苹果寡糖的制备、结构鉴定与抗肿瘤活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多糖具有广泛的生物活性,其肿瘤防治作用引起了大家的关注。目前,全球至少有超过30种多糖在临床进行抗肿瘤、抗艾滋病及治疗糖尿病试验。在日本已有香菇多糖,在我国则有牛膝多糖、云芝多糖、灵芝多糖和猪苓多糖被批准用于临床。本实验室研究表明,低分子苹果多糖对防治结/直肠癌,具有潜在的开发应用价值。然而,天然多糖类药物研发存在以下突出问题:(1)聚糖多以高分子形式存在,分子量范围跨度大,均一性差,结构不清楚,难于质量控制。(2)药物活性重复性差,难于在分子水平阐明其作用机制。(3)大分子多糖在体内很难进行跨膜转运,体内过程不明。(4)提取分离技术与质量控制滞后,现有的提取工艺难以获得结构均一的多糖。低分子化、均一化是实现天然糖类药物质量可控的重要策略。
     目的:
     建立苹果寡糖的制备、分离纯化、结构鉴定的新方法,观察苹果寡糖的抗肿瘤作用及其机制,为开发具有自主知识产权的苹果寡糖类药物奠定基础。
     方法:
     1.采用水提醇沉的方法,从苹果渣中分离得到苹果粗多糖,去除蛋白和色素,再经透析分段、DEAE-52和Sepharose CL-4B凝胶柱层析分离得到两个组分AP-1和AP-2B。对苹果多糖和纯化后的两种多糖进行糖含量、分子量和UV、IR、旋光度以及单糖组成表征。
     2.采用碱解和酶解相结合的方法,制备苹果寡糖,采用阴离子交换树脂对寡糖混合物进行分离,得到OS-1、OS-2、OS-3、OS-4和OS-5。采用HPLC柱前衍生化法、MS和NMR对OS-5结构进行分析表征。
     3.MTT法检测OS-1、OS-2、OS-3、OS-4、OS-5和AP-1对6株肿瘤细胞及人正常上皮细胞HIEC活性的影响,筛选出抗肿瘤效果最好的寡糖进行体外抗肿瘤机制研究。采用OS-5处理HT29细胞,通过流式细胞仪检测HT29细胞凋亡率和细胞周期变化情况,透射电镜法观察细胞形态学的变化;蛋白印迹法检测凋亡和周期相关蛋白的变化情况,同时采用real time PCR法检测相关蛋白mRNA的表达,探讨OS-5抗肿瘤作用机制。
     4.复制致炎剂/致癌剂诱导的ICR小鼠结肠癌模型和裸鼠HT29细胞移植瘤模型,进行实验治疗学观察。通过病理组织学方法,观察结肠癌发生情况;通过ELISA和Western Blot检测方法,观察结肠癌小鼠血清TNF-α和Galectin-3含量变化和凋亡相关蛋白的变化。采用肿瘤体积和生存时间等指标,观察OS-5对移植瘤小鼠肿瘤的抑制效应。
     结果:
     1.经HPSEC分析可知,苹果多糖是包含有三个不同分子量组分的混合多糖,组分1和组分2为均一性多糖,分子量分别为10kD和1900kD。单糖组成分析结果显示,苹果多糖的单糖组成为鼠李糖、半乳糖醛酸、葡萄糖、半乳糖和阿拉伯糖,摩尔比为1.00:17.67:8.50:4.01:2.03。组分1单糖组成为鼠李糖、半乳糖醛酸和葡萄糖,摩尔比为1.20:10.00:5.25;组分2单糖组成为鼠李糖、半乳糖醛酸、葡萄糖和半乳糖,摩尔比为1.00:20.30:8.50:8.03。
     2.HPSEC分析结果表明,OS-5纯度为99.21%,OS-5是由GalA组合而成,分子量为898,其结构是由(1→4)-β和(1→6)-α-D-GalA线性连接形成的半乳糖醛酸寡聚糖,具体结构为α-D-GalAp-(1→6)-α-D-GalAp-(1→6)-α-D-GalAp-(1→6)-β-D-GalAp-(1→4)-α-D-GalAp。
     3.HIEC细胞经9μg/mL OS-5处理36h,其增殖率为37.3±1.8%。OS-5对A549、H1299、SMMC7721、HCT116和SW480细胞的活性抑制作用较小。给药36h,9μg/mLOS-5对H1299、SW480细胞活性抑制率分别为24.99±0.6%、23.4±1.4%,对A549细胞和HCT116细胞的抑制率均低于10%。不同浓度OS-5作用于SMMC7721细胞24h后,细胞抑制率均为25%,不呈现浓度依赖性。OS-5对HT29细胞活性抑制作用比较突出,且呈现时间和浓度依赖性。给予HT29细胞9μg/mLOS-5处理36h后,抑制率为52.6±1.8%。电镜观察发现,10μmol/L OS-5处理后的HT29细胞呈现典型凋亡形态。流式细胞术结果表明,10μmol/L OS-5处理后的HT29细胞凋亡率为45.9%(P<0.01),S期细胞占60.86±3.44%,与正常对照组细胞(未用OS-5处理,S期细胞占24.64±1.29%)具有显著性差异(P<0.01),提示OS-5可诱导HT29细胞发生凋亡和S期阻滞。经OS-5处理后的HT29细胞,Bax蛋白表达量明显升高,同时抗凋亡蛋白Bcl-2和Bcl-xl的表达显著降低。OS-5能够显著降低HT29细胞中Cdk2和cyclin B1蛋白的表达,同时增加cyclin A1蛋白表达量。
     4.DMH/DSS诱发的结肠癌小鼠给予OS-5后免疫器官指数和结肠长度有所改善,胸腺指数比正常组和模型组显著增高(P<0.05);HE染色结果显示,OS-5可抑制结肠组织癌细胞的浸润生长现象;OS-5治疗组动物血清中TNF-α水平显著升高(P<0.01),血清中Galectin-3水平比模型组降低,但无显著性差异;Western Blot显示OS-5治疗组结肠黏膜中Bax表达量升高,Bcl-2和Bcl-xl表达降低,模型组黏膜中Bax表达量显著降低(P<0.01)。裸鼠移植瘤实验表明,OS-5对HT29细胞移植瘤具有明显的抑制作用。第35d时,5mg/kg、10mg/kg和20mg/kg OS-5给药组肿瘤体积分别为:529.84±44.01mm~3、443.81±38.94mm~3和358.96±28.68mm~3,与模型组肿瘤体积998.61±30.79mm~3相比,各给药组肿瘤体积明显减小(P<0.05)。模型组裸鼠中位生存时间为38.5d,10mg/kg和20mg/kg OS-5给药组裸鼠中位生存时间分别为39d和47d。
     结论:
     1.创立了可控性降解获得苹果寡糖的方法,得到了OS-1、OS-2、OS-3、OS-4和OS-5五个组分。
     2.经分析鉴定,OS-5的结构为α-D-GalAp-(1→6)-α-D-GalAp-(1→6)-α-D-GalAp-(1→6)-β-D-alAp-(1→4)-α-D-GalAp,未见相同的结构报道。
     3.体外实验发现,OS-5对HT29细胞的活性有明显抑制作用,其作用可能与上调Bax同时降低Bcl-2和Bcl-xl表达诱导细胞凋亡,以及通过降低Cdk2和cyclin B1蛋白的表达同时增加cyclin A1蛋白表达使细胞周期阻滞于S期有关。
     4.OS-5对DMH/DSS诱发的小鼠结肠癌具有明显的治疗作用,并可显著抑制裸鼠HT29细胞移植瘤的生长,具有进一步开发前景。
The natural polysaccharide possesses a variety of biological activities. At present,more than30polysaccharides are in clinical trials for treatment of cancer, HIV infectionand diabete. Some polysaccharides have been approved to be used in clinic, such aslentinan in Japan, achyranthan, coriolus versicolor polysaccharide and ganoderma lucidumpolysaccharide in China. Our research shows that the low molecular apple polysaccharideinhibited the cancerization of colitis by influencing the expression of TLR-4and Gal-3.This reveals the potential application of apple polysaccharide in treatment colon/rectumcancer. However, there are some problems in the R&D of natural polysaccharides:⑴Natural polysaccharides exist as the macromolecule forms, it has broad molecular weight range, poor homogeneity. It is hard to control the quality of polysaccharide.⑵It isdifficulty to elucidate the action mechanism of polysaccharide at the molecular level.⑶Itis very difficulty for natural macromolecular polysaccharide to transport in the body, andits pharmacokinetic characteristics in vivo is unclear.⑷It is difficult to extracthomogeneous polysaccharide. So, decrease the molecular weight and homogenization isan important strategy to realize the quality control of natural polysaccharide.
     Objective:
     ⑴to establish a new method to separate, purify and identify the appleoligosaccharides;⑵to investigate the antitumor activities and its mechanism of appleoligosaccharide and lay a foundation for the development of apple oligosaccharide.
