新型可注射人工骨在绵羊腰椎体间融合的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】建立一种绵羊前路腰椎体间融合模型;评估不同植骨材料的成骨效果,探讨可注射磷酸钙/丝素蛋白/人重组骨形态发生蛋白-2 (calcium phosphate cement/silk fibroin/recombinant human bone morphogenetic protein-2, CPC/SF/ rhBMP-2)复合人工骨应用于椎体间融合的可能性。
     【方法】16只健康成年绵羊被随机分为两组,均经左侧腹膜外入路,暴露L1/2、L3/4和L5/6椎间盘,在其中点制成深度为12mm,直径为7.0mm的垂直于矢状面的孔洞,不穿透对侧纤维环,完全清除髓核组织,充分处理终板至渗血,建立前路椎体间融合模型。每只绵羊的三个腰椎椎间隙孔洞随机植入下列四种材料的三种:CPC/SF、CPC/rhBMP-2、CPC/SF/rhBMP-2或自体松质髂骨。分别于术后3、6个月处死两组绵羊,通过大体观察、手触检测、CT扫描、非破坏性生物力学测试、不脱钙组织学以及组织形态学方法观察和分析脊柱融合状况。
     【结果】各种人工骨注射过程流畅,自体髂骨不能经注射器注入。术后腰椎标本完整性均良好,稳定性可,无附件等组织破坏,对侧纤维环均没有穿破,钻孔侧椎旁无渗漏。手触检查结果表明:术后3月时,CPC/SF、CPC/rhBMP-2、CPC/SF/rhBMP-2以及自体松质髂骨植骨融合率分别为0(0/6)、16.67%(1/6)、33.33%(2/6)和50%(3/6);而术后6月时,融合率分别为0(0/6)、33.33%(2/6)、50%(3/6)以及50%(3/6)。非破坏性生物力学测试显示:术后3月时,屈曲、后伸、左侧屈以及右侧屈四个施力方向的融合强度自体髂骨> CPC/SF/rhBMP-2>CPC/rhBMP-2>CPC/SF,差异有统计学意义(P<0.05),而CPC/SF与完整运动节段相比,差异没有统计学意义(P>0.05);术后6月时,CPC/SF/rhBMP-2与自体髂骨表现出相近的力学强度(P>0.05),两者在四个方向的融合强度>CPC/rhBMP-2>CPC/SF,差异有统计学意义(P<0.05)。组织形态计量学表明:术后3月时,新骨生成量自体髂骨>CPC/SF/rhBMP-2>CPC/rhBMP-2>CPC/SF,差异有统计学意义(P<0.05);而钙磷残留量CPC/SF> CPC/rhBMP-2>CPC/SF/rhBMP-2,差异也有统计学意义(P<0.05);术后6月时,CPC/SF/rhBMP-2成骨能力与自体髂骨相当(P>0.05),二者新骨生成量> CPC/rhBMP-2>CPC/SF,差异有统计学意义(P<0.05);而钙磷残留量CPC/SF> CPC/rhBMP-2>CPC/SF/rhBMP-2,差异也有统计学意义(P<0.05)。
     【结论】腰椎间隙孔洞深度为12mm,直径为7.0mm的绵羊腰椎体间融合模型是一种理想的动物模型,可以用来评估可注射骨移植替代材料的成骨性能。CPC/SF/rhBMP-2复合人工骨具有合适的注射性能和凝固时间,固化后具有稳定的力学支撑能力,同时具备骨传导性和骨诱导性,降解与成骨能力相匹配,最终获得脊柱骨性融合。
[Objective] To establish an anterior interbody fusion model on sheep lumbar spine; to evaluate the osteogenic capacity of different material fillings and disscuss the feasibility of injectable calcium phosphate cement/silk fibroin/recombinant human bone morphogenetic protein-2 (CPC/SF/rhBMP-2) composite inplated as a novel bone subsitute on spinal fusion.
     [Methods] Sixteen sheep were randomly divided into two groups. Eight sheep in each group were operated on left retroperitoneum approach and intervertebral discs of L1/2, L3/4 and L5/6 were exposed. Cavities were made on the midpoint of disc space perpendicular to sagittal plane, with 12 mm in depth and 7 mm in diameter. The opposite side of annular fibrosus was kept intact, nucleus pulposus was cleared completely, and endplate was processed to capillary hemorrhage. Three fusion sites in each animal were randomly assigned three of four treatments: calcium phosphate/silk fibroin composite (CPC/SF), calcium phosphate/recombinant human bone morphogenetic protein-2 composite (CPC/rhBMP-2), CPC/SF/rhBMP-2, or autogeous iliac crest cancellous bone. Sheep of the two groups were killed at 3 and 6 months postoperation respectively. The fusion sites were observed and analyzed by manual palpation, CT scan, undestructive biomechanic test, undecalcified histology, and histomorphology.
