [1]. Brivet FG, Kleinknecht DJ, and L. P, Acute renal failure in intensive care units-causes, outcome, and prognostic factors of hospital mortality; a prospective, multicenter study. French Study Group on Acute Renal Failure[J]. Crit Care Med, 1996.24(2):192-198.
    [2]. Laake JH and B. JF., Acute renal failure in critically ill patients[J]. Tidsskr Nor Laegeforen,2010.130(2):158-161.
    [3]. Schrier RW and W. W, Acute renal failure and sepsis[J]. N Engl J Med 2004. 351(22):159-169.
    [4]. Karsou SA, Jaber BL, and P. BJ., Impact of intermittent hemodialysis variables on clinical outcomes in acute renal failure[J]. Am J Kidney Dis,2000.35(5): 980-991
    [5]. U.S., Renal Data System, USRDS 2008 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases.2008.
    [6]. Kiberd B. The chronic kidney disease epidemic:stepping back and looking forward[J]. J. Am. Soc. Nephrol.2006; 17(11):2967-73
    [7]. Collins AJ, Foley R, and H. C, Excerpts from the United States Renal Data System 2007 annual data report[J]. Am J Kidney Dis 2008.51(1 Suppl 1):p. S1-S320.
    [8]. Little MH. Regrow or repair: potential regenerative therapies for the kidney. [J] J. Amer. Soc Nephrol,2006,17(9):2390-2401.
    [9]. Maeshima A, Y.S., Nojima Y. Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney[J]. J Am Soc Nephrol, 2003.14(12):3138-3146.
    [10]. Gupta S, Verfaillie C, and Chmielewski D, et al. Isolation and characterization of kidney-derived stem cells[J]. J Am Soc Nephrol,2006.17(11): 3028-3040
    [11]. Hopkins C, Li J, Rae F, Little MH, et al. Stem cell options for kidney disease[J]. J. Pathol,2009,217(2):265-281.
    [12]. Yokoo T, Fukui A,Matsumoto K, et al. Generation of a transplantable erythropoietin-producer derived from human mesenchymal stem cells[J]. Transplantation,2008,85(11):1654-1658,
    [13]. Lin F, Cordes K, Li L, et al. Hematopoietic cells contribute to the regeneration of renal tubules after ischemia-reperfusion injury in mice[J]. J Am Soc Nephrol,2003,14(5):1188-1199,
    [14]. Masuya M, Drake CJ, Fleming PA, et al. Hematopoietic origin of glomerular mesangial cells. [J]. Blood,2003,101(6):2215-2218,
    [15]. Fang TC, Otto WR, Rao J, et al. Haematopoietic lineage-committed bone marrow cells, but not cloned cultured mesenchymal stem cells, contribute to regeneration of renal tubular epithelium after HgCl 2 -induced acute tubular injury[J]. Cell Prolif,2008,41(4):575-591,
    [16]. Fang TC, Alison MR, Cook HT,et al. Proliferation of bone marrow-derived cells contributes to regeneration after folic acid-induced acute tubular injury[J]. J Am Soc Nephro,2005,16(6):1723-1732,
    [17]. Herrera MB, Bussolati B, Bruno S, et al. Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury[J]. Int J Mol Med,2004 14(6):1035-1041,
    [18]. Togel F, Hu Z, Weiss K,et al. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms[J]. Am J Physiol Renal Physiol,2005,289(1):F31-42,
    [19]. Kunter U, Rong S, Djuric Z, et al. Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis[J]. J Am Soc Nephrol,2006,17(8):2202-2212.
    [20]. Kunter U, Rong S, Boor P, et al. Mesenchymal stem cells prevent progressive experimental renal failure but maldifferentiate into glomerular adipocytes[J]. J Am Soc Nephrol,2007,18(6):1754-1764
    [21]. Morigi M, Introna M, Imberti B, et al. Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice[J]. Stem Cells,2008,26(8):2075-2082,
    [22]. Bi B, Schmitt R, Israilova M,et al. Stromal cells protect against acute tubular injury via an endocrine effect[J]. J. Am. Soc. Nephrol.2007; 18(9):2486-2496.
    [23]. Imberti B, Morigi M, Tomasoni S et al. Insulin-like growth factor-1 sustains stem cell mediated renal repair[J]. J. Am. Soc. Nephrol.2007;18:2921-2928.
    [24]. Humphreys BD, Valerius MT, Kobayashi A,et al. Intrinsic epithelial cells repair the kidney after injury[J]. Cell Stem Cell,2008,2(3):284-291,
    [25]. Duffield JS, Bonventre JV. Kidney tubular epithelium is restored without replacement with bone marrow-derived cells during repair after ischemic injury[J]. Kidney Int,2005,68(5):1956-1961.
