CPT原子钟物理系统的研究与探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相干布居囚禁(coherent population trapping, CPT)原子钟因其体积小,功耗低的特点在通信、时间同步、导航定位、实验研究等领域具有广泛的应用前景。当前国外已生产出小型化和微型化CPT原子钟产品,并已得到实际应用,同时还发展出了一些改善CPT共振信号质量进而提高原子钟的频率稳定度的新方案。为了研制具有自主知识产权的实用型CPT原子钟,我们开展了小型化CPT原子钟的工程转化和新方案探索工作。本论文工作期间取得的主要进展和研究成果如下:
     为CPT原子钟工程样机设计、研制了一款物理系统。在该款物理系统中消除了之前研制的物理系统中存在的频率跳变隐患,定型的物理系统体积18.4mL,功耗1.4W。采用所研制的物理系统的原子钟已实现小批量生产,产品的典型频率稳定度优于4×10-11,τ1/2(1s≤τ≤100s),整体性能达到了国际同类产品先进水平。
     针对CPT原子钟在不同温度条件下的应用设计、研制了一款物理系统。该款物理系统体积16mL,功耗1.6W,应用该物理系统实现的原子钟的环境温度适应范围更大,这款产品现已获得应用。
     研究了平行线偏振光激发CPT共振方案(lin//lin CPT方案)。lin//lin CPT方案消除了传统圆偏振光方案(σ+-σ+CPT方案)中由于光抽运作用形成的极化暗态,增加了有效参与工作的原子数量。我们开展与σ+-σ+CPT方案的对比实验,在较低的原子泡工作温度下获得了质量更优的用于原子钟鉴频信号的CPT共振微分信号,因此通过该方案可以实现体积与传统方案CPT原子钟相当,功耗更低,频率稳定度更好的原子钟。
     研究了偏振选择CPT共振方案。该方案采用椭圆偏振光激发CPT共振,椭圆偏振光可以看作幅度不同的左右旋圆偏振光的线性叠加,利用原子对左右旋圆偏振光吸收强度不同压制本底光噪声幅度,由此获得的CPT共振信号对比度(CPT信号幅度与本底光噪声幅度的比值)大幅度改善,实验中采用本方案获得的信号对比度与传统CPT原子钟方案的信号对比度相比约提高了6倍,因此采用该方案可望大幅度改善原子钟的频率稳定度。
     提出并研究了频率切换Ramsey-CPT方案。该方案通过周期性地用微波信号调制垂直腔面发射激光器(vertical-cavity surface-emitting laser, VCSEL)的驱动电流,使VCSEL的出射光周期性地在多色光与单色光之间切换,这样的激光与原子作用实现周期性地与原子CPT共振,从而实验记录到了Ramsey-CPT条纹。由于不需要之前的常规Ramsey-CPT原子钟方案中用于产生脉冲光的声光调制器(acousto-optic modulator, AOM),该方案实现的物理系统体积大大减小,而对比两种Ramsey-CPT原子钟方案获得的Ramsey-CPT条纹,应用新方案实现的原子钟频率稳定度预期改善46%。另外,与传统CPT原子钟相比,新Ramsey-CPT原子钟方案的物理系统体积、功耗基本相同,而原子钟电路只需增加一个微波开关,所以体积、功耗也非常接近,因此采用所研究的方案可以实现体积功耗与传统CPT原子钟相当,频率稳定度优于之前的常规Ramsey-CPT原子钟的新型Ramsey-CPT原子钟。
     提出并研究了正交偏振探测-频率切换Ramsey-CPT方案。该方案采用lin//lin双ACPT共振构型,频率切换方案实现Ramsey,并在光信号探测上引入正交偏振探测方法,利用磁光旋转效应降低本底光噪声。通过该方案我们已经实验获得了对比度为22%和线宽为280Hz的Ramsey-CPT条纹,与仅应用频率切换方案所获得的Rasmey-CPT条纹相比,对比度提高为8倍。因为只在物理系统的器件设置上有所调整,并不需要增加体积,因此采用该方案可以实现性能更高的小型Ramsey-CPT原子钟。
Because of its small size and low power consumption, coherent population trapping (CPT) atomic clock has been applied in many fields, such as communication, time synchronization, navigation, and experimental research. At present, compact and chip-scale CPT atomic clock products have been applied to practical projects abroad, and some new schemes that can improve the quality of CPT resonance signal have been developed to further improve the frequency stability of CPT atomic clock. In order to develop CPT atomic clocks with independent intellectual property rights, we have carried out product transformation and new scheme exploration on compact CPT atomic clock. The main progress and research results of this paper are as follows:
     For CPT atomic clock engineering prototype, we designed and developed a physics package. The hidden trouble of frequency-hopping in former physics packages was erased in this physics package. The volume and power consumption of this physics package are respectively18.4mL and1.4W. The CPT atomic clocks that use these physics packages have been realized to small batch production, and the products can achieve a typical frequency stability better than4×10-11τ1/2for integration time1s≤τ≤100s, the overall performance of atomic clock reaches the international advanced level of like product.