     [Results] All the bone subsitutes were injected succesfully while the iliac cancellous bone couldn’t be injected by syringe. The structures of all the lumbar spine specimens were presvered integrity with favourable stability and without appendix destroyed. The opposite side of annular fibrosus was kept intact and no leakage of bone subsitutes was observed in the drilling side. The fusion rates of CPC/SF, CPC/rhBMP-2, CPC/SF/rhBMP-2 and autogenous iliac cancellous bone assessed by manual palpation were 0 (0/6), 16.67% (1/6), 33.33% (2/6) and 50% (3/6) at 3 months postoperation, respectively. The fusion rates were 0 (0/6), 33.33% (2/6), 50% (3/6) and 50% (3/6) at 6 months, respectively. The fusion stiffness of all directions among the four materials had significant differences (P<0.05) at 3 months postoperation, with iliac bone the greatest, CPC/SF/rhBMP-2 next, then CPC/rhBMP-2, and CPC/SF the smallest. Statistical differences were not detected between CPC/SF and intact specimen (P>0.05). It revealed similar stiffness between iliac bone and CPC/SF/rhBMP-2 at 6 months after surgery (P>0.05). The similar stiffness of the two materials were greater than CPC/rhBMP-2 and CPC/SF (P<0.05). The new bone formation among the four materials had significant differences (P<0.05) at 3 months postoperation, with iliac bone at most, CPC/SF/rhBMP-2 next, then CPC/rhBMP-2, and CPC/SF the least. The residual volume of calcium phosphate has significant differences (P<0.05) among the three bone subsitutes, with CPC/SF at most, CPC/rhBMP-2 next, and CPC/SF/rhBMP-2 the least. It revealed almost new bone formation between iliac bone and CPC/SF/rhBMP-2 at 6 months after surgery (P>0.05). The similar bone formation volume of the two materials were more than CPC/rhBMP-2 and CPC/SF (P<0.05). It showed the same trendency about residual volume of calcium phosphate with at 3 months postoperation.
     [Conclusion] The sheep anterior lumbar interbody fusion model, of which the cavities are made on sheep intervertebral space with 12 mm in depth and 7 mm in diameter, is an ideal fusion model to evaluate the capability of bone formation for injectable bone subsitues. The CPC/SF/rhBMP-2 composite has suitable injectable nature, cogulation time, stable supporting mechanics after cogulation, excellent osteoconduction and osteoinduction, and matching degradation and osteogenesis ability. It is a kind of ideal bone subsitute in spinal fusion.
引文
1.赵栋,邱贵兴,仉建国.腰椎融合技术及其临床研究进展.中华骨科杂志2007(4);27: 298-300.
    2. Wang JC, Mummaneni PV, Haid RW. Current treatment strategies for the painful lumbar motion segment: posterolateral fusion versus interbody fusion. Spine 2005;30:S33-43.
    3.汤俊君,王新伟,袁文.腰椎椎体间融合术研究现状.脊柱外科杂志2006;4(1):58-60.
    4. Helm GA. Bone graft subsitutes for use in spinal fusions. Clin Neurosurg 2005;52:250-5.
    5. Banwart JC, Asher MA, Hassanein RS. Iliacc rest bone graft harvest donor site morbidity: a statistical evaluation. Spine 1994;20:1055-60.
    6. Grauer JN, Beiner JM, Kwon B, et al. The evolution of allograft bone for spinal fusion. Orthopedics 2005;28(6):573-9.
    7. Chen L, Yang H, Tang T. Cage migration in spondilolithesis treated with posterior lumbar interbody fusion using BAK cages. Spine 2005;30(19):2171-5.
    8. Aoki Y, Yamagata M, Nakajima F, et al. Posterior migration of fusion cages in degenerative lumbar disease treated with transforaminal lumbar interbody fusion: a report of three patients. Spine 2009;34(1):E54-8.