    [26]. Duffield JS, Park KM, Hsiao LL, et al. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrowderived stem cells[J]. J Clin Invest,2005,115(7):1743-1755.
    [27]. Lin F, Moran A, Igarashi P. Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney [J]. J Clin Invest,2005,115(7):1756-1764
    [28]. Iwasaki M, Adachi Y, Minamino K,et sl. Mobilization of bone marrow cells by G-CSF rescues mice from cisplatin-induced renal failure, and M-CSF enhances the effects of G-CSF[J]. J Am Soc Nephrol,2005,16(3):658-666.
    [29]. Togel F, Isaac J, Westenfelder C. Hematopoietic stem cell mobilization-associated granulocytosis severely worsens acute renal failure[J]. J Am Soc Nephrol 2004,15(5):1261-1267,
    [30]. Kale S, Karihaloo A, Clark PR, et al. Bone marrow stem cells contribute to repair of the ischemically injured renal tubule[J]. J Clin Invest,2003, 112(1):42-49,2003
    [31]. Morigi M, Imberti B, Zoja C,et al. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure[J]. J Am Soc Nephrol,2004,15(7):1794-1804.
    [32]. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli[J]. Blood,2002,99(10):3838-3843
    [33]. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. [J] Exp Hematol,2002,30(1):42-48,
    [34]. Herrera MB, Bussolati B, Bruno S,et al. Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury[J]. Int J Mol Med,2004, 14(6):1035-1041
    [35]. Togel F, Hu Z, Weiss K, et al. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms Am J Physiol Renal Physiol,2005,289(1):F31-42
    [36]. Kunter U, Rong S, Djuric Z,et a al. Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis[J]. JAmSoc Nephrol,2006,17(8):2202-2212.
    [37]. Kunter U, Rong S, Boor P, et al. Mesenchymal stem cells prevent progressive experimental renal failure but maldifferentiate into glomerular adipocytes. [J] J Am Soc Nephrol,2007,18(6):1754-1764
    [38]. Morigi M, Introna M, Imberti B, et al. Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice[J]. Stem Cells,2008,26(8):2075-2082,
    [39]. Alison MR. Stem cells in pathobiology and regenerative medicine[J]. J Pathol.2009,217(2):141-143.
    [40]. Andersson ER, Lendahl UJ. Regenerative medicine:a 2009 overview[J]. Intern Med.2009,266(4):303-310.
    [41]. Rosenberg ME, Gupta S. Stem cells and the kidney: where do we go from here[J]? J Am Soc Nephrol,2007,18(12):3018-3020
    [42]. Gupta S, Rosenberg ME. Do stem cells exist in the adult kidney[J]? Am J Nephrol,2008,28(4):607-613,
    [43]. Bussolati B, Hauser PV, Carvalhosa R, et al. Contribution of stem cells to kidney repair[J]. Curr Stem Cell Res Ther,2009,4(1):2-8
    [44]. Bruno S, Bussolati B, Grange C, et al. Isolation and characterization of resident mesenchymal stem cells in human glomeruli[J].Stem Cells, 2009,8(6):867-880
    [45]. Bussolati B, Bruno S, Grange C, et al. Isolation of Renal Progenitor Cells from Adult Human Kidney[J]. Am J Pathol,2005,166(2):545-555
    [46]. Sagrinati C, Netti GS, Mazzinghi B, et al. Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys[J]. J Am Soc Nephrol 2006,17(9):2443-2456,
    [47]. Ronconi E, Sagrinati C, Angelotti ML et al. Regeneration of glomerular podocytes by human renal progenitors [J]. J. Am. Soc. Nephrol.2009,20(2): 322-332.
    [48]. Appel D, Kershaw DB, Smeets B et al. Recruitment of podocytes from glomerular parietal epithelial cells[J]. J. Am. Soc. Nephrol.2009,20(2):333-343.
    [49]. Asakura A, Rudnicki MA. Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation[J]. Exp Hematol, 2002,30(11):1339-1345
    [50]. Hishikawa K, Marumo T, Miura S, et al. Musculin/MyoR is expressed in kidney side population cells and can regulate their function[J]. J Cell Biol, 2005,169(6):921-928
    [51]. Iwatani H, Ito T, Imai E, et al. Hematopoietic and nonhematopoietic potentials of Hoechst(low)/side population cells isolated from adult rat kidney[J]. Kidney Int,2004,65(5):1604-1614
    [52]. Challen GA, Bertoncello I, Deane JA, et al. Kidney side population reveals multilineage potential and renal functional capacity but also cellular heterogeneity[J]. J Am Soc Nephrol,2006,17(7):1896-1912
    [53]. Inowa T, Hishikawa K, Takeuchi T, et al. Isolation and potential existence of side population cells in adult human kidney[J]. Int J Urol,2008,15(3):272-274
    [54]. Christgen M, Geffers R, Ballmaier M, et al. Down-regulation of the Fetal Stem Cell Factor SOX17 by H33342:A mechanism responsible for differential gene expresiion in breast cancer dide population cells[J]. J Biol Chem,2010,285(9):6412-6418.
    [55]. Zeng H, Park JW, Guo M, et al. Lack of ABCG2 expression and side population properties in human pluripotent stem cells[J]. Stem Cells,2009,27(10):2435-2445.
    [56]. Ramos TV, Wang T, Maki CB, et al. Adipose stem cell side population in the mouse[J].J Tissue Eng Regen Med,2009,3(6):430-441.
    [57]. Takaishi S, Okumura T, Tu S, et al. Identification of gastric cancer stem cells using the cell surface marker CD44[J[.Stem Cells,2009,27(5):1006-1020.
    [58]. Terrace JD, Hay DC, Samuel K, et al. Side population cells in developing human iver are primarily haematopoietic progenitor cells[J].Exp Cell Res. 2009,315(13):2141-2153.
    [59]. Kim JB, Ko E, Han W,et al. Berberine diminishes the side population and ABCG2 transporter expression in MCF-7 breast cancer cells[J]. Planta Med,2008,74(14):1693-700.
    [60]. Imai N, Hishikawa K, Marumo T, et al. Inhibition of histone deacetylase activates side population cells in kidney and partially reverses chronic renal injury[J]. Stem Cells,2007,25(10):2469-2475
    [61]. Maeshima A, Sakurai H, Nigam SK. Adult kidney tubular cell population showing phenotypic plasticity, tubulogenic capacity, and integration capability into developing kidney[J]. J Am Soc Nephrol,2006,17(1):188-198
    [62]. Tumlin J, Wali R, Williams W,et al. Efficacy and safety of renal tubule cell therapy for acute renal failure[J]. J Am Soc Nephrol,2008,19(5):1034-1040
    [63]. Ott HC, Matthiesen TS, Goh SK, et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart[J]. Nat Med, 2008,14(2):213-221.
    [64]. Yamzon, Jonathan L, Kokorowski et al. Stem Cells and Tissue Engineering Applications of the Genitourinary Tract[J]. Pediatric Research,2008,63(5):472-477
    [65]. Lanza RP, Chung HY, Yoo JJ, et al. Generation of histocompatible tissues using nuclear transplantation[J]. Nat Biotechnol,2002,20(7):689-696
    [66]. Rogers SA, Hammerman MR. Transplantation of rat metanephroi into mice[J]. Am J Physiol,2001,280(6):R1865-1869
    [67]. Dekel B, Burakova T, Ben-Hur H, et al. Engraftment of human kidney tissue in rat radiation chimera:Ⅱ. Human fetal kidneys display reduced immunogenicity to adoptively transferred human peripheral blood mononuclear cells and exhibit rapid growth and development[J]. Transplantation,1997,64(11):1550-1558
    [68]. Dekel B, Burakova T, Arditti FD, et al. Human and porcine early kidney precursors as a new source for transplantation[J]. Nat Med,2003,9(1):53-60
    [69]. Dekel B, Marcus H, Herzel BH, et al. In vivo modulation of the allogeneic immune response by human fetal kidneys:the role of cytokines, chemokines, and cytolytic effector molecules[J]. Transplantation,2000,69(7):1470-1478
    [70]. Velasco AL, Hegre OD. Decreased immunogenicity of fetal kidneys:the role of passenger leukocytes[J]. J Pediatr Surg 1989,24(1):59-63; discussion 63,
    [71]. Rogers SA, Liapis H, Hammerman MR. Transplantation of metanephroi across the major histocompatibility complex in rats[J]. Am J Physiol, 2001,280(1):R132-136
    [72]. Statter MB, Fahrner KJ, Barksdale Jr EM, et al. Correlation of fetal kidney and testis congenic graft survival with reduced major histocompatibility complex burden[J]. Transplantation,1989,47(4):651-660,
    [73]. Yokoo T, Fukui A, Ohashi T, et al. Xenobiotic kidney organogenesis from human mesenchymal stem cells using a growing rodent embryo[J]. J Am Soc Nephrol,2006,17(4):1026-1034,
    [74]. Marshall D, Dilworth MR, Clancy M, et al. Increasing renal mass improves survival in anephric rats following metanephros transplantation[J]. Exp Physiol, 2007,92(1):263-271