     Methods:
     1. The procedure of water extract-alcohol precipitation was used to isolate applepolysaccharide from apple pomace. Then the protein, pigment and small molecularsubstances were removed. The apple polysaccharide component1(AP-1) and component2(AP-2B) were obtained by dialysis, ion exchange chromatography and gel columnchromatography. The physiochemical properties were determined.
     2. Alkali and enzymic hydrolysis were coherently used to preparation appleoligosaccharides. The monosaccharide and oligosaccharides were obtained by using anioncolumn chromatography. The structure of OS-5was investigated by MS and NMR.
     3. MTT assay was adopted to investigate the effects of apple polysaccharides andoligosaccharides on the cell vitality. Apoptotic cells were measured with an AnnexinV-FITC staining, and cell cycle was determined by flow cytometry. Morphologicalchanges were examined by electron microscopy. The proteins and mRNA associated withapoptosis and cell cycle were demonstrated with western blot and real time PCRrespectively.
     4. The colorectal cancer model (CACC) and tumor bearing nude mice model wereused to evaluate the anti-tumor activity of OS-5in vivo. Colon cancer occurrence wasobserved by pathological histology method. TNF-α and Galectin-3levels in serum andapoptosis proteins were observed through ELISA and Western Blot. The antitumor effects of OS-5on tumor bearing nude mice were evaluated by tumor volume and the survivaltime on nude mice model.
     Results:
     1. AP-1and AP-2B were showed as a single sharp peak by using HPSEC, whichsuggested they were homogeneous polysaccharides. The monosaccharide composition ofapple polysaccharide was Rha, GalA, Glc, Gla, Arb in molar ratio of1.00:17.67:8.50:4.01:2.03. The molecular weight of AP-1was10kD, and the monosaccharide composition wasRha, GalA, Glc in the molar ratio of1.20:10.00:5.25. The molecular weight of AP-2B was1900kD, and the monosaccharide composition was Rha, GalA, Glc, Gal in the molar ratioof1.00:20.30:8.50:8.03.
     2. The purity of OS-5was99.21%. OS-5was an oligogalacturonide, its molecularweight was898. The structure of OS-5was α-D-GalAp-(1→6)-α-D-GalAp-(1→6)-α-D-GalAp-(1→6)-β-D-alAp-(1→4)-α-D-GalAp.
     3. The proliferation rate of HIEC cell was37.3±1.8%after it was treated with9μg/mL OS-5for36h. OS-5showed low inbibitional effect to A549, H1299, SMMC-7721,HCT116and SW480cells.36h after treatment, the inhibition rate on H1299, SW480cellswere24.99±0.6%,23.4±1.4%respectively. For A549cells and HCT116cells, theinhibition rate was less than10%. After SMMC7721cells were treated with differentconcentration of OS-5for24h, cells inhibition rate was about25%without anyconcentration-dependent relationship. The inhibition effect of OS-5on HT29cells wassignificant and showed time and concentration dependent manner. Flow cytometry showedthat OS-5could induce HT29cells apoptosis and S phase arrest. The apoptosis ratio ofHT29cells after treated with10μmol/L OS-5was45.9%(P<0.01). The percentages of Sphase was60.86±3.44%after treated with10μmol/L OS-5, and it was significantlyhigher than normol cells (P<0.01). Bax protein of HT29cells expression was significantlyhigher after it was treated with OS-5, while the expression of anti-apoptotic proteins Bcl-2and Bcl-xl was significantly lower than normol cells. OS-5significantly reduced theexpression of Cdk2and cyclin B1proteins in HT29cells, while increased the expressionof cyclin A1.
     4. After treated by OS-5, the thymus index was significantly higher than the normalgroup and the model group (P<0.05) in colon cancer model. HE staining showed thatOS-5can reduce colon cancer cells invasion and growth. In OS-5treatment group, TNF-αlevel in serum was significantly higher than the model group (P<0.01), Galectin-3level inserum was lower than the model group, but there was no significant difference. WBshowed that the expression of Bax was significantly increased and expression of Bcl-2andBcl-xl decreased in OS-5treatment group. The expression of Bax significantly decreasedin model group (P<0.01). The experiment of nude mice showed that OS-5couldsignificantly inhibit the proliferation of transplanted tumors in dose-depenent manner. On35day, the tumor volume in5mg/kg dose group,10mg/kg dose group and20mg/kg dosegroup was529.84±44.01mm~3,443.81±38.94mm~3and358.96±28.68mm~3respectively.The median survival time of nude mice model group was38.5d, it was prolonged to39and47days in10mg/kg and20mg/kg group respectively.
     Conlusion:
     1. A controllable method to degrade apple monosaccharide was established, and OS-1,OS-2, OS-3, OS-4and OS-5were obtained.
     2. The structure of OS-5is α-D-GalAp-(1→6)-α-D-GalAp-(1→6)-α-D-GalAp-(1→6)-β-D-alAp-(1→4)-α-D-GalAp, which has not been reported.
     3. OS-5showed effectively antitumor activities on HT29cells. The possiblemechanism is associated with overexpression of Bax and decreased the levels of of Bcl-2and Bcl-xl. Apple oligosaccharide induced cell cycle arrest in S phase, which correlatedwith the decreased expression of Cdk2and cyclin B1on HT29cells.
     4. OS-5shows anti-tumor activities both on DMH/DSS-induced colon cancer modeland tumor bearing nude mice model, indicating OS-5has potential in colon cancertreatment and be worthy of further development.
引文
[1] Mansour A, Daba A, Baddour N, El-Saadani M, Aleem E. Schizophyllan inhibits thedevelopment of mammary and hepatic carcinomas induced by7,12dimethylbenz(alpha)anthracene and decreases cell proliferation: comparison withtamoxifen[J]. Journal of cancer research and clinical oncology.2012;138(9):1579-1596.
    [2] Jiang Y, Wang H, Lu L, Tian GY. Chemistry of polysaccharide Lzps-1fromGanoderma lucidum spore and anti-tumor activity of its total polysaccharides[J]. Yao xuexue bao.2005;40(4):347-350.
    [3] Tabata K, Ito W, Kojima T, Kawabata S, Misaki A. Ultrasonic degradation ofschizophyllan, an antitumor polysaccharide produced by Schizophyllum communeFries[J]. Carbohydrate research.1981;89(1):121-135.
    [4] Misaki A, Kawaguchi K, Miyaji H, Nagae H, Hokkoku S, Kakuta M, Sasaki T.Structure of pestalotan, a highly branched (1→3)-β-d-glucan elaborated by Pestalotia sp.815, and the enhancement of its antitumor activity by polyol modification of the sidechains[J]. Carbohydrate research.1984;129:209-27.
    [5] Hirsh JRR. Heparin and low-molecular-weight heparin: the Seventh ACCP Conferenceon Antithrombotic and Thrombolytic Therapy[J]. Chest.2004;126(3Suppl):188S-203S.
    [6] Liang XJ, Yuan L, Hu J, Yu HH, Li T, Lin SF, Tang SB. Phosphomannopentaosesulfate (PI-88) suppresses angiogenesis by downregulating heparanase and vascularendothelial growth factor in an oxygen-induced retinal neovascularization animal model[J].Molecular vision.2012;18:1649-1657.
    [7] Zheng Z, Shetty K. Enhancement of pea (Pisum sativum) seedling vigour andassociated phenolic content by extracts of apple pomace fermented with Trichodermaspp[J]. Process Biochemistry.2000;36(1-2):79-84.
    [8] Le Bourvellec C, Guyot S, Renard CMGC. Interactions between apple (Malus xdomestica Borkh.) polyphenols and cell walls modulate the extractability ofpolysaccharides[J]. Carbohydrate polymers.2009;75(2):251-261.
    [9] Schieber A, Hilt P, Streker P, Endre H-U, Rentschler C, Carle R. A new process forthe combined recovery of pectin and phenolic compounds from apple pomace[J].Innovative Food Science&Emerging Technologies.2003;4(1):99-107.
    [10] Agoda-Tandjawa G, Durand S, Gaillard C, Garnier C, Doublier JL. Properties ofcellulose/pectins composites: Implication for structural and mechanical properties of cellwall[J]. Carbohydrate polymers.2012;90(2):1081-1091.
    [11] Oechslin R, Lutz MV, Amadò R. Pectic substances isolated from apple cellulosicresidue: structural characterisation of a new type of rhamnogalacturonan I.[J].Carbohydrate polymers.2003;51(3):301-310.
    [12] Janet G,Maria GK,Lvan NP. Application of granulated apple pectin in the treatmentof hyperlipoproteinaemia [J]. European Food Research and Technology.1997;204(5):374-378.
    [13]赵英雄.膳食纤维在人体内的作用[J].食品科学.2004;12(4):191-196.
    [14] Tamura M, Hori S. Apple Pectin Affects the Efficacy of Epigallocatechin Gallate onOral Sucrose Tolerance Test in Adult Mice[J]. International Journal for Vitamin andNutrition Research.2011;81(6):372-377.
    [15] Waldecker M, Kautenburger T, Daumann H, Veeriah S, Will F, Dietrich H,Pool-Zobel BL, Schrenk D. Histone-deacetylase inhibition and butyrate formation: Fecalslurry incubations with apple pectin and apple juice extracts[J]. Nutrition.2008;24(4):366-374.
    [16] Moriarty PM, Backes J, Dutton JA, He J, Ruisinger JF, Schmelzle K. Apple pectin forthe reduction of niacin-induced flushing[J]. Journal of clinical lipidology.2013;7(2):140-146.
    [17] Szymanska-Chargot M, Cybulska J, Zdunek A. Sensing the structural differences incellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy[J].Sensors.2011;11(6):5543-5560.
    [18] Ismail-Beigi F, Reinhold JG, Faraji B, Abadi P. Effects of cellulose added to diets oflow and high fiber content upon the metabolism of calcium, magnesium, zinc andphosphorus by man[J]. The Journal of nutrition.1977;107(4):510-518.
    [19] Cummings JH, Branch W, Jenkins DJA, Southgate DAT, Houston H, James WPT.Colonic response to dietary fibre carrot, cabbage, apple, bran, and guar gum.[J]. TheLancet.1978;311(8054):5-9.
    [20]狄维,王林,王升启.寡糖及其衍生物的生物活性研究进展[J].中国药物化学杂志.2002;12(4):59-64.
    [21]郭振楚.糖类化学[M].北京:化学工业出版社,2005;35-37.
    [22] To-O K KH, Kuriki T, Okada S. Substrate selectivity in Aspergillus niger KU-8acidphosphatase II using phosphoryl oligosaccharides[J]. Bioscience, biotechnology, andbiochemistry.2000;64(7):1534-1537.
    [23]陈小娥,方旭波,夏文水.壳寡糖的酶法制备[J].功能高分子学报.2007;19-20(2):204-208.
    [24]朱希强,李志明.聚合度为6~8的壳寡糖的制备[J].食品与药品.2008;10(3):14-16.
    [25]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社.1999;133-35.
    [26] Zhao X, Yu G, Guan H, Yue N, Zhang Z, Li H. Preparation of low-molecular-weightpolyguluronate sulfate and its anticoagulant and anti-inflammatory activities[J].Carbohydrate polymers.2007;69(2):272-279.
    [27] Ikeda A, Takemura A, Ono H. Preparation of low-molecular weight alginic acid byacid hydrolysis[J]. Carbohydrate polymers.2000;42(4):421-425.
    [28] Wasikiewicz JM, Yoshii F, Nagasawa N, Wach RA, Mitomo H. Degradation ofchitosan and sodium alginate by gamma radiation, sonochemical and ultravioletmethods[J]. Radiation Physics and Chemistry.2005;73(5):287-295.
    [29]龙德武,吴国忠,秦宗英.辐射法降解壳聚糖及其抑菌性能的研究[J].高分子材料科学与工程.2005;21(6):240-242.
    [30]谢清若,郑立文,凌新龙,李克林.响应面法优化微波辅助提取松针多糖工艺研究[J].2012;(12):201-205.
    [31]李坚斌,李琳,李冰.超声降解多糖研究进展[J].食品工业科技.2006;27(9):181-184.
    [32] Cabrera JC, Van Cutsem P. Preparation of chitooligosaccharides with degree ofpolymerization higher than6by acid or enzymatic degradation of chitosan[J].Biochemical Engineering Journal.2005;25(2):165-172.
    [33] Zhang H, Du Y, Yu X, Mitsutomi M, Aiba S-i. Preparation of chitooligosaccharidesfrom chitosan by a complex enzyme[J]. Carbohydrate research.1999;320(3–4):257-260.
    [34] Kuroiwa T, Ichikawa S, Hiruta O, Sato S, Mukataka S. Factors Affecting theComposition of Oligosaccharides Produced in Chitosan Hydrolysis Using ImmobilizedChitosanases[J]. Biotechnology progress.2002;18(5):969-974.
    [35] Hu X, Jiang X, Hwang H-m. Purification and Characterization of an Alginate Lyasefrom Marine Bacterium Vibrio sp. Mutant Strain510-64[J]. Curr Microbiol.2006;53(2):135-140.
    [36] Zhang Z, Yu G, Guan H, Zhao X, Du Y, Jiang X. Preparation and structure elucidationof alginate oligosaccharides degraded by alginate lyase from Vibro sp.510[J].Carbohydrate research.2004;339(8):1475-1481.
    [37] Wong TY, Preston LA, Schiller NL. ALGINATE LYASE: review of major sourcesand enzyme characteristics, structure-function analysis, biological roles, andapplications[J]. Annual review of microbiology.2000;54:289-340.
    [38] Kim H, Lee C-G, Lee E. Alginate lyase: Structure, property, and application[J].Biotechnol Bioproc E.2011;16(5):843-851.
    [39] Wang Y, Guo E-W, Yu W-G, Han F. Purification and characterization of a newalginate lyase from a marine bacterium Vibrio sp[J]. Biotechnology letters.2013:1-6.
    [40]孙静,李健军,黄琳娟.荧光辅助糖电泳用于果胶水解产物中寡糖的分析研究[J].化学学报.2009;67(9):951-956.
    [41] Tsai GJ, Wu ZY, Su WH. Antibacterial activity of a chitooligosaccharide mixtureprepared by cellulase digestion of shrimp chitosan and its application to milkpreservation[J]. Journal of food protection.2000;63(6):747-752.
    [42] Ramakrishnan B, Boeggeman E, Qasba PK. Binding of N-acetylglucosamine(GlcNAc) beta1-6-branched oligosaccharide acceptors to beta4-galactosyltransferase Ireveals a new ligand binding mode[J]. The Journal of biological chemistry.2012;287(34):28666-28674.
    [43] Petrosyan A, Ali MF, Cheng PW. Glycosyltransferase-specific Golgi-targetingmechanisms[J]. The Journal of biological chemistry.2012;287(45):37621-37627.
    [43] Pacios Bras C, Jorda MA, Wijfjes AH, Harteveld M, Stuurman N, Thomas-Oates JE,Spaink HP. A Lotus japonicus nodulation system based on heterologous expression of thefucosyl transferase NodZ and the acetyl transferase NoIL in Rhizobium leguminosarum[J].Molecular plant-microbe interactions: MPMI.2000;13(4):475-479.
    [45] Ohashi T, Fujiyama K, Takegawa K. Identification of novelalpha1,3-galactosyltransferase and elimination of alpha-galactose-containing glycans bydisruption of multiple alpha-galactosyltransferase genes in Schizosaccharomycespombe[J]. The Journal of biological chemistry.2012;287(46):38866-38875.
    [46]耿飞,吴兴中. α-1,6岩藻糖基转移酶的研究进展[J].生命的化学.2003,23(2):118-120.
    [47] McCullough RW. IBS, NERD and functional dyspepsia are immuno-neuronaldisorders of mucosal cytokine imbalances clinically reversible with high potencysucralfate[J]. Medical hypotheses.2013;80(3):230-233.
    [48] Ala S, Saeedi M, Eshghi F, Rafati M, Hejazi V, Hadianamrei R. Efficacy of10%sucralfate ointment in the reduction of acute postoperative pain after openhemorrhoidectomy: a prospective, double-blind, randomized, placebo-controlled trial[J].World journal of surgery.2013;37(1):233-238.
    [49] Rodriguez-Colinas B, Poveda A, Jimenez-Barbero J, Ballesteros AO, Plou FJ.Galacto-oligosaccharide synthesis from lactose solution or skim milk using thebeta-galactosidase from Bacillus circulans[J]. Journal of agricultural and food chemistry.2012;60(25):6391-6398.
    [50] Ganesh NV, Fujikawa K, Tan YH, Stine KJ, Demchenko AV. HPLC-assistedautomated oligosaccharide synthesis[J]. Organic letters.2012;14(12):3036-3039.
    [51] Ye X-S, Wong C-H. Anomeric Reactivity-Based One-Pot Oligosaccharide Synthesis:A Rapid Route to Oligosaccharide Libraries[J]. The Journal of organic chemistry.2000;65(8):2410-2431.
    [52] Wang Z, Xu Y, Yang B, Tiruchinapally G, Sun B, Liu R, Dulaney S, Liu J, Huang X.Preactivation-based, one-pot combinatorial synthesis of heparin-like hexasaccharides forthe analysis of heparin-protein interactions[J]. Chemistry.2010;16(28):8365-8375.
    [53] Valerio S, Pastore A, Adinolfi M, Iadonisi A. Sequential one-pot glycosidationscatalytically promoted: unprecedented strategy in oligosaccharide synthesis for thestraightforward assemblage of the antitumor PI-88pentasaccharide[J]. The Journal oforganic chemistry.2008;73(12):4496-4503.
    [54] Plante OJ, Palmacci ER, Seeberger PH. Automated solid-phase synthesis ofoligosaccharides[J]. Science.2001;291(5508):1523-1527.
    [55] Routenberg Love K, Seeberger PH. Automated solid-phase synthesis of protectedtumor-associated antigen and blood group determinant oligosaccharides[J]. AngewandteChemie.2004;43(5):602-605.
    [56] Ratner DM, Swanson ER, Seeberger PH. Automated synthesis of a protectedN-linked glycoprotein core pentasaccharide[J]. Organic letters.2003;5(24):4717-4720.
    [57] Hewitt MC, Seeberger PH. Automated solid-phase synthesis of a branchedLeishmania cap tetrasaccharide[J]. Organic letters.2001;3(23):3699-3702.
    [58] Codee JD, Krock L, Castagner B, Seeberger PH. Automated solid-phase synthesis ofprotected oligosaccharides containing beta-mannosidic linkages[J]. Chemistry.2008;14(13):3987-3994.
    [59] Oono Y, Seki M, Satou M, Iida K, Akiyama K, Sakurai T, Fujita M,Yamaguchi-Shinozaki K, Shinozaki K. Monitoring expression profiles of Arabidopsisgenes during cold acclimation and deacclimation using DNA microarrays[J]. Funct IntegrGenomics.2006;6(3):212-234.
    [60] Nagao M, Arakawa K, Takezawa D, Fujikawa S. Long-and short-term freezinginduce different types of injury in Arabidopsis thaliana leaf cells[J]. Planta.2008;227(2):477-489.
    [61] Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF. Roles of theCBF2and ZAT12transcription factors in configuring the low temperature transcriptomeof Arabidopsis[J]. The Plant journal: for cell and molecular biology.2005;41(2):195-211.
    [62] Zabotina OAA, D. A.; Toroshchina, T. E.; Zabotin, A. I. Involvement ofOligosaccharides in Adaptation of Winter Wheat Seedlings to Subzero Temperatures[J].Biology Bulletin.2003;30(5):464-467.
    [63] Bielecka M, Biedrzycka E, Majkowska A, Ju kiewicz J, Wróblewska M. Effect ofnon-digestible oligosaccharides on gut microecosystem in rats[J]. Food ResearchInternational.2002;35(2–3):139-144.
    [64] Sabater-Molina M, LarquéE, Torrella F, Zamora S. Dietary fructooligosaccharidesand potential benefits on health[J]. Journal of physiology and biochemistry.2009;65(3):315-328.
    [65] Knol J, Scholtens P, Kafka C, Steenbakkers J, Gro S, Helm K, Klarczyk M, SchopferH, Bockler HM, Wells J. Colon microflora in infants fed formula with galacto-andfructo-oligosaccharides: more like breast-fed infants[J]. Journal of pediatricgastroenterology and nutrition.2005;40(1):36-42.
    [66] Fanaro S, Marten B, Bagna R, Vigi V, Fabris C, Pena-Quintana L, Arguelles F,Scholz-Ahrens KE, Sawatzki G, Zelenka R, Schrezenmeir J, de Vrese M, Bertino E.Galacto-oligosaccharides are bifidogenic and safe at weaning: a double-blind randomizedmulticenter study[J]. Journal of pediatric gastroenterology and nutrition.2009;48(1):82-88.
    [67] Searle LE, Cooley WA, Jones G, Nunez A, Crudgington B, Weyer U, Dugdale AH,Tzortzis G, Collins JW, Woodward MJ, La Ragione RM. Purified galactooligosaccharide,derived from a mixture produced by the enzymic activity of Bifidobacterium bifidum,reduces Salmonella enterica serovar Typhimurium adhesion and invasion in vitro and invivo[J]. Journal of medical microbiology.2010;59(Pt12):1428-1439.
    [68] Arslanoglu S, Moro GE, Boehm G. Early supplementation of prebioticoligosaccharides protects formula-fed infants against infections during the first6monthsof life[J]. The Journal of nutrition.2007;137(11):2420-2424.
    [69] Jantscher-Krenn E, Zherebtsov M, Nissan C, Goth K, Guner YS, Naidu N,Choudhury B, Grishin AV, Ford HR, Bode L. The human milk oligosaccharidedisialyllacto-N-tetraose prevents necrotising enterocolitis in neonatal rats[J]. Gut.2012;61(10):1417-1425.
    [70] Nauta AJ, Garssen J. Evidence-based benefits of specific mixtures of non-digestibleoligosaccharides on the immune system[J]. Carbohydrate polymers.2013;93(1):263-265.
    [71] Eiwegger T, Stahl B, Haidl P, Schmitt J, Boehm G, Dehlink E, Urbanek R, SzepfalusiZ. Prebiotic oligosaccharides: in vitro evidence for gastrointestinal epithelial transfer andimmunomodulatory properties[J]. Pediatric allergy and immunology: official publicationof the European Society of Pediatric Allergy and Immunology.2010;21(8):1179-1188.
    [72] Eiwegger T, Stahl B, Schmitt J, Boehm G, Gerstmayr M, Pichler J, Dehlink E,Loibichler C, Urbanek R, Szepfalusi Z. Human milk-derived oligosaccharides andplant-derived oligosaccharides stimulate cytokine production of cord blood T-cells invitro[J]. Pediatric research.2004;56(4):536-540.
    [73] de Kivit S SE, Kraneveld AD, van de Kant HJ, Schouten B, van Esch BC, Knol J,Sprikkelman AB, van der Aa LB, Knippels LM, Garssen J, van Kooyk Y, Willemsen LE.Galectin-9induced by dietary synbiotics is involved in suppression of allergic symptomsin mice and humans.[J]. Allergy.2012;67(3):343-352.
    [74] Arslanoglu S, Moro GE, Schmitt J, Tandoi L, Rizzardi S, Boehm G. Early dietaryintervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergicmanifestations and infections during the first two years of life[J]. The Journal of nutrition.2008;138(6):1091-1095.
    [75] Arslanoglu S, Moro GE, Boehm G, Wienz F, Stahl B, Bertino E. Early neutralprebiotic oligosaccharide supplementation reduces the incidence of some allergicmanifestations in the first5years of life[J]. Journal of biological regulators andhomeostatic agents.2012;26(3Suppl):49-59.
    [76] van Hoffen E, Ruiter B, Faber J, M'Rabet L, Knol EF, Stahl B, Arslanoglu S, Moro G,Boehm G, Garssen J. A specific mixture of short-chain galacto-oligosaccharides andlong-chain fructo-oligosaccharides induces a beneficial immunoglobulin profile in infantsat high risk for allergy[J]. Allergy.2009;64(3):484-487.
    [77] Schouten B, Van Esch BC, Kormelink TG, Moro GE, Arslanoglu S, Boehm G,Knippels LM, Redegeld FA, Willemsen LE, Garssen J. Non-digestible oligosaccharidesreduce immunoglobulin free light-chain concentrations in infants at risk for allergy[J].Pediatric allergy and immunology.2011;22(5):537-542.
    [78] Osborn DA, Sinn J. Prebiotics in infants for prevention of allergy disease and foodhypersensitivity[J]. Cochrane database of systematic reviews.2007;3.
    [79] Vos AP, van Esch BC, Stahl B, M'Rabet L, Folkerts G, Nijkamp FP, Garssen J.Dietary supplementation with specific oligosaccharide mixtures decreases parameters ofallergic asthma in mice[J]. International immunopharmacology.2007;7(12):1582-1587.
    [80] Schouten B, van Esch BC, Hofman GA, Boon L, Knippels LM, Willemsen LE,Garssen J. Oligosaccharide-induced whey-specific CD25(+) regulatory T-cells areinvolved in the suppression of cow milk allergy in mice[J]. The Journal of nutrition.2010;140(4):835-841.
    [81] Lu XJ, Chen XM, Fu DX, Cong W, Ouyang F. Effect of Amorphophallus Konjacoligosaccharides on STZ-induced diabetes model of isolated islets[J]. Life sciences.2002;72(6):711-719.
    [82] Zhang R, Zhou J, Jia Z, Zhang Y, Gu G. Hypoglycemic effect of Rehmannia glutinosaoligosaccharide in hyperglycemic and alloxan-induced diabetic rats and its mechanism[J].Journal of ethnopharmacology.2004;90(1):39-43.
    [83] Gobinath D, Madhu AN, Prashant G, Srinivasan K, Prapulla SG. Beneficial effect ofxylo-oligosaccharides and fructo-oligosaccharides in streptozotocin-induced diabeticrats[J]. The British journal of nutrition.2010;104(1):40-47.
    [84] Li PB, Lin WL, Wang YG, Peng W, Cai XY, Su WW. Antidiabetic activities ofoligosaccharides of Ophiopogonis japonicus in experimental type2diabetic rats[J].International journal of biological macromolecules.2012;51(5):749-755.
    [85] Gori A, Rizzardini G, Van't Land B, Amor KB, van Schaik J, Torti C, Quirino T,Tincati C, Bandera A, Knol J, Benlhassan-Chahour K, Trabattoni D, Bray D, Vriesema A,Welling G, Garssen J, Clerici M. Specific prebiotics modulate gut microbiota and immuneactivation in HAART-naive HIV-infected adults: results of the "COPA" pilot randomizedtrial[J]. Mucosal immunology.2011;4(5):554-563.
    [86] Ekblad M, Adamiak B, Bergstrom T, Johnstone KD, Karoli T, Liu L, Ferro V, TrybalaE. A highly lipophilic sulfated tetrasaccharide glycoside related to muparfostat (PI-88)exhibits virucidal activity against herpes simplex virus[J]. Antiviral research.2010;86(2):196-203.
    [87] Yoshida T. Synthesis of polysaccharides having specific biological activities[J].Progress in Polymer Science.2001;26(3):379-441.
    [88] Zhang J, Chen Y, Xin XL, Li QN, Li M, Lin LP, Geng MY, Ding J. Oligomannuraratesulfate blocks tumor growth by inhibiting NF-kappaB activation[J]. Acta Pharmacol Sin.2010;31(3):375-381.
    [89] Miao B, Chen Y, Li J, Xin X,GanL,Fu X,Geng M. Oligomannurarate sulfate, a novelantimitotic agent, exerts anti-cancer activity by binding to tubulin on novel site[J]. CancerBiol Ther.2010;10(1):89-98.
    [90]许青松,魏鹏,窦江丽,麻攀,白雪芳,杜昱光.壳寡糖抑制肝癌细胞SMMC-7721的增殖及其机制探讨[J].天然产物研究与开发.2009;21(1):152-154.
    [91] Ekblad M, Adamiak B, Bergefall K, Nenonen H, Roth A, Bergstrom T, Ferro V,Trybala E. Molecular basis for resistance of herpes simplex virus type1mutants to thesulfated oligosaccharide inhibitor PI-88[J]. Virology.2007;367(2):244-252.
    [92] Xu W, Jiang C, Kong X, Liang Y, Rong M, Liu W. Chitooligosaccharides andN-acetyl-D-glucosamine stimulate peripheral blood mononuclear cell-mediated antitumorimmune responses. Mol Med Rep.2012;6(2):385-390.
    [93] Chen HM, Yan XJ. Antioxidant activities of agaro-oligosaccharides with differentdegrees of polymerization in cell-based system. Biochimica Biophysica Acta.2005;1722(1):103-111.
    [94] Gross PL, Weitz JI. New anticoagulants for treatment of venous thromboembolism[J].Arterioscler Thromb Vasc Biol.2008;28(3):380-386.
    [95] Duenas-Chasco MT, Rudriguez-Carvajal MA, Tejero-Mateo P. Structural analysis ofthe exopolysaccharides produced by lactobacillus spp G-77[J]. Carbohydrate Research,1998,307:125~133.
    [96] Kim J, Kim J, Hong J, Lee S, Park S, Lee JH, Kim J. LC-MS/MS analysis ofchitooligosaccharides[J]. Carbohydr Res.2013;372:23-29.
    [97] Hu T, Li C, Zhao X, Li G, Yu G, Guan H. Preparation and characterization ofguluronic acid oligosaccharides degraded by a rapid microwave irradiation method[J].Carbohydr Res.2013;373C:53-58.
    [98] Kimura M, Masui Y, Shirai Y, Honda C, Moriwaki K, Imai T, Takagi U, Kiryu T, KisoT, Murakami H, Nakano H, Kitahata S, Miyoshi E, Tanimoto T. Preparation of branchedcyclomaltoheptaose with3-O-α-l-fucopyranosyl-α-d-mannopyranose and changes infucosylation of HCT116cells treated with the fucose-modified cyclomaltoheptaose[J].Carbohydr Res.2013;374C:49-58.
    [99] EllingeW. ZMP-Marktbilanz Obst2007, Deutschland, Europ ische Union, Weltmarkt.Bonn: ZMP Zentrale Markt-und Preisberichtstelle GmbH;2007.
    [100] Wirtschaftsvereinigungn Alkoholfreie Getr nke e.V. Pro-Kopf-Ver-brauchalkoholfreier Getr nke in Deutschland2006. Germany: Wirt-schaftsvereinigungAlkoholfreie Getr nke;2008.
    [101] Boyer J, Liu RH. Apple phytochemicals and their health benefits[J]. Nutr. J.2004;3:5.
    [102] Kumar A, Chauhan GS. Extraction, characterization of pectin from apple pomaceand its evaluation as lipase (steapsin) inhibitor[J]. Carbohydrate Polymers.2010;82:454-459.
    [103]张丽萍,盛义保,马惠玲,左莹.苹果多糖除杂脱色工艺的筛选[J].西北林学院学报.2007;22(1):141-144.
    [104] Sugiwa M, Ohno H, Kunihisa M, et al. Studes on antitumor polysaccharidesesoecuakkt D-Ⅱ form mycelium of coriolus versicolor[J]. The Japanese J Pharmacol.1980;30:503-513.
    [105] Lindberg B. High-aoltage electrophoresis for polysaccharides[J]. Methods inCarbohydr Chem.1963;7:116-145.
    [106] Mieko K, Masashi T, Ryoko C. A teticuloendothelial system-activity arabinoxylanfrom cinnamomum cassia[J]. Chem Pharm Bull,1989,3740:3191-3194.
    [107] Korir AK, Larive CK. On-line NMR detection of microgram quantities ofheparin-derived oligosaccharides and their structure elucidation by micr0coil NMR[J].Anal Bioanal Chem.2007;388(8):1707-1716.
    [108] Agrawal PK. NMR spectroscopy in the structural elucidation of oligosaecharidesand glycosides[J]. Phytochemistry.1992;31(10):3307-3330.
    [109] Gorin PAJ. Carbon-13nuclear magnetic resonance spectroscopy of polysaccharides.Adv Carbodydr Chem Biochem.1981;38:13-39.
    [110] Sarkar R, Nandan CK, Bhunia SK, Maiti S, Maiti TK, Sikdar SR, Islam SS. Glucansfrom alkaline extract of a hybrid mushroom (backcross mating between PfloVv12andVolvariella volvacea): structural characterization and study of immunoenhancing andantioxidant properties[J]. Carbohydr Res.2012;347(1):107-113.
    [111] Yuan HM, Song JM. Preparation, structural characterization and in vitro antitumoractivity of kappa-carrageenan oligosaccharide fraction from Kappaphycus striatum[J]. JAppl Phycol.2005;17(1):7-13.
    [112] Combo AM, Aguedo M, Quiévy N, Danthine S, Goffin D, Jacquet N, Blecker C,Devaux J, Paquot M. Characterization of sugar beet pectic-derived oligosaccharidesobtained by enzymatic hydrolysis[J]. Int J Biol Macromol.2013;52:148-156.
    [113] Xia YG, Wang QH, Liang J, Yang BY, Li GY. Development and Application of aRapid and Efficient CZE Method Coupled with Correction Factors for Determination ofMonosaccharide Composition of Acidic Hetero-polysaccharides from Ephedra sinica[J].Phutochemical Analysis.2011;22(2):103-111.
    [114] Pramanik BN, Shipkova PA, Bartner PL, Heimark L, Liu YH, Das PR, Saksena AK,Sarre OZ, Girijavallabhan VM, Ganguly AK. Structural characterization of theoligosaccharide antibiotics everninomicins by negative ion FAB and ESI/MS[J]. J Antibiot(Tokyo).2000;53(6):640-643.
    [115] Hsu J, Chang SJ, Franz AH. MALDI-TOF and ESI-MS analysis of oligosaccharideslabeled with a new multifunctional oligosaccharide tag[J]. J Am Soc Mass Spectrom.2006;17(2):194-204.
    [116] Corsaro MM,Castro CD,Naldi T,Parrilli M, Tomás JM, ReguéM. H and C NMRcharacteriz ation and secondary structure of the K2polysaccharide of Klebsiellapneurmmiae strain52145[J]. Carbohydrate Research.2005;340(13):22l2-22l7.
    [117]王展,方积年.高场核磁共振波谱在多糖结构研究中的应用[J].分析化学.2000;28(2):240-247.
    [118] Zhao ZH, LI J, Wu XM, Dai H, Gao XM, Liu MJ, Tu PF. Structures andimmunological activities of two pectic polysaccharides from the fruits of Ziziphus jujubaMil1. cv. Jinsixiaozao Hort[J]. Food Res Int.2006;39(8):917-923.
    [119] Zhao C, Li M, Luo Y, Wu W.Isolation and structural characterization of animmunostimulating polysaccharide from fuzi,Aconiturn carmichaeli [J].Carbohydr Res.2006;341(4):485-491.
    [120] Park H, Cho JA, Lim EH, Lee CW, Lee SH, Won Seo S, Yang DY, Lee KW. Cellcycle regulators are critical for maintaining the differentiation potential and immaturity inadipogenesis of adipose-derived stem cells[J]. Differentiation.2011;82(3):136-143.
    [121] Zhang CX, Huang KX. Mechanism of apoptosis induced by a polysaccharide, fromthe loach Misgurnus anguillicaudatus (MAP) in human hepatocellular carcinoma cells[J].Toxicology and applied pharmacology.2006;210(3):236-245.
    [122] Hattori TS, Komatsu N, Shichijo S, Itoh K. Protein-bound polysaccharide K inducedapoptosis of the human Burkitt lymphoma cell line, Namalwa. Biomed Pharmacother.2004;58(4):226-230.
    [123] Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC.Humanin peptide suppresses apoptosis by interfering with Bax activation[J]. Nature.2003;423(6938):456-461.
    [124] Suryadinata R, Sadowski M, Sarcevic B. Control of cell cycle progression byphosphorylation of cyclin-dependent kinase (CDK) substrates[J]. Biosci Rep.2010;30(4):243-255.
    [125] Besson A, Dowdy SF, Roberts JM. CDK inhibitors: cell cycle regulators andbeyond[J]. Dev cell.2008;14(2):159-169.
    [126] Hunter T, Pines J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come ofage[J]. Cell.1994;79(4):573-582.
    [127] Labbe JC, Picard A, Peaucellier G, Cavadore JC, Nurse P, Doree M. Purification ofMPF from starfish: Identification as the H1histone kinase p34cdc2and a possiblemechanism for its periodic activation[J]. Cell.1989;57(2):253-263.
    [128] King RW, Jackson PK, Kirschner MW. Mitosis in transition[J]. Cell.1994;79(4):563-571.
    [129] Kim S-K, Rajapakse N. Enzymatic production and biological activities of chitosanoligosaccharides (COS): A review[J]. Carbohydrate polymers.2005;62(4):357-368.
    [130] Jin P, Gu Y, Morgan DO. Role of inhibitory CDC2phosphorylation inradiation-induced G2arrest in human cells[J]. The Journal of cell biology.1996;134(4):963-970.
    [131] Wang H, Ao M, Wu J, Yu L. TNFα and Fas/FasL pathways are involved in9-Methoxycamptothecin-induced apoptosis in cancer cells with oxidative stress and G2/Mcell cycle arrest. Food and Chemical Toxicology[J].2013;55:396-410.
    [132] Gamet-Payrastre L, Li P, Lumeau S, Cassar G, Dupont MA, Chevolleau S, Gasc N,Tulliez J, TercéF. Sulforaphane, a naturally occurring isothiocyanate, induces cell cyclearrest and apoptosis in HT29human colon cancer cells[J]. Cancer research.2000;60(5):1426-1433.
    [133] Gruslin A, Qiu Q, Tsang BK. Influence of maternal smoking on trophoblastapoptosis throughout development: possible involvement of Xiap regulation[J]. Biology ofreproduction.2001;65(4):1164-1169.
    [134] Dlamini Z, Mbita Z, Zungu M. Genealogy, expression, and molecular mechanismsin apoptosis[J]. Pharmacology&Therapeutics.2004;101(1):1-15.
    [135] Bray K, Chen HY, Karp CM, May M, Ganesan S, Karantza-Wadsworth V, DiPaolaRS, White E. Bcl-2modulation to activate apoptosis in prostate cancer[J]. Molecularcancer research: MCR.2009;7(9):1487-1496.
    [136] Shore GC, Nguyen M. Bcl-2Proteins and Apoptosis: Choose Your Partner[J]. Cell.2008;135(6):1004-1006.
    [137] Song R, Harris LD, Pettaway CA. Downmodulation of Bcl-2sensitizes metastaticLNCaP-LN3cells to undergo apoptosis via the intrinsic pathway[J]. Prostate.2010;70(6):571-583.
    [138] Chipuk JE, Green DR. How do BCL-2proteins induce mitochondrial outermembrane permeabilization? Trends in cell biology.2008;18(4):157-164.
    [139] Van Dross R, Yao S, Asad S, Westlake G, Mays DJ, Barquero L, Duell S, PietenpolJA, Browning PJ. Constitutively active K-cyclin/cdk6kinase in Kaposisarcoma-associated herpesvirus-infected cells[J]. Journal of the National Cancer Institute.2005;97(9):656-666.
    [140] Blagosklonny MV, Pardee AB. Exploiting cancer cell cycling for selectiveprotection of normal cells[J]. Cancer research.2001;61(11):4301-4305.
    [141] Yu Q, Geng Y, Sicinski P. Specific protection against breast cancers by cyclin D1ablation[J]. Nature.2001;411(6841):1017-1021.
    [142] Dobashi Y, Jiang SX, Shoji M, Morinaga S, Kameya T. Diversity in expression andprognostic significance of G1/S cyclins in human primary lung carcinomas[J]. J Pathology.2003;199(2):208-220.
    [143] Gleave M, Tolcher A, Miyake H, Nelson C, Brown B, Beraldi E, Goldie J.Progression to androgen independence is delayed by adjuvant treatment with antisenseBcl-2oligodeoxynucleotides after castration in the LNCaP prostate tumor model. Clinicalcancer research.1999;5(10):2891-2898.
    [144] de Pádua Queiroz L Jr, Mattos ME Jr, da Silva MF, Silva CL. TGF-beta and CD23are involved in nitric oxide production by pulmonary macrophages activated bybeta-glucan from Paracoccidioides brasiliensis. Med Microbiol Immunol.2010.199(1):61-69.
    [145] Monro JA. Treatment of cancer with mushroom products. Archives ofenvironmental health.2003;58(8):533-537.
    [146] Tsuboi K, Shimura T, Masuda N, Ide M, Tsutsumi S, Yamaguchi S, Asao T, KuwanoH. Galectin-3expression in colorectal cancer: relation to invasion and metastasis.Anticancer research.2007;27(4B):2289-2296.
    [147] Endo K KS, Tsujita E, Watanabe A, Nakashima H, Baba H, Maehara Y. Galectin-3expression is a potent prognostic marker in colorectal cancer. Anticancer Res2005;25(4):3117-3121.
    [148]刘利华,许秋萍.28例腹腔镜下结肠直肠癌根治术的手术配合[J].中国现代药物应用.2009;3(3):37-38.
    [149] Munkholm P. Review article: the incidence and prevalence of colorectal cancer ininflammatory bowel disease [J]. Aliment Pharmacol Ther.2003;18(Suppl2):1-5.
    [150] Westerlind A, W hlander H, Lindstedt G, Lundberg PA, Holmgren D. Clinical signsof heart failure are associated with increased levels of natriuretic peptide types B and A inchildren with congenital heart defects or cardiomyopathy[J]. Acta Paediatr.2004;93(3):340-345.
    [151] Nasser N, Perles Z, Rein AJ, Nir A. NT-proBNP as a marker for persistent cardiacdisease in children with history of dilated cardiomyopathy and myocarditis[J].PediatrCardiol.2006;27(1):87-90.
    [152] Wang JG, Wang DF, Lv BJ.A novel mouse model for colitis-associated coloncarcinogenesis induced by l,2-dimethylhydrazine and dextran sulfate sodium[J].World JGastroenterol.2004;10(20):2958.
    [153] Kohno H, Suzuki R, Sugie S, Tanaka T. Beta-Catenin mutations in a mouse modelof inflammation-related colon carcinogenesis induced by1,2-dimethylhydrazine anddextran sodium sulfate[J]. Cancer Sci.2005;96(2):69-76.
    [154] Rygaard J. Immunobiology of the mouse mutant "Nude"[J]. Preliminaryinvestigations. Acta pathologica et microbiologica Scandinavica.1969;77(4):761-762.
    [155] Rygaard J, Povlsen CO. Heterotransplantation of a human malignant tumour to"Nude" mice[J]. Acta pathologica et microbiologica Scandinavica.1969;77(4):758-7560.
    [156] Ke RD, Lin SF, Chen Y, Ji CR, Shu QG. Analysis of chemical composition ofpolysaccharides from Poria cocos Wolf and its anti-tumor activity by NMRspectroscopy[J]. Carbohydrate Polymers.2010;80(1):31–34.
    [157] Liu T, Ye L, Guan X, Liang X, Li C, Sun Q, Liu Y, Chen S, Bang F, Liu B.Immunopontentiating and antitumor activities of a polysaccharide from Pulsatillachinensis (Bunge) Regel[J]. Int J Biol Macromol.2013;54:225-229.
    [158] Cao W, Li XQ, Wang X, Li T, Chen X, Liu SB, Mei QB. Characterizations andanti-tumor activities of three acidic polysaccharides from Angelica sinