双相磷酸钙/丝素蛋白/硫酸钙/rh-BMP-2复合材料在绵羊腰椎间融合的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】通过制备可注射双相磷酸钙/丝素蛋白/硫酸钙/rhBMP-2 (biphasic calcium phosphate/silk fibroin/calcium sulphate hemihydrate/recombinant human bone morpho- genetic protein-2, BCP/SF/CSH/rhBMP-2)复合材料,并进行动物体内降解、生物相容性及椎间融合的实验研究。
     【方法】8只健康成年绵羊被随机分为两组,每组四只,均经左侧腹膜外入路,暴露L1/2、L3/4和L5/6椎间盘,在其中点制成深度为12mm,直径为7.0mm的垂直于矢状面的孔洞,不穿透对侧纤维环,完全清除髓核组织,充分处理终板至渗血。每只绵羊三个腰椎椎间隙孔洞随机植入下列材料中的三种:BCP/CSH/SF、BCP/CSH/rhBMP-2、BCP/CSH/SF/rhBMP-2或自体松质髂骨。分别于术后3、6个月处死两组绵羊,通过大体观察、手触检测、CT扫描、非破坏性生物力学测试、不脱钙组织学以及组织形态学方法观察和分析脊柱融合状况。
     【结果】除作为对照研究的自体髂骨不能经注射器注入外,其余人工骨注射过程均较流畅。术后腰椎标本完整性均良好,无附件等组织破坏,对侧纤维环均没有穿破,钻孔侧椎旁无渗漏。手触检查结果表明:术后3个月时,BCP/CSH/SF、BCP/CSH/rhBMP-2、BCP/CSH/SF/rhBMP-2以及自体松质髂骨植骨融合率之间无统计学意义(P>0.05);而术后6个月时,四组材料的融合率也无统计学意义(P>0.05)。非破坏性生物力学测试显示:术后3个月时,屈曲、后伸、左侧屈以及右侧屈四个施力方向的融合强度的差异有统计学意义(P<0.05);术后6个月时,BCP/CSH/SF/rhBMP-2与自体髂骨表现出相近的力学强度(P>0.05),两者在四个方向的融合强度>BCP/CSH/ rhBMP-2 >BCP/CSH/SF,差异有统计学意义(P<0.05)。组织形态计量学表明:术后3个月时,四组材料之间差异具有有统计学意义(P<0.05);而钙磷残留量的差异也有统计学意义(P<0.05);术后6个月时,BCP/CSH/SF/rhBMP-2成骨能力与自体髂骨相当(P>0.05),二者新骨生成量>BCP/CSH/rhBMP-2>BCP/CSH/SF,差异有统计学意义(P<0.05);而钙磷残留BCP/CSH/SF>BCP/CSH/rhBMP-2>BCP/CSH/SF/rh- BMP-2,差异也有统计学意义(P<0.05)。
     【结论】腰椎间隙孔洞深度为12mm,直径为7.0mm的绵羊腰椎体间融合模型是一种较为理想的动物模型,可以用来评估BCP/CSH/SF/rhBMP-2复合材料的成骨性能。BCP/CSH/SF/rhBMP-2复合人工骨具有良好的生物相容性与可生物降解性;构建的组织工程化人工骨具有良好的骨缺损修复作用及椎间融合效果,有望成为一种新型骨修复材料。
[Objective] Through the preparation of injectable biphasic calcium phosphate/ calcium sulphate hemihydrate/silk fibroin/recombinant human bone morphogenetic protein-2(BCP/CSH/SF/rhBMP-2) composite materials, and do some experimental study of interbody fusion, the degradation and biocompatibility in vivo.