    9. Dai LY, Jiang LS. Single-level instrumented posterolateral fusion of lumbar spine with beta-tricalcium phosphate versus autograft: a prospective, randomized study with 3-year follow-up. Spine 2008;33(12):1299-304.
    10. Inamasu J, Guiot BH. Laparoscopic lumbar interbody fusion: a review of outcome studies. Minim Invasive Neurosurg 2005;48(6):340-7.
    11. Ooms EM, Egglezos EA, Wolke JG, et al. Soft-tissue response to injectable calcium phosphate cements. Biomaterials 2003;24(5):749-57.
    12. Gauthier O, Khairoun I, Bosco J, et al. Noninvasive bone replacement with a new injectable calcium phosphate biomaterial. J Biomed Mater Res A 2003; 66(1): 47-54.
    13. Russell TA, Leighton RK, Alpha-BSM Tibial Plateau Frature Study Group. Comparison of autogenous bone graft and endothermic calcium phosphate cement for defect augmentation in tibial plateau fractures. A multicenter, prospective, randomized study. J Bone Joint Surg Am 2008;90(10):2057-61.
    14. Marco RA, Kushwaha VP. Thoracolumbar burst fractures treated with posterior decompression and pedicle screw instrumentation supplemented with balloon-assisted vertebroplasty and calcium phosphate reconstruction. J Bone Joint Surg Am 2009;91(1):20-8.
    15. Korovessis P, Hadjipavlou A, Repantis T. Minimal invasive short posterior instrumentation plus ballon kyphoplasty with calcium phosphate for burst and severe compression lumbar fractures. Spine 2008;33(6):658-67.
    16. Guo D, Xu K, Zhao X, et al. Development of a strontium-containing hydroxyapatite bone cement. Biomaterials 2005;26(19):4073-83.
    17. Link DP, Van den Dolder J, Jurgens WJ. Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA micropartieles. Biomaterials 2006;27(28): 4941-7.
    18. Liu H, Li H, Cheng W, et al. Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater 2006; 2(5):557-65.
    19.田莉,闵思佳.丝素蛋白在组织工程细胞支架方面的研究进展.生物医学杂志2006;23(6):1375-8.
    20. Meinel L, Hofmann S, Karageorgiou V, et al. The inflammatory responses to silk films in vitro and in vivo. Biomaterials 2005(6):147-55.
    21. Unger RE, Wolf M, Peters K, et al. Growth of human cells on a non-woven silk fibroin net: a potential for use in tissue engineering. Biomaterials 2004(25):1069-75.
    22. Hofmann S, Hagenmuller H, Koch AM, et al. Control of in vitro tissue-engineeredbone-like structures using human mesenchymal stem cells and porous silk scafolds. Biomaterials 2007;28(6):1152-62.
    23. Tamada Y. Sulfation of silk fibroin by chlorosulfonic acid and the anticoagulant activity. Biomaterials 2004(25):377-83.
    24. Valdes MA,Thakur NA, Namdari S. Recombinant bone morphogenic protein-2 in orthopaedic surgery: a review. Arch Orthop Trauma Surg 2009. Epub ahead of print.
    25. Burkus JK, Gornet MF, Dickman CA, et al. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 2002;15:337-49.
    26. Visser R, Arrabal PM, Becerra J. The effect of an rhBMP-2 absorbable collagen sponge-targeted system on bone formation in vivo. Biomaterials 2009;30(11)2032-7.
    27. Shields LB, Rague GH, Glassman SD, et al. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine 2006;31(5):542-7.
    28. Khan SN, Lane JM. Spinal fusion surgery: animal models for tissue-engineered bone constructs. Biomaterials 2004;25(9):1475-85.
    29. Morone MA, Boden SD. Experimental posterolateral lumbar spinal fusion with a demineralized bone matrix gel. Spine 1998;23(2):159-67.
    30. Wang JC, Kanim LE, Yoo S, et al. Effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J Bone Joint Surg Am 2003;85-A(9):905-11.
    31. Grauer JN, Bomback DA, Lugo R, et al. Posterolateral lumbar fusions in athymic rats: characterization of a model. Spine J 2004;4(3):281-6.
    32. Schimandle JH, Boden SD, Hutton WC. Experimental spinal fusion with recombinant human bone morphogenetic protein-2. Spine 1995;20(12):1326-37.
    33. Riew KD, Long J, Rhee J, et al. Time-dependent inhibitory effects of indomethacin on spinal fusion. J Bone Joint Surg Am 2003;85-A(4):632-4.
    34. Wing KJ, Fisher CG, O’Connell JX, et al. Stopping nicotine exposure beforesurgery. The effect on spinal fusion in a rabbit model. Spine 2000;25(1):30-4.
    35. Grauer JN, Patel TC, Erulkar JS, et al. 2000 Young Investigator Research Award winner. Evaluation of OP-1 as a graft substitute for intertransverse process lumbar fusion. Spine 2001;26(2):127-33.
    36. Karaismailo?lu TN, Tomak Y, Andac A, et al. Comparison of autograft, coralline graft, and xenograft in promoting posterior spinal fusion. Acta Orthop Traumatol Turc 2002;36(2): 147-54.
    37. Martin GJ Jr, Boden SD, Titus L. Recombinant human bone morphogenetic protein-2 overcomes the inhibitory effect of ketorolac, a nonsteroidal anti- inflammatory drug (NSAID), on posterolateral lumbar intertransverse process spine fusion. Spine 1999;24(21):2188-93; discussion 93-4.
    38. Bi WZ, Wang JF, Lu SB. Anterior lumbar interbody fusion of canine with allograft cortical ring plus autogenous cancellus. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2001;15(6):366-9.
    39. Shirado O, Zdeblick TA, McAfee PC, et al. Quantitative histologic study of the influence of anterior spinal instrumentation and biodegradable polymer on lumbar interbody fusion after corpectomy. A canine model. Spine 1992;17(7):795-803.
    40. Emery SE, Brazinski MS, Koka A, et al. The biological and biomechanical effects of irradiation on anterior spinal bone grafts in a canine model. J Bone Joint Surg Am 1994;76(4):540-8.
    41. Paramore CG, Lauryssen C, Rauzzino MJ, et al. The safety of OP-1 for lumbar fusion with decompression-a canine study. Neurosurgery 1999;44(5):1151-5; discussion 1155-6.
    42. Sandhu HS, Kanim LE, Kabo JM, et al. Evaluation of rhBMP-2 with an OPLA carrier in a canine posterolateral (transverse process) spinal fusion model. Spine 1995;20(24):2669-82.
    43. Boden SD, Martin GJ Jr, Horton WC, et al. Laparoscopic anterior spinal arthrodesis with rhBMP-2 in a titanium interbody threaded cage. J Spinal Disord 1998;11(2):95-101.
    44. Nasca RJ, Montgomery RD, Moeini SM, et al. Intervertebral spacer as an adjunct to anterior lumbar fusion. Part II. Six-month implantation in baboons. J Spinal Disord 1998;11(2):136- 41.
    45. Hecht BP, Fischgrund JS, Herkowitz HN, et al. The use of recombinant human bone morphogenetic protein 2 (rhBMP-2) to promote spinal fusion in a nonhuman primate anterior interbody fusion model. Spine 1999;24(7):629-36.
    46. Sandhu HS, Toth JM, Diwan AD, et al. Histologic evaluation of the efficacy of rhBMP-2 compared with autograft bone in sheep spinal anterior interbody fusion. Spine 2002;27:567-75.
    47. Thomas RB, Günter D, Paresh SD, et al. Successful transpedicular lumbar interbody fusion by means of a composite of osteogenic protein-1(rhBMP-7) and hydroxyapatite carrier: a comparison with autograft and hydroxyapatite in the sheep spine. Spine 2002;27(23):2697-705.
    48. Kanayama M, Cunningham BW, Sefter JC, et al. Does spinal instrumentation influence the healing process of posterolateral spinal fusion? An in vivo animal model. Spine 1999; 24 (11):1058-65.
    49. Baramki HG, Steffen T, Lander P, et al. The efficacy of interconnected porous hydroxyapatite in achieving posterolateral lumbar fusion in sheep. Spine 2000;25(9):1053-60.
    50. Wilke HJ, Kettler A, Wenger KH, et al. Anatomy of the sheep spine and its comparison to the human spine. Anat Rec, 1997; 247(4): 542-55.
    51. Wilke HJ, Kettler A, Claes LE. Are sheep spines a valid biomechanical model for human spines? Spine 1997; 22(20):2365-74.
    52. Smit TH. The use of a quadruped as an in vivo model for the study of the spine- biomechanical considerations. Eur Spine J 2002;11(2):137-44.