     For the CPT atomic clock working under different temperature, we designed and developed a physics package with the volume of16mL and the power consumption of1.6W. The CPT atomic clock based on the physics package can work steadily in a large ambient temperature range, now it has been applied to an actual project.
     We have experimentally studied the scheme of realizing CPT resonance through the interaction between atoms and parallel linearly polarized bichromatic coherent light field (lin//lin CPT scheme). By eliminating the leaky-trap state due to optical pumping effect in conventional scheme which uses circularly polarized bichromatic coherent light field (στ-στ CPT scheme), more atoms will contribute to CPT resonance. We experimentally studied the two schemes, and better CPT resonance differential signal which used as frequency discriminating signal in atomic clock was obtained by lin//lin CPT scheme at lower temperature. Therefore, comparing to σ+-σ+CPT scheme, the lin//lin CPT scheme can be used to implement an atomic clock with comparable volume, lower power consumption and better frequency stability.
     We have experimentally studied the polarization-selectve CPT scheme of exciting CPT resonance with elliptical polarized bichromatic coherent light field. The elliptical polarized light can be seen as a linear superposition of σ+andσ-circularly polarized light with different amplitude. Due to the different light absorption intensity of atoms for σ+and σ-, it can suppress the background of CPT resonance signal, and the scheme provides a CPT resonance signal with greatly improved contrast (contrast is defined as the amplitude ratio of CPT signal to background). The experimental results show that the CPT signal contrast is about6times higher than that of conventional CPT atomic clock, so the frequency stability of atomic clock based on our studied scheme will be greatly improved.
     We have proposed and experimentally studied a frequency-switching Ramsey-CPT scheme (FS scheme). Driven by the periodically microwave modulated current, a vertical-cavity surface-emitting laser (VCSEL) emits continuous laser which switches between monochromatic and multichromatic laser, and Ramsey-CPT fringes has been studied with the frequency switching continuous laser. With elimination of the acousto-optic modulator (AOM) which is used to generate pulsed laser in conventional Ramsey-CPT atomic clock, the volume of physics package of the proposed scheme greatly decreases. By comparing Ramsey-CPT fringes obtained from the two Ramsey-CPT schemes, the frequency stability of the proposed scheme is expect to be46%better than that of the scheme with AOM. Additionally, comparing to conventional CPT atomic clock, the physics package of the proposed scheme is basically the same, while the resource budget of the electronics will be slightly increased as a microwave switch shall be added to it. Our experimental results suggest that it is feasible to implement a compact Ramsey-CPT atomic clock with the volume and power consumption of the conventional CPT atomic clock, and the frequency stability comparable to or even better than that of the conventional Ramsey-CPT atomic clock.
     We have proposed and experimentally studied a crossed-polarizers frequency-switching Ramsey-CPT scheme. It excites CPT resonance with lin//lin CPT configuration and implements Ramsey interference with FS scheme. A crossed-polarizers method is introduced in light signal detection, and it significantly reduces the background signal level due to the magneto-optical rotation effect. Typical Ramsey-CPT fringes with a linewidth of280Hz and a contrast of22%were observed. By comparing the detected signal with the Ramsey-CPT atomic clock realized only through the FS scheme, the contrast of the proposed scheme increased by8times. Because only the components setting of physics package need to be slightly adjusted, the volume will not increase, our proposed scheme could be implemented compact Ramsey-CPT atomic clock with higher performance.
引文
[1]Rabi 11. Space quantization in a gyrating magnetic field [J]. Physical Review,1937,51(8): 0652-0654.
    [2]Rabi I I, Zacharias J R, Millman S, et al. A new method of measuring nuclear magnetic moment [J]. Physical Review,1938,53(4):318-318.
    [3]Meeting at New York, January 19 and 20,1945 [J]. Physical Review,1945,67:199-204.
    [4]Laurence W L. Cosmic pendulum'for clock planned [M]. New York Times,1945.
    [5]Rabi I I. Radiofrequency spectroscopy [M]. (Richtmyer Memorial Lecture, delivered at Columbia University in New York, New York, on 20 January 1945),1945:New York.
    [6]Lyons H. The atomic clock [J]. Instruments,1949,22:133-135.
    [7]Shimoda K, Wang T C, Townes C H. Further Aspects of the Theory of the Maser [J]. Physical Review,1956,102(5):1308-1321.
    [8]Ramsey N F. A New Molecular Beam Resonance Method [J]. Physical Review,1949,76(7): 996-996.
    [9]Ramsey N F. A New Molecular Beam Magnetic Resonance Method [J]. Physical Review, 1949,75(8):1326-1326.
    [10]Lyons H. Spectral Lines as Frequency Standards [J]. Annals of the New York Academy of Sciences,1952,55(5):831-871.
    [11]Sherwood J E, Lyons H, Mccracken R H, et al. High Frequency Lines in the Hfs Spectrum of Cesium [J]. Physical Review,1952,86(4):618-618.
    [12]Essen L, Parry J V L. An Atomic Standard of Frequency and Time Interval:A Caesium Resonator [J]. Nature,1955,176(4476):280-282.
    [13]Reder F H. Atomic clocks and their applications [J]. USASRDL Tech Rep,1961,2230 (AD 265452).
    [14]Bender P, Beaty E, Chi A. Optical detection of narrow Rb 87 hyperfine absorption lines [J]. Physical Review Letters,1958,1(9):311.
    [15]Yuuki T, Uchida H, Sato Y, et al. Rubidium Frequency Standard [J]. Nec Research & Development,1973,31:42-56.
    [16]Oyamada H, Takahashi K, Sato Y, et al. Rubidium Lamp Stability and Reliability for Rubidium Frequency Standard [J]. Nec Research & Development,1976,43:69-74.
    [17]Vanier J, Kunski R, Brisson A, et al. Progress and Prospects in Rubidium Frequency Standards [J]. Journal De Physique,1981,42:139-150.
    [18]Chiba K, Hashi T. An Ultra-Miniature Rubidium Frequency Standard [J]. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control,1986,33(1):132-133.
    [19]Goldenberg H M, Kleppner D, Ramsey N F. Atomic Hydrogen Maser [J]. Physical Review Letters,1960,5(8):361-362.
    [20]Markowitz W, Hall R G, Essen L, et al. Frequency of Cesium in Terms of Ephemeris Time [J]. Physical Review Letters,1958,1(3):105-107.
    [21]Major F G, Werth G. High-Resolution Magnetic Hyperfine Resonance in Harmonically Bound Ground-State Hg-199 Ions [J]. Physical Review Letters,1973,30(23):1155-1158.
    [22]Chu S, Hollberg L, Bjorkholm J E, et al. Three-Dimensional Viscous Confinement and Cooling of Atoms by Resonance Radiation Pressure [J]. Physical Review Letters,1985,55(1): 48-51.
    [23]Hansch T W, Schawlow A L. Cooling of gases by laser radiation [J]. Optics Communications,1975,13(1):68-69.
    [24]Clairon A, Laurent P, Santarelli G, et al. A Cesium Fountain Frequency Standard-Preliminary-Results [J]. Ieee Transactions on Instrumentation and Measurement,1995,44(2): 128-131.
    [25]Santarelli G, Ghezali S, Laurent P, et al. Recent results of the LPTF cesium fountain primary frequency standard [J]. Proceedings of the 1995 Ieee International Frequency Control Symposium,1995,60-65.
    [26]Ghezali S, Laurent P, Lea S N, et al. An experimental study of the spin-exchange frequency shift in a laser-cooled cesium fountain frequency standard [J]. Europhysics Letters,1996,36(1): 25-30.
    [27]Li R, Gibble K, Szymaniec K. Improved accuracy of the NPL-CsF2 primary frequency standard:evaluation of distributed cavity phase and microwave lensing frequency shifts [J]. Metrologia,2011,48:283-289.
    [28]Rosenband T, Hume D B, Schmidt P O, et al. Frequency ratio of A1+and Hg+single-ion optical clocks; Metrology at the 17th decimal place [J]. Science,2008,319(5871):1808-1812.
    [29]Chou C W, Hume D B, Koelemeij J C J, et al. Frequency Comparison of Two High-Accuracy Al(+) Optical Clocks [J]. Physical Review Letters,2010,104(7): 070802(070801-070804).
    [30]Chou C W, Hume D B, Rosenband T, et al. Optical Clocks and Relativity [J]. Science,2010, 329(5999):1630-1633.
    [31]Cyr N, Tetu M, Breton M. All-Optical Microwave Frequency Standard-a Proposal [J]. Ieee T Instrum Meas,1993,42(2):640-649.
    [32]Knappe S, Shah V, Schwindt P D D, et al. A microfabricated atomic clock [J]. Applied Physics Letters,2004,85(9):1460-1462.
    [33]Liew L A, Knappe S, Moreland J, et al. Microfabricated alkali atom vapor cells [J]. Applied Physics Letters,2004,84(14):2694-2696.
    [34]Lutwak R. The Chip-Scale Atomic Clock-Recent developments [C]. Proceedings of the Frequency Control Symposium,2009 Joint with the 22nd European Frequency and Time forum IEEE International,2009:573-577.
    [35]Lutwak R, Rashed A, Varghese M, et al. Csac-the Chip-Scale Atomic Clock [J]. Proceedings of the 7th Symposium Frequency Standards and Metrology,2009,454-462.
    [36]Zhong W. Review of chip-scale atomic clocks based on coherent population trapping [J]. 2014,23(3):030601
    [37]Alzetta G, Gozzini A, Moi L, et al. Experimental-Method for Observation of Rf Transitions and Laser Beat Resonances in Oriented Na Vapor [J]. Nuovo Cimento B,1976,36(1):5-20.
    [38]Arimondo E, Orriols G. Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping [J]. Lettere Al Nuovo Cimento (1971-1985),1976, 17(10):333-338.
    [39]Thomas J E, Ezekiel S, Leiby J C C, et al. Ultrahigh-resolution spectroscopy and frequency standards in the microwave and far-infrared regions using optical lasers [J]. Opt Lett,1981,6(6): 298-300.
    [40]Thomas J E, Hemmer P R, Ezekiel S, et al. Observation of Ramsey Fringes Using a Stimulated, Resonance Raman Transition in a Sodium Atomic Beam [J]. Physical Review Letters, 1982,48(13):867-870.
    [41]Vanier J, Godone A, Levi F. Coherent population trapping in cesium:Dark lines and coherent microwave emission [J]. Physical Review A,1998,58(3):2345.
    [42]Vanier J, Levine M W, Kendig S, et al. Practical realization of a passive coherent population trapping frequency standard [J]. Ieee T Instrum Meas,2005,54(6):2531-2539.
    [43]Orriols G Nonabsorption resonances by nonlinear coherent effects in a three-level system [J]. I1 Nuovo Cimento B (1971-1996),1979,53(1):1-24.
    [44]Boller K J, Imamoglu A, Harris S E. Observation of Electromagnetically Induced Transparency [J]. Physical Review Letters,1991,66(20):2593-2596.
    [45]Field J E, Hahn K H, Harris S E. Observation of Electromagnetically Induced Transparency in Collisionally Broadened Lead Vapor [J]. Physical Review Letters,1991,67(22):3062-3065.
    [46]Godone A, Levi F, Micalizio S. Slow light and superluminality in the coherent population trapping maser [J]. Physical Review A,2002,66(4):043804.
    [47]Vanier J, Godone A, Levi F. Coherent population trapping in cesium:Dark lines and coherent microwave emission [J]. Physical Review A,1998,58(3):2345-2358.
    [48]Godone A, Levi F, Vanier J. Coherent microwave emission in cesium under coherent population trapping [J]. Physical Review A,1999,59(1):R12-R15.
    [49]Godone A, Levi F, Micalizio S, et al. Theory of the coherent population trapping maser:A strong-field self-consistent approach [J]. Physical Review A,2000,62:053402.
    [50]Godone A, Levi F, Micalizio S. Propagation and density effects in the coherent-population-trapping maser [J]. Physical Review A,2002,65(3):033802.
    [51]Godone A, Micalizio S, Levi F. Rabi resonances in the Lambda excitation scheme [J]. Physical Review A,2002,66(6):063807.
    [52]Godone A, Levi F, Micalizio S, et al. Coherent-population-trapping maser:Noise spectrum and frequency stability [J]. Physical Review A,2004,70(1):012508.
    [53]Vanier J, Levine M, Kendig S, et al. Practical realization of a passive coherent population trapping frequency standard [C]. Proceedings of the Frequency Control Symposium and Exposition,2004 Proceedings of the 2004 IEEE International,2004:92-99.
    [54]Levi F, Godone A, Novero C, et al. On the use of a modulated laser for hyperfine frequency excitation in passive atomic frequency standard [J]. Proc 11th Europ Forum on Time and Frequency, (EFTF 97),1997,212-220.
    [55]Godone A, Levi F, Micalizio S, et al. Dark-line in optically-thick vapors:inversion phenomena and line width narrowing [J]. European Physical Journal D,2002,18(1):5-13.
    [56]Vanier J, Levine M W, Janssen D, et al. Contrast and linewidth of the coherent population trapping transmission hyperfine resonance line in ^{87}Rb:Effect of optical pumping [J]. Physical Review A,2003,67(6):065801.
    [57]Vanier J, Bernier L G. On the Signal-to-Noise Ratio and Short-Term Stability of Passive Rubidium Frequency Standards [J]. Ieee Transactions on Instrumentation and Measurement, 1981,30(4):277-282.
    [58]Vanier J, Levine M W, Janssen D, et al. The coherent population trapping passive frequency standard [J]. Ieee T Instrum Meas,2003,52(2):258-262.
    [59]Sagna N, Mandache C, Thomann P. Noise measurements in single-mode GaAlAs diode lasers [C]. Proceedings of the ESA Special Publication,1992:521-525.
    [60]Kitching J, Knappe S, Vukicevic N, et al. A microwave frequency reference based on VCSEL-driven dark line resonances in Cs vapor [J]. Ieee T Instrum Meas,2000,49(6): 1313-1317.
    [61]Stahler M, Wynands R, Knappe S, et al. Coherent population trapping resonances in thermal Rb-85 vapor:D-1 versus D-2 line excitation [J]. Opt Lett,2002,27(16):1472-1474.
    [62]Kitching J, Knappe S, Hollberg L. Miniature vapor-cell atomic-frequency references [J]. Applied Physics Letters,2002,81(3):553-555.
    [63]Knappe S, Gerginov V, Schwindt P D D, et al. Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability [J]. Opt Lett,2005,30(18):2351-2353.
    [64]Knappe S, Schwindt P D D, Shah V, et al. A chip-scale atomic clock based on (87)Rb with improved frequency stability [J]. Opt Express,2005,13(4):1249-1253.
    [65]Liu L, Guo T, Deng K, et al. Frequency stability of atomic clocks based on coherent population trapping resonance in Rb-85 [J]. Chinese Physics Letters,2007,24(7):1883-1885.
    [66]Deng K, Guo T, Su J, et al. Full hyperfine frequency modulation in the implementation of coherent population trapping atomic clocks [J]. Physics Letters A,2009,373(12-13):1130-1132.
    [67]Deng K, Guo T, He D W, et al. Effect of buffer gas ratios on the relationship between cell temperature and frequency shifts of the coherent population trapping resonance [J]. Appl Phys Lett,2008,92(21):1104.
    [68]Chen W, Qi X, Yi L, et al. Optical phase locking with a large and tunable frequency difference based on a vertical-cavity surface-emitting laser [J]. Opt Lett,2008,33(4):357-359.
    [69]Guo T, Deng K, Chen X, et al. Atomic clock based on transient coherent population trapping [J]. Appl Phys Lett,2009,94(15):151108.
    [70]Juan S, Ke D, Deng-Zhu G, et al. Stable 85Rb micro vapour cells:fabrication based on anodic bonding and application in chip-scale atomic clocks [J]. Chinese Physics B,2010,19(11): 110701.
    [71]Zhang Y, Qu S, Gu S. Spin-polarized dark state free CPT state preparation with co-propagating left and right circularly polarized lasers [J]. Opt Express,2012,20(6): 6400-6405.
    [72]Peter Y, Yi Z, Guobin L, et al. Multipulse Ramsey-CPT interference fringes for the 87 Rb clock transition [J]. EPL (Europhysics Letters),2012,97(6):63004.
    [73]Tan B, Yun P, Yang J, et al. A chip scale lin⊥ lin quasi-bichromatic laser scheme [J]. Appl Phys Lett,2013,102(16):161117.
    [74]Deng J L, Hu Z F, He H J, et al. Temperature dependence of dark lines in coherent population trapping [J]. Chinese Physics Letters,2006,23(7):1745-1748.
    [75]Jau Y Y, Miron E, Post A B, et al. Push-Pull Optical Pumping of Pure Superposition States [J]. Physical Review Letters,2004,93(16):160802.
    [76]Liu G B, Du R C, Liu C Y, et al. CPT magnetometer with atomic energy level modulation [J]. Chinese Physics Letters,2008,25(2):472-474.
    [77]Merimaa M, Lindvall T, Tittonen I, et al. All-optical atomic clock based on coherent population trapping in Rb-85 [J]. Journal of the Optical Society of America B-Optical Physics, 2003,20(2):273-279.
    [78]Moon H S, Park S E, Park Y H, et al. Passive atomic frequency standard based on coherent population trapping in Rb-87 using injection-locked lasers [J]. Journal of the Optical Society of America B-Optical Physics,2006,23(11):2393-2397.
    [79]Shah V, Knappe S, Hollberg L, et al. High-contrast coherent population trapping resonances using four-wave mixing in Rb-87 [J]. Opt Lett,2007,32(10):1244-1246.
    [80]Breit G, Rabi I I. Measurement of nuclear spin [J]. Physical Review,1931,38(11): 2082-2083.
    [81]Steck D A. Rubidium 87 D line data [M].2001.
    [82]Wakao K, Moriki K, Kambayashi T, et al. Gainasp-Inp Dh Laser Grown by Newly Designed Vertical Lpe Furnace [J]. Japanese Journal of Applied Physics,1977,16(11):2073-2074.
    [83]Knappe S. MEMS Atomic Clocks [J]. Comprehensive Microsystems,2006,3:571-612.
    [84]Lear K L, Mar A, Choquette K D, et al. High-frequency modulation of oxide-confined vertical cavity surface emitting lasers [J]. Electron Lett,1996,32(5):457-458.
    [85]Vertical Cavity Surface Emitting Lasers (VCSELs):Technology Readiness Overview (TRO) [J]-
    [86]张肃文,陆兆熊.高频电子线路[M].高等教育出版社,2004.
    [87]杜润昌,刘国宾,陈杰华,et a1.相干布居数囚禁原子频标的实现及相关实验参数研究[J][J].光谱学与光谱分析,2008,28(8):1697-1700.
    [88]赵劫成.相干布居数囚禁原子钟性能研究[D];中国科学院研究生院(武汉物理与数学研究所),2013.
    [89]Liu X C, Merolla J M, Guerandel S, et al. Coherent-population-trapping resonances in buffer-gas-filled Cs-vapor cells with push-pull optical pumping [J]. Physical Review A,2013, 87(1):013416.
    [90]Kargapoltsev S V, Kitching J, Hollberg L, et al. High-contrast dark resonance in sigma(+)-sigma(-) optical field [J]. Laser Phys Lett,2004,1(10):495-499.
    [91]Taichenachev A V, Yudin V I, Velichansky V L, et al. High-contrast dark resonances on the D-1 line of alkali metals in the field of counterpropagating waves [J]. JETP Letters,2004,80(4): 236-240.
    [92]Shah V, Knappe S, Schwindt P D D, et al. Compact phase delay technique for increasing the amplitude of coherent population trapping resonances in open Lambda systems [J]. Opt Lett, 2006,31(15):2335-2337.
    [93]Rosenbluh M, Shah V, Knappe S, et al. Differentially detected coherent population trapping resonances excited by orthogonally polarized laser fields [J]. Opt Express,2006,14(15): 6588-6594.
    [94]Zanon T, Guerandel S, De Clercq E, et al. Observation of Ramsey fringes with optical CPT pulses [C]. Proceedings of the Frequency and Time Forum,2004 EFTF 2004 18th European, 2004:29-33.
    [95]Zanon T, Guerandel S, de Clercq E, et al. High Contrast Ramsey Fringes with Coherent-Population-Trapping Pulses in a Double Lambda Atomic System [J]. Physical Review Letters,2005,94(19):193002.
    [96]Yun P, Tan B, Deng W, et al. Quasi-bichromatic laser for a Iin⊥lin coherent population trapping clock produced by vertical-cavity surface-emitting lasers [J]. Review of Scientific Instruments,2012,83(9):093111-093114.
    [97]Yun P, Tan B Z, Deng W, et al. High coherent bi-chromatic laser with gigahertz splitting produced by the high diffraction orders of acousto-optic modulator used for coherent population trapping experiments [J]. Review of Scientific Instruments,2011,82(12):123104.
    [98]Tan B Z, Yun P, Yang J, et al. A chip scale lin perpendicular to lin quasi-bichromatic laser scheme [J]. Applied Physics Letters,2013,102(16):161117.
    [99]Lu B L, Burkett W H, Xiao M. Nondegenerate four-wave mixing in a double-Lambda system under the influence of coherent population trapping [J]. Opt Lett,1998,23(10):804-806.
    [100]Shah V, Knappe S, Hollberg L, et al. Generation of coherent population trapping resonances with nearly 100% transmission contrast [J]. Proceedings of the 2007 Ieee International Frequency Control Symposium-Jointly with the 21st European Frequency and Time Forum, Vols 1-4,2007,1339-1341.
    [101]Kazakov G, Matisov B, Mazets I, et al. Pseudoresonance mechanism of all-optical frequency-standard operation [J]. Physical Review A,2005,72(6):063408.
    [102]Mikhailov E E, Horrom T, Belcher N, et al. Performance of a prototype atomic clock based on lin parallel to lin coherent population trapping resonances in Rb atomic vapor [J]. J Opt Soc Am B,2010,27(3):417-422.
    [103]Zibrov A, Matsko A. Induced absorption resonance on the open Fg=1→Fe=2 transition of the D1 line of the 87Rb atom [J]. JETP Letters,2005,82(8):472-476.
    [104]Zibrov S A, Novikova I, Phillips D F, et al. Coherent-population-trapping resonances with linearly polarized light for all-optical miniature atomic clocks [J]. Phys Rev A,2010,81(1): 013833.
    [105]Taichenachev A V, Yudin V I, Velichansky V L, et al. On the unique possibility of significantly increasing the contrast of dark resonances on the Dl line of Rb-87 [J]. JETP Letters, 2005,82(7):398-403.
    [106]杨晶,刘国宾,顾思洪.平行线偏光激发CPT共振方案实验研究[J].物理学报,2012,61(4):43202.
    [107]Levi F, Godone A, Vanier J, et al. Line-shape of dark line and maser emission profile in CPT [J]. Eur Phys J D,2000,12(1):53-59.
    [108]Liu G, Gu S. Experimental study of the CPT magnetometer worked on atomic energy level modulation [J]. Journal of Physics B:Atomic, Molecular and Optical Physics,2010,43(3): 035004.
    [109]陈杰华,杜润昌,赵劫成,et a1.一种低功耗被动型CPT原子钟[J].计量学报,2010,5):417-420.
    [110]杜润昌,陈杰华,刘朝阳,et al. CPT原子频标实验研究[J].物理学报,2009,58(9):6117-6121.
    [111]Watabe K, Ikegami T, Takamizawa A, et al. High-contrast dark resonances with linearly polarized light on the D-1 line of alkali atoms with large nuclear spin [J]. Applied Optics,2009, 48(6):1098-1103.
    [112]Agapyev B D, Gornyi M B, Matisov B G, et al. A Coherent Population Trapping in Quantum-Systems [J]. Uspekhi Fizicheskikh Nauk,1993,163(9):1-36.
    [113]Knappe S, Schwindt P D D, Shah V, et al. A chip-scale atomic clock based on Rb-87 with improved frequency stability [J]. Opt Express,2005,13(4):1249-1253.
    [114]Lutwak R. The Chip-Scale Atomic Clock-Recent Developments [J].2009 Joint Meeting of the European Frequency and Time Forum and the Ieee International Frequency Control Symposium, Vols 1 and 2,2009,573-577.
    [115]Zhu M. High contrast signal in a coherent population trapping based atomic frequency standard application [C]. Proceedings of the Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum,2003 Proceedings of the 2003 IEEE International,2003:16-21.
    [116]Zhu M. Coherent population trapping detector [J]. US Patent 6,993,058,2006
    [117]Ramsey N F. A Molecular Beam Resonance Method with Separated Oscillating Fields [J]. Physical Review,1950,78(6):695-699.
    [118]Bergquist J C, Lee S A, Hall J L. Saturated Absorption with Spatially Separated Laser Fields-Observation of Optical Ramsey Fringes [J]. Physical Review Letters,1977,38(4): 159-162.
    [119]Salour M M. Optical Ramsey Fringes in 2-Photon Spectroscopy [J]. Appl Phys,1978, 15(2):119-131.
    [120]Riehle F, Kisters T, Witte A, et al. Optical Ramsey Spectroscopy in a Rotating Frame- Sagnac Effect in a Matter-Wave Interferometer [J]. Physical Review Letters,1991,67(2): 177-180.
    [121]Featonby P D, Summy G S, Webb C L, et al. Separated-path Ramsey atom interferometer [J]. Physical Review Letters,1998,81(3):495-499.
    [122]Morinaga A, Riehle F, Ishikawa J, et al. A Ca Optical Frequency Standard-Frequency Stabilization by Means of Nonlinear Ramsey Resonances [J]. Appl Phys B-Photo,1989,48(2): 165-171.
    [123]Clairon A, Salomon C, Guellati S, et al. Ramsey Resonance in a Zacharias Fountain [J]. Europhys Lett,1991,16(2):165-170.
    [124]Eschmann A, Ballagh R J, Caradoc-Davies B M. Formation of Ramsey fringes in double Bose-Einstein condensates [J]. J Opt B-Quantum S O,1999,1(4):383-386.
    [125]Kokkelmans S, Holland M J. Ramsey fringes in a Bose-Einstein condensate between atoms and molecules [J]. Physical Review Letters,2002,89(18):180401.
    [126]Vanier J. Atomic clocks based on coherent population trapping:a review [J]. Appl Phys B-Lasers O,2005,81(4):421-442.
    [127]Salour M M, Cohentannoudji C. Observation of Ramseys Interference-Fringes in Profile of Doppler-Free 2-Photon Resonances [J]. Physical Review Letters,1977,38(14):757-760.
    [128]Zanon T, Tremine S, Guerandel S, et al. Observation of Raman-Ramsey fringes with optical CPT pulses [J]. Instrumentation and Measurement, IEEE Transactions on,2005,54(2): 776-779.
    [129]Guerandel S, Zanon T, Castagna N, et al. Raman–Ramsey Interaction for Coherent Population Trapping Cs Clock [J]. Instrumentation and Measurement, IEEE Transactions on, 2007,56(2):383-387.
    [130]Boudot R, Guerandel S, de Clercq E, et al. Current Status of a Pulsed CPT Cs Cell Clock [J]. Instrumentation and Measurement, IEEE Transactions on,2009,58(4):1217-1222.
    [131]Castagna N, Boudot R, Guerandel S, et al. Investigations on continuous and pulsed interrogation for a CPT atomic clock [J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2009,56(2):246-253.
    [132]Kitching J, Hollberg L, Knappe S, et al. Compact atomic clock based on coherent population trapping [J]. Electron Lett,2001,37(24):1449-1451.
    [133]Yang J, Tian Y, Tan B, et al. Exploring Ramsey-coherent population trapping atomic clock realized with pulsed microwave modulated laser [J]. J Appl Phys,2014,115(9):093109.
    [134]Yu S F. Thermal Characteristics of Vertical Cavity Surface Emitting Lasers [M]. Analysis and Design of Vertical Cavity Surface Emitting Lasers. John Wiley & Sons, Inc.2005:193-227.
    [135]Vanier J, Levine M W, Janssen D, et al. Contrast and linewidth of the coherent population trapping transmission hyperfine resonance line in Rb-87:Effect of optical pumping [J]. Physical Review A,2003,67(6):65801.
    [136]Liu X, Merolla J M, Guerandel S, et al. Ramsey spectroscopy of high-contrast CPT resonances with push-pull optical pumping in Cs vapor [J]. Opt Express,2013,21(10): 12451-12459.
    [137]Yano Y, Goka S. High-contrast Coherent Population Trapping based on Crossed Polarizers Method [J]. arXiv preprint arXiv:14015566,2014.