     [Methods] Eight sheep were randomly divided into two groups. Four sheep in each group were operated on left retroperitoneal approach and intervertebral discs of L1/2, L3/4 and L5/6 were exposed. Cavities were made on the midpoint of disc space perpendicular to sagittal plane, with 12 mm in depth and 7 mm in diameter. The opposite side of annular fibrosus was kept intact, nucleus pulposus was cleared completely, and endplate was processed to capillary hemorrhage. Three fusion sites in each animal were randomly assigned three treatments of four: biphasic calcium phosphate/calcium sulphate hemihydrate/silk fibroin(BCP/CSH/SF)、biphasic calcium phosphate/calcium sulphate hemihydrate/recombinant human bone morphogenetic protein-2(BCP/CSH/rhBMP-2)、biphasic calcium phosphate/calcium sulphate hemihydrate/silk fibroin/recombinant human bone morphogenetic protein-2 (BCP/CSH/SF/rhBMP-2) or autogenous iliac crest cancellous bone. sheep of the two groups were killed at 3 and 6 months postoperation respectively. The fusion sites were observed and analyzed by manual palpation, CT scan, undestructive biomechanical test, undecalcified histology, and histomorphology.
     [Results] All the bone subsitutes were injected successfully while the iliac cancellous bone couldn’t be injected by syringe. The structures of all the lumbar spine specimens were presvered integrity with favorable stability and without appendix destroyed. The opposite side of annular fibrosus was kept intact and no leakage of bone substitutes was observed in the drilling side. The fusion rates of BCP/CSH/SF、BCP/ CSH/rhBMP-2、BCP/CSH/SF/rhBMP-2 and autogenous iliac cancellous bone assessed by manual palpation at 3 months and at 6 months postoperation, the fusion rates had no significant differences (P>0.05) . Respectively, the fusion stiffness of all directions among the three materials had significant differences (P<0.05) at 3 months postoperation. Statistical differences were not detected between BCP/CSH/SF and intact specimen (P>0.05). It revealed similar stiffness between iliac bone and BCP/CSH/SF/rhBMP-2 at 6 months after surgery (P>0.05). The similar stiffness of the two materials were greater than BCP/CSH/SF (P<0.05). The new bone formation among the three materials had significant differences (P<0.05) at 3 months postoperation. The residual volume of calcium phosphate has significant differences (P<0.05) among the two bone substitutes. It revealed almost new bone formation between iliac bone and BCP/CSH/SF/rhBMP-2 at 6 months after surgery (P>0.05). The similar bone formation volume of the two materials were more than BCP/CSH/SF (P<0.05). It showed the same tendency about residual volume of calcium phosphate with at 3 months postoperation.
     [Conclusion] The sheep anterior lumbar intervertebral fusion model, of which the cavities are made on sheep intervertebral space with 12 mm in depth and 7 mm in diameter, is an ideal fusion model to evaluate the capability of bone formation for injectable bone subsidies. The BCP/CSH/SF/rhBMP-2 composite artificial bone has good biocompatibility and biodegradability; construction of engineering artificial bone has a good repair of bone defects and interbody fusion and will be expected to become a new bone repair materials.
引文
1. Helm GA. Bone graft substitutes for use in spinal fusions. Clin Neurosurg , 2005; 52:250-5.
    2. Banwart JC, Asher MA, Hassanein RS. Iliac rest bone graft harvest donor site morbidity: a statistical evaluation. Spine,1994;20:1055-60.
    3. Grauer JN, Beiner JM, Kwon B, et al. The evolution of allograft bone for spinal fusion. Orthopedics,2005;28(6):573-9.
    4. Chen L, Yang H, Tang T. Cage migration in spondilolithesis treated with posterior lumbar interbody fusion using BAK cages. Spine 2005;30(19):2171-5.
    5. Aoki Y, Yamagata M, Nakajima F, et al. Posterior migration of fusion cages in degenerative lumbar disease treated with transformational lumbar interbody fusion: a report of three patients. Spine 2009;34(1):E54-8.
    6. Dai LY, Jiang LS. Single-level instrumented posterolateral fusion of lumbar spine with beta-tricalcium phosphate versus autograft: a prospective, randomized study with 3-year follow-up. Spine 2008;33(12):1299-304.