    53. Thomas RB, Günter D, Paresh SD, et al. Successful transpedicular lumbar interbody fusion by means of a composite of osteogenic protein-1 (rhBMP-7) and hydroxyapatite carrier: a comparison with autograft and hydroxyapatite in the sheep spine. Spine 2002;27(23):2967-75.
    54. Michael NM, Günther D. Improved lumbar vertebral interbody fusion using rhOP-1: a comparison of autogenous bone graft, bovine hydroxylapatite (Bio-Oss), and BMP-7 (rhOP-1) in Sheep. Spine 2001;26(5):469-78.
    55. Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors 2004;22(4): 233 -41.
    56. Hassel S, Yakymovych M, Hellman U, et al. Interaction and functional cooperation between the serine/ threonine kinase bone morphogenetic protein type II receptor with the tyrosine kinase stem cell factor receptor. J Cell Physiol 2006;206(2):457-67.
    57. Panchision DM, Pickel JM, Studer L, et al. Sequential actions of BMP receptors control neural precursor cell production and fate. Genes Dev 2001;15(16): 2094-110.
    58. Weber D, Kotzsch A, Nickel J, et al. A silent H-bond can be mutationally activated for high-affinity interaction of BMP-2 and activin type IIB receptor. BMC Struct Biol 2007;7:6
    59. Sangadala S, Metpally RP, Reddy BV. Molecular interaction between Smurf1 WW2 domain and PPXY motifs of Smad1, Smad5, and Smad6--modeling and analysis. J Biomol Struct Dyn 2007;25(1):11-23.
    60. Wu B, Zheng Q, Guo X, et al. Preparation and ectopic osteogenesis in vivo of scaffold based on mineralized recombinant human-like collagen loaded with synthetic BMP-2-derived peptide. Biomed Mater 2008;3(4):44111.
    61. Brown JL, Nair LS, Laurencin CT. Solvent/non-solvent sintering: a novel route to create porous microsphere scaffolds for tissue regeneration. J Biomed Mater Res B Appl Biomater 2008;86B:396-406.
    62. Nukavarapu SP, Kumbar SG, Brown JL, et al. Polyphosphazene/nano- hydroxyapatite composite microsphere scaffolds for bone tissue engineering. Biomacromolecules 2008;9(7):1818-25.
    63. Kim BS, Mooney DJ. Development of biocompatible synthetic extracellularmatrices for tissue engineering. Trends Biotechnol 1998;16(5):224-30.
    64. Konishi S, Nakamura H, Seki M, et al. Hydroxyapatite granule graft combined with recombinant human bone morphogenic protein-2 for solid lumbar fusion. J Spinal Disord Tech 2002;15(3):237-44.
    65. Ambard AJ, Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties. J Prosthodont 2006;15(5):321-8.
    66. Julien M, Khairoun I, LeGeros RZ. Physico-chemical-mechanical and in vitro biological properties of calcium phosphate cements with doped amorphous calcium phosphates. Biomaterials 2007;28(6):956-65.
    67.李明忠,严颧景.再生丝素的结构及其生物医学应用.丝绸2000;5:37-9.
    68. Horan RL, Antle K, Collette AL, et al. In vitro degradation of silk fibroin. Biomaterials 2005;26(17):3385-93.
    69. Meinel L, Fajardo R, Hofmanna S, et al. Silk implants for the healing of critical size bone defects. Bone 2005;37(5):688-98.
    1. Temenoff JS, Mikos AG. Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials 2000; 21(23):2405-12.
    2. Jansen J, Ooms E, Verdonschot N, et a1. Injectable calcium phosphate cement for bone repair and implant fixation. Ortho Clin N Am 2005; 36(1):89-95.
    3. Moreau JL, Weir MD, Xu HH. Self-setting collagen-calcium phosphate bone cement: Mechanical and cellular properties. J Biomed Mater Res A 2008. Epub ahead of print.
    4.朱雪松,张志明,毛海青,等.磷酸钙骨水泥填充椎体成形过程中椎体生物力学评价.中国组织工程研究与临床康复2008;12(41):8071-4.
    5.陈晓庆,杨惠林,干旻峰,等.丝素蛋白对磷酸钙骨水泥抗压强度及注射性的影响.中国组织工程研究与临床康复2008;12(45):8985-8.
    6.苗军,刘春蓉,夏群.可注射性磷酸钙骨水泥生物相容性评价.中国组织工程研究与临床康复2007;11(48):9683-7.
    7. Gauthier O, Khairoun I, Bosco J, et al. Noninvasive bone replacement with a new injectable calcium phosphate biomaterial. J Biomed Mater Res A 2003; 66(1): 47-54.
    8. Flautre B, Delecourt C, Blary MC, et a1. Volume effect on biological properties of a calcium phosphate hydraulic cement: experimental Study in Sheep Bone 1999;25(2 Suppl):35S-39S.
    9. Guo D, Xu K, Zhao X, et al. Development of a strontium-containing hydroxyapatite bone cement. Biomaterials 2005;26(19):4073-83.
    10. Miyamoto Y, Ishikawa K, Takechi M,et al. Tissue response to fast-setting calcium phosphate cement in bone. J Biomed Mater Res 1997;37(4):457-64.
    11. Link DP, Van den Dolder J, Jurgens WJ. Mechanical evaluation of implantedcalcium phosphate cement incorporated with PLGA micropartieles. Biomaterials 2006;27(28): 4941-7.
    12. Wang X, Ma J, Wang Y, et al. Structural characterization of phosphorylated chitosan and their applications as effective additives of calcium phosphate cements. Biomaterials 2001;22(16): 2247-55.
    13. Makoto W, Miyuki T, Makoto S, et al. Development of calcium phosphate cement. Eur Ceram Soc 2006;26(6):549-53.
    14. Khairoun I, Boltong MG, Driessens FC, et a1. Some Factors Controlling the injectability of calcium phosphate bone cements. J Mater Sci Mater Medic 1998;9(8):425-8.
    15. el-Briak H, Durand D, Nurit J, el al. Study of a hydraulic dicalcium phosphate dihydrate/calcium oxide-based cement for dental applications. J Biomed Mater Res 2002;63(4):447-53.
    16. Liu H, Li H, Cheng W, et al. Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater 2006; 2(5):557-65.
    17. Ishikawa K, MiyamotoY, Kon M, et al. Non-decay type fast-setting calcium phosphate cement: composite with sodium alginate. Biomaterials 1995; 16 (7):527-32.
    18. Maria-Pau Ginebra, Tania Traykova, Josep A Planel1. Calcium phosphate cements: Competitive drug carriers for the musculoskeletal system? Biomaterials 2006;27(10):2171-7.
    19. Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements as bone drug delivery systems: A review. J Control Release 2006;113(2):102-10.
    20. Otsuka M, Matsuda Y, Fox JL, et al. A novel skeletal drug delivery system using self-setting calcium phosphate cement. 9: Effects of the mixing solution volume on anticancer drug release from homogenous drug-load cement . J Pharm Sci 1995;84(6):733-6.
    21. Sasaki S, Ishii Y. Apatite cement containing antibiotics: efficacy in treating experimental osteomyelitis.J Orthop Sci 1999;4(5):361-9.
    22. Kroese-Deutman HC, RuhéPQ, Spauwen PH, et al. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants inserted at an ectopic site in rabbits. Biomaterials 2005;26(10):1131-8.
    23. Jansen JA, Vehof JW, RuhéPQ, et al. Growth factor-loaded scafolds for bone engineering. J Control Release 2005;101(1-3):127-36.
    24. Seeherman HJ, Azari K, Bidic S, et al. rhBMP-2 delivered in a calcium phosphate cement accelerates bridging of critical-sized defects in rabbit radius. J Bone Joint Surg Am 2006;88(7):1553-65.
    25. Nilsson M, Wang JS, Wielanek L, et a1. Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute. J Bone Joint Surg Br 2004; 86(1):120-5.
    26. Sbordone L, Bortolaia C, Perrotti V, et al. Clinical and histologic analysis of calcium sulfate in treatment of a post-extraction defect: a case report. Implant Dent 2005;14(1):82-7.
    27.陈杰,夏军.可注射型硫酸钙动物实验研究.国际骨科学杂志2008;29(1):60-73.
    28.陈华,田学忠,张伯勋,等.硫酸钙骨内植入修复兔包容性骨缺损的力学分析.中国矫形外科杂志2008;16(5):373-5.
    29. Turner TM, Urban RM, Gitelis S, et a1. Resorption evaluation of a large bolus of calcium sulfate in a canine medullary defect. Orthopedics 2003;26(5 suppl):577-9.