    7. Inamasu J, Guiot BH. Laparoscopic lumbar interbody fusion: a review of outcome studies. Minim Invasive Neurosurg 2005;48(6):340-7.
    8. Trojani C, Boukhechba F, JC Scimeca JC .et al. Ectopic bone formation using injectable biphasic calcium phosphate/Si-HPMC hydrogen composite loaded with undifferentiated bone marrow stoma cells. Biomaterials, 2006, 27(17): 3256-3264.
    9.苏葆辉,冉旭,冉均国,苟立,. HA/β-TCP双相磷酸钙陶瓷材料的生物学性能研究[J].稀有金属材料与工程,2007,(S2).
    10. Trojan C, Boukhechba F, JC Scimeca JC .et al. Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells. Biomaterials,2006,27(17): 3256-3264.
    11. Lieberman IH, Dudeney S, Reinhardt MK, et al. Initial outcome and efficacy of "kyphoplasty" in the treatment of painful osteoporotic vertebral compression fractures. Spine, 2001,26:1631~1638
    12.邸利芝,刘斌,罗跃娥,赵红,蔡仲雨,.聚富马酸丙二醇酯/(硫酸钙/β-磷酸三钙)生物复合材料的体外降解研究[J].天津理工大学学报,2009,(3).
    13. Sferra, James J, Dresher, et al. Allograft and Synthetic Graft Substitutes. Techniques in Foot & Ankle Surgery. 2008, 7(2):79-83
    14. Heini PF, Berlemann U, Kaufmann M, et al. Augmentation of mechanical properties in osteoporotic vertebral bones---a biomechanical investigation of vertebroplasty efficacy with different different bone cements. Eur Spine. 2001;10:164-171.
    15. Hyoung JJ, JS Chen, David LK, et al. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials. 2004, 25:1039–1047
    16. Ung-JinKima, Jaehyung Parka, H, David L. Kaplana , Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin, Biomaterials.2005, 26:2775–2785.
    17. Otsuka M, Matsuda Y, Fox JL, et al. A novel skeletal drug delivery system using self-setting calcium phosphate cement. 9: Effects of the mixing solution volume on anticancer drug release from homogenous drug-load cement. J Pharm Sci. 1995,84(6):733-6.
    18. Burkus JK, Gornet MF, Dickman CA, et al. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 2002;15:337-49.
    19. Visser R, Arrabal PM, Becerra J. The effect of an rhBMP-2 absorbable collagen sponge-targeted system on bone formation in vivo. Biomaterials 2009;30(11)2032-7.
    20. Shields LB, Rague GH, Glassman SD, et al. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine 2006;31(5):542-7.
    21. Gerstenfeld LC, Einhorn TA. COX inhibitors and their effects on bone healing. ExpertOpin Drug Saf, 2004, 3:1312136.
    22. Morone MA, Boden SD, Hair G, et al. Gene expression during autograft lumbar spine fusion and the effect of bone morphogenetic protein 2. ClinOrthop RelatRes, 1998, (351):252 265.
    23. Boden SD. Biology of lumbar spine fusion and use of bone graft substitutes: present, future, and next generation. Tissue Eng, 2000,6:383-399.
    24. Wilke HJ, Kettler A, Wenger KH, et al. Anatomy of the sheep spine and its comparisonto the human spine. Anat Rec, 1997; 247(4): 542-55.
    25. Wilke HJ, Kettler A, Claes LE. Are sheep spines a valid biomechanical model for human spines? Spine 1997; 22(20):2365-74.
    26. Smit TH. The use of a quadruped as an in vivo model for the study of the spine biomechanical considerations. Eur Spine J 2002;11(2):137-44.
    27.陈亮,顾勇,陈晓庆等。丝素蛋白增强型磷酸钙复合rhBMP-2用于绵羊腰椎椎体间融合的实验研究。中华骨科杂志,2010; 30(7):677-683.
    28. Thomas RB, Günter D, Paresh SD, et al. Successful transpedicular lumbar interbody fusion by means of a composite of osteogenic protein-1 (rhBMP-7) and hydroxyapatite carrier: a comparison with autograft and hydroxyapatite in the sheep spine. Spine 2002;27(23):2967-75.
    29. Michael NM, Günther D. Improved lumbar vertebral interbody fusion using rhOP-1: a comparison of autogenous bone graft, bovine hydroxylapatite (Bio-Oss), and BMP-7 (rhOP-1) in Sheep. Spine 2001;26(5):469-78.
    30. Sandhu HS, Toth JM, Diwan AD, et al. Histologic evaluation of the efficacy of rhBMP-2 compared with autograft bone in sheep spinal anterior interbody fusion. Spine 2002;27:567-75.
    31. Thomas RB, Günter D, Paresh SD, et al. Successful transpedicular lumbar interbody fusion by means of a composite of osteogenic protein-1(rhBMP-7) and hydroxyapatite carrier: a comparison with autograft and hydroxyapatite in the sheep spine. Spine 2002; 27(23):2697-705.
    32. Wu B, Zheng Q, Guo X, et al. Preparation and ectopic osteogenesis in vivo of scaffold based on mineralized recombinant human-like collagen loaded with synthetic BMP-2-derived peptide. Biomed Mater 2008;3(4):44111.
    33. Brown JL, Nair LS, Laurencin CT. Solvent/non-solvent sintering: a novel route to create porous microsphere scaffolds for tissue regeneration. J Biomed Mater Res B Appl Biomater 2008; 86B: 396-406.
    34. Nukavarapu SP, Kumbar SG, Brown JL, et al. Polyphosphazene/nano- hydroxyapatite composite microsphere scaffolds for bone tissue engineering. Biomacromolecules 2008;9(7):1818-25.
    35.Yuan H, Yang Z, De Bruij JD, et al. Material-dependent bone induction by calciumphosphate ceramics: a 2.5-year study in dog. Biomaterials. 2001;22(19):2617-2623.
    36. Ransom BR, Blank WF. Letter: The pathology of cerebral edema. Hum Pathol. 1975;6(5):642-643.
    37.杨为中,周大利,尹光福,等.骨组织工程支架材料磷酸钙双相生物陶瓷的研究进展[J].硅酸盐学报,2004,32(9):1143-1149.
    38.彭维海,绍英,荣莉,等.新型可吸收材料PLLA/PLLA-gHA的生物相容性[J].吉林大学学报:医学版,2008:34(1):14-18.
    39.汪建,付晓燕,熊敏,等.羟基磷灰石/聚乳酸-三亚甲基碳酸酯软腭植入材料的生物相容性与安全性[J].中国组织工程与临床康复,2008,12(19):3609-3612.
    40. Horan RL, Antle K, Collette AL, et al. In vitro degradation of silk fibroin. Biomaterials 2005;26(17):3385-93.
    41. Hofmann S, Hagenmuller H, Koch AM, et al. Control of in vitro tissue- engineered- bone-like structures using human mesenchymal stem cells and porous silk scafolds. Biomaterials 2007;28(6):1152-62.
    42.Tamada Y. Sulfation of silk fibroin by chlorosulfonic acid and the anticoagulant activity. Biomaterials 2004(25):377-83.
    1. Katz JN. Lnmbar spinal fusion. Surgical rates, costs, and complications. Spine, 1995;20(Suppl 24):78-83.
    2. Boden SD. Bone repair and enhancement clinical trial design. Spine applications. Clinical Orthopaedics & Related Research 1998;355(Suppl):S336-S346.
    3. Boden SD. Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine,2002;27:S26-31
    4. Marchesi DG. Spinal fusions: bone and bone substitutes. Spine,2000;9(5):372-378.
    5. Banwart JC, Asher MA, Hassanein RS. Iliacc rest bone graft harvest donor site morbidity: a statistical evaluation. Spine,1994;20:1055-60.
    6. Vallet-RegiM, Gonzalez Calbet J. Calcium phosphates as substitution of bone tissue[J]. Progress in Solid State Chemistry,2004,32:1231.9
    7. Bauer TW, Smith ST. Bioactivematerials in orthopaedics surgery:over-view and regulatory considerations[J]. ClinicalOrthopaedics and Related Research,2002, 395:11-22.
    8. Baramki EG, Steffen T,Lander P, et al. The efficacy of interconnected porous hydroxyapatite in achieving posterolateral lumbar fusion in sheep[J]. Spine, 2003,25(9): 1053-1060.
    9. Caja VL, Piza G. Hydroxyapatite coatingof external fixation pins to decrease axial deformity during tibial lengthening for short stature.Bone Joint Surg(Am),2003; 86(8):1527-1551.
    10. Gutwein LG, Webster TJ. Increased viable osteoblast density in the presence of nanophase compared to conventional alumina and titania particles. Biomaterials, 2004;26(18):4175-4183.
    11. Thomas J, Webster TJ. Increased viable osteoblast density in the presence of nanophase compared to conventional aluminaand titania particles. Biomaterials,2001;22(11): 1327-1333.
    12. Kelly CM, Wilkins RM, Gitelis S, et al. The use of a surgical grade calcium sulfate as a bone graft substitute: results of a multicenter trial. Clin Orthop Relat Res. 2001(382): 42-50.
    13. Glazer PA, Spencer UM, Alkalay RN, et al. In vivo evaluation of calcium sulfate as a bone graft substitute for lumbar spinal fusion. Spine J. 2001;1(6):395-401.
    14. Chen WJ, Tsai TT, Chen LH, et al. The fusion rate of calcium sulfate with local autograft bone compared with autologous iliac bone graft for instrumented short-segment spinal fusion. Spine. 2005;30(20):2293-2297.
    15. Kelly CM, Wilkins RM.Treatment of benign bone lesions with an injectable calcium sulfate-based bone graft substitute. Orthopedics. 2004;27(1 Suppl):s131-135.
    16.陈杰,夏军.可注射型硫酸钙动物实验研究.国际骨科学杂志2008;29(1):60-73.
    17.陈华,田学忠,张伯勋,等.硫酸钙骨内植入修复兔包容性骨缺损的力学分析.中国矫形外科杂志2008;16(5):373-375.
    18. Turner TM, Urban RM, Gitelis S, et a1. Resorption evaluation of a large bolus of calcium sulfate in a canine medullary defect. Orthopedics 2003;26(5 suppl):577-579.
    19. Nilsson M, Wang JS, Wielanek L, et a1. Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute. Bone Joint Surg Br 2004; 86(1):120-5.
    20. Turner TM, Urban RM, Gitelis S, et al. Radiographic and histologic assessment of calcium sulfate in experimental animal models and clinical use as a resorbable bone-graft substitute, a bone-graft expander, and a method for local antibiotic delivery. One institution's experience. J Bone Joint Surg Am. 2001;83-A Suppl 2(Pt 1):8-18.
    21. Bikash B. Results of a calcium sulfate bone graft substitute used to promote posterolateral lumbar spinal fusion. Neu Quar.2003; 13(4):251-256.
    22. Carinci F, Piattelli A, Stabellini G, et a1. Calcium sulfate:analysis of MG63 osteoblast-like cell response by means of a microarray technology. J Biomed Mater Res B Appl Biomater 2004; 71(2):260-267.
    23. Duncan RL, Akanbi KA, Farach-Carson MC. Calcium signals and calcium channels in osteobastic cells. Semin Nephrol1998;18(2):178-190.
    24. Maeno S, Niki Y, Matsumoto H, et al. The effect of calcium ion concentration onosteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 2005;26(23):4847-4855.
    25. Kelly CM, Wilkins RM. Treatment of benign bone lesions with an injectable calcium sulfate-based hone graft substitute. Orthopedics 2004;27(1 Suppl):s131-135.
    26. Sanzana ES, Navarro M, Macule F, et al. Of the in vivo behavior of calcium phosphate cements and glasses as bone substitutes. Acta Biomater. 2008;4(6):1924-1933.
    27. Gauthier O, Khairoun I, Weiss P, et al. In vivo comparison of two injectable Calcium Phosphate biomaterials: ionic cement and polymer-associated particulate ceramic. Key Eng Mate.2001; 192(195):801-804.
    28. Gauthier O, Bouler JM, Weiss P, et al. Kinetic study of bone ingrowth and ceramic resorption associated with the implantation of different injectable calcium-phosphate bone substitutes. J Biomed Mater Res. 1999;47(1):28-35.
    29. Flautre B, Delecourt C, Blary MC, et al. Volume effect on biological properties of a calcium phosphate hydraulic cement: experimental study in sheep. Bone. 1999;25(2 Suppl):35S-39S.
    30. Wolke JG, Ooms EM, Jansen JJ. In vivo resorption behavior of a high strength injectable Calcium-phosphate cement. Key Eng Mate.2001;192(195):793-796.
    31. Van Landuyt P, Peter B, Beluze L, et al. Reinforcement of osteosynthesis screws with brushite cement. Bone.1999;25 (2Suppl): 95S-98S.
    32. Bai B, Jazrawi LM, Kummer FJ, et al. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fractures.Spine. 1999; 24(15): 1521-1526.
    33. Mermelstein LE, McLain RF, Yerby SA. Reinforcement of thoracolumbar burst fractures with calcium phosphate cement. A biomechanical study. Spine. 1998; 23(6):664-670.
    34. Stankewich CJ, Swiontkowski MF, Tencer AF, et al. Augmentation of femoral neck fracture fixation with an injectable calcium-phosphate bone mineral cement. J Orthop Res. 1996;14(5):786-793.
    35. Gerhart TN, Renshaw AA, Miller RL, et al. In vivo histologic and biomechanical characterization of a biodegradable particulate composite bone cement. J BiomedMater Res. 1989;23(1):1-16.
    36. Constantz BR, Ison IC, Fulmer MT, et al.Skeletal repair by in situ formation of the mineral phase of bone. Science. 1995;267(5205):1796-1799.
    37. Kopylov P, Runnqvist K, Jonsson K, et al. Norian SRS versus external fixation in redisplaced distal radial fractures. A randomized study in 40 patients. Acta Orthop Scand. 1999;70(1): 1-5.
    38. Yetkinler DN, Ladd AL, Poser RD, et al. Biomechanical evaluation of fixation of intra-articular fractures of the distal part of the radius in cadavera: Kirschner wires compared with calcium-phosphate bone cement. J Bone Joint Surg Am. 1999;81(3): 391-399.
    39. Otsuka M, Matsuda Y, Suwa Y, et al. A novel skeletal drug-delivery system using self-setting calcium phosphate cement. Effects of the mixing solution volume on the drug-release rate of heterogeneous aspirin-loaded cement. J Pharm Sci. 1994;83 (2): 259-263.
    40. Otsuka M, Matsuda Y, Suwa Y, et al. A novel skeletal drug-delivery system using self-setting calcium phosphate cement. Physicochemical properties and drug-release rate of bovine insulin and bovine albumin. J Pharm Sci. 1994;83(2):255-258.
    41. Otsuka M, Matsuda Y, Fox JL, et al. A novel skeletal drug delivery system using self-setting calcium phosphate cement. 9: Effects of the mixing solution volume on anticancer drug release from homogeneous drug-loaded cement. J Pharm Sci. 1995;84(6): 733-736.
    42. Suzuki T, Arai K, Goto H, et al. Dissolution tests for self-setting calcium phosphate cement-containing nifedipine.Chem Pharm Bull (Tokyo). 2002;50(6):741-743.
    43. Tahara Y, Ishii Y. Apatite cement containing cis-diamminedichloroplatinum implanted in rabbit femur for sustained release of the anticancer drug and bone formation. Orthop Sci. 2001;6(6):556-565.
    44. Joosten U, Joist A, Gosheger G, et al. Effectiveness of hydroxyapatite-vancomycin bone cement in the treatment of Staphylococcus aureus induced chronic osteomyelitis. Biomaterials. 2005;26(25):5251-5258.
    45. Stallmann HP, Faber C, Bronckers AL, et al.In vitro gentamicin release from commercially available calcium-phosphate bone substitutes influence of carrier typeon duration of the release profile. BMC Musculoskelet Disord. 2006;7:18.
    46. Niikura T, Tsujimoto K, Yoshiya S, et al. Vancomycin-impregnated calcium phosphate cement for methicillin-resistant Staphylococcus aureus femoral osteomyelitis. Orthopedics. 2007; 30(4):320-1.
    47 Kamegai A, Shimamura N, Naitou K, et al. Bone formation under cement composite as a delivery system. Biomed Mater Eng. 1994; 4(4):291-307.
    48. Jansen JA, Vehof JW, Ruhe PQ, et al. Growth factor-loaded scaffolds for bone engineering. J Control Release. 2005;101(1-3): 127-136.
    49. Bigi A, Panzavolta S, Sturba L, et al. Normal and osteopenic bone-derived osteoblast response to a biomimetic gelatin-calcium phosphate bone cement. J Biomed Mater Res A. 2006;78(4): 739-745.
    50. Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechol 1998;16(5):224-30.
    51. Tzaphlidou M. The role of collagen in bone structure: an image proeessing approach. Micron 2005;36(7-8):593-601.
    52.谈伟强,徐靖宏,刘友绵,等.胶原蛋白/BMP复合材料的制备和成骨性能研究.生物工程学报2008;24(2):272-7.
    53. Takamine Y, Tsuchiya H, Kitakoji T, et al. Distraction osteogenesis enhanced by osteoblastlike cells and collagen gel. Clin Orthop Relat Res 2002;(399):240-6.
    54.胡炜,项舟,张学利,等.BMSCs复合胶原材料三维诱导软骨细胞的初步研究.中国修复重建外科杂志2008;22(2):153-6.
    55.郝伟,胡蕴玉,姜明,等.基于脂肪干细胞I型胶原凝胶PLGA-β-TCP支架的新仿生骨组织工程复合体的构建及生物学性能.第四军医大学,2008;29(7):584-7.
    56. Abbah SA, Lu WW, Chan D, et al. In vitro evaluation of alginate encapsulated adipose-tissue stromal cells for use as injectable bone graft substitute. Biochem Biophys Res Commun 2006;347(1):185-91.
    57.李光辉,夏仁云,陈超.骨髓基质细胞/藻酸盐凝胶复合修复骨缺损的研究.中华实验外科杂志2003; 20(11):1031-2.
    58. Suzuki Y, Nishimura Y, Tanihara M, et al. Evaluation of a novel alginate gel dressing: cytotoxicity to fibroblasts in vitro and foreign-body reaction in pig skin in vivo. JBiomed Mater Res 1998;9(2):317-22.
    59. Li Z, Ramay HR, Hauch KD, et a1. Chitosan-alginate hybrid scafolds for bone tissue engineering. Biomaterials 2005;26(18):3919-28.
    60.程文俊,金丹,裴国献,等.壳聚糖/β-磷酸三钙作为可注射组织工程骨支架材料的可行性研究.解放军医学杂志2007;32(2):141-3.
    61. Hoemann CD, Sun J, LéqaréA, et al. Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle . Osteoarthritis Cartilage 2005;13(4):318-29.
    62. Zhang Y, Zhang M. Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. J Biomed Mater Res 2002;62(3):378-86.
    63. Zhang H, Oh M, Allen C, et al. Monodisperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules 2004;5(6):2461-8.
    64.卢凌彬,张苹,曹阳.可注射型天然高分子软骨组织支架材料.功能材料, 2007; 38:1751-4.
    65. Ge W, Jiang W, Li C, et al. Conduction of injectable cartilage using fibrin sealant and human bone marrow mesenchymal stem cells in vivo. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2006;20(2):139-43.
    66. Ishaug-Riley SL, Crane GM, Gurlek A, et al. Ectopic bone formation by marrow stromal osteoblast transplantation using poly (DL-lactic-co-glycolic acid) foams implanted into the rat mesentery. Biomed Mater Res 1997;36(1):1-8.
    67. Meinig RP, Rahn B, Perren SM, et al. Bone regeneration with resorbable polymeric membranes: treatment of diaphyseal bone defects in the rabbit radius with poly (L-lactide) membrane. A pilot study. Orthop Trauma 1996;10(3):178-90.
    68. Thomson RC, Yaszemski MJ, Powers JM, et al. Fabrication of biodegradable polymer scaffold to engineer trabecular bone. J Biomater Sci Polym Ed 1995;7(1): 23-38.
    69. Thomson RC, Yaszemski MJ, Powers JM, et al. Hydroxyapatite fiber reinforced poly (alpha-hydroxy ester) foams for bone regeneration. Biomaterials 1998; 19(21) : 1935-43.
    70. Peter SJ, Miller MJ, Yaosko AW, et al. Polymer concepts in tissue engineering. BiomedMater Res 1998;43(4):422-7.
    71. Boden SD. Overview of biologyof lumbar spine fusion and principles for selecting a bone graft substitute. Spine, 2002, 27(16 Suppl1):26-31.
    72. Vaccaro Ar, Anderson DG, Touth CA. Recombinant humanosteogenic protein2 (bone morphogenetic protein-2 ) as an osteoinductive agent in spinal fusion. Spine, 2002,27: 59-65.
    73. Moazzaz P, Gupta MC, Gilotra MM, et al. Estrogen2dependent actions of bone morphogenetic protein-2 on spine fusion in rats. Spine, 2005, 130:1706-1711.
    74. Yoon ST, Boden SD. Spine fusion by gene therapy. Gene Ther, 2004, 11:3602367.
    75. MusgraveDS, Pruchnic R, Bosch P, et al. Human skeletalmuscle cells in ex vivo gene therapy to deliverbonemorphogenetic protein-2. Bone Joint SurgBr, 2002, 84:120-127.
    76. Partridge K, Yang X, Clarke NM, et al. Adenoviral BMP-2 gene transfer in mesenchymal stem cells: in vitro and in vivo bone formation on biodegradable polymer scaffolds. Biochem Biophys Res Commun, 2002, 292:1442152.
    77. Lee JY, PengH, UsasA, et al. Enhancementof bone healing based on ex vivo gene therapy using human muscle2derived cells expressing bone morphogenetic protein 2. Hum Gene Ther, 2002, 13: 1201-1211.
    78. Moutsatsos IK, Turgeman G, Zhou S, et al. Exogenously regulated stem cell2mediated gene therapy for bone regeneration. Mol Ther,2001, 3:4492461.
    79. Rutherford RB, Moalli M, Franceschi RT, et al. Bone morphogenetic protein-2 transduced human fibroblasts convert to osteoblasts and form bone in vivo. Tissue Eng, 2002, 8:441-452.
    80. DumontRJ, Dayoub H, Li JZ, et al. Ex vivo bone morphogenetic protein-9 gene therapy using humanmesenchymal stem cells induces spinal fusion in rodents. Neurosurgery, 2002, 51:123921244.
    81. Dawid IB, Breen JJ, Toyama R. LIM domains: multiple roles as adapters and functional modifiers in protein interactions. Trends Genet, 1998, 14:156-162.