    30. Carinci F, Piattelli A, Stabellini G, et a1. Calcium sulfate:analysis of MG63 osteoblast-like cell response by means of a microarray technology. J Biomed Mater Res B Appl Biomater 2004; 71(2):260-7.
    31. Duncan RL, Akanbi KA, Farach-Carson MC. Calcium signals and calcium channels in osteobastic cells. Semin Nephrol 1998;18(2):178-90.
    32. Maeno S, Niki Y, Matsumoto H, et al. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 2005;26(23):4847-55.
    33. Kelly CM, Wilkins RM. Treatment of benign bone lesions with an injectable calcium sulfate-based hone graft substitute. Orthopedics 2004;27(1 Suppl):s131-5.
    34. Abbah SA, Lu WW, Chan D, et al. In vitro evaluation of alginate encapsulated adipose-tissue stromal cells for use as injectable bone graft substitute. Biochem Biophys Res Commun 2006;347(1):185-91.
    35.李光辉,夏仁云,陈超.骨髓基质细胞/藻酸盐凝胶复合修复骨缺损的研究.中华实验外科杂志2003; 20(11):1031-2.
    36. Suzuki Y, Nishimura Y, Tanihara M, et al. Evaluation of a novel alginate gel dressing: cytotoxicity to fibroblasts in vitro and foreign-body reaction in pig skin in vivo. J Biomed Mater Res 1998;9(2):317-22.
    37. Li Z, Ramay HR, Hauch KD, et a1. Chitosan-alginate hybrid scafolds for bone tissue engineering. Biomaterials 2005;26(18):3919-28.
    38.程文俊,金丹,裴国献,等.壳聚糖/β-磷酸三钙作为可注射组织工程骨支架材料的可行性研究.解放军医学杂志2007;32(2):141-3.
    39. Hoemann CD, Sun J, LéqaréA, et al. Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle . Osteoarthritis Cartilage 2005;13(4):318-29.
    40. Zhang Y, Zhang M. Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. J Biomed Mater Res 2002;62(3):378-86.
    41. Zhang H, Oh M, Allen C, et al. Monodisperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules 2004;5(6):2461-8.
    42. Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechol 1998;16(5):224-30.
    43. Tzaphlidou M. The role of collagen in bone structure: an image proeessing approach. Micron 2005;36(7-8):593-601.
    44.谈伟强,徐靖宏,刘友山,等.胶原蛋白/BMP复合材料的制备和成骨性能研究.生物工程学报2008;24(2):272-7.
    45. Takamine Y, Tsuchiya H, Kitakoji T, et al. Distraction osteogenesis enhanced by osteoblastlike cells and collagen gel. Clin Orthop Relat Res 2002;(399):240-6.
    46.胡炜,项舟,张学利,等.BMSCs复合胶原材料三维诱导软骨细胞的初步研究.中国修复重建外科杂志2008;22(2):153-6.
    47.郝伟,胡蕴玉,姜明,等.基于脂肪干细胞I型胶原凝胶PLGA-β-TCP支架的新型仿生骨组织工程复合体的构建及生物学性能.第四军医大学学报2008;29(7):584-7.
    48.卢凌彬,张苹,曹阳.可注射型天然高分子软骨组织支架材料.功能材料2007;38:1751-4.
    49. Ge W, Jiang W, Li C, et al. Conduction of injectable cartilage using fibrin sealant and human bone marrow mesenchymal stem cells in vivo.Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2006;20(2):139-43.
    50. Ishaug-Riley SL, Crane GM, Gurlek A, et al. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery. J Biomed Mater Res 1997;36(1):1-8.
    51. Meinig RP, Rahn B, Perren SM, et al. Bone regeneration with resorbable polymeric membranes: treatment of diaphyseal bone defects in the rabbit radius with poly (L-lactide) membrane. A pilot study. J Orthop Trauma 1996;10(3):178-90.
    52. Thomson RC, Yaszemski MJ, Powers JM, et al. Fabrication of biodegradable polymer scaffold to engineer trabecular bone. J Biomater Sci Polym Ed 1995;7(1):23-38.
    53. Thomson RC, Yaszemski MJ, Powers JM, et al. Hydroxyapatite fiber reinforced poly (alpha-hydroxy ester) foams for bone regeneration. Biomaterials 1998; 19 (21) :1935-43.
    54. Peter SJ, Miller MJ, Yaosko AW, et al. Polymer concepts in tissue engineering. J Biomed Mater Res 1998;43(4):422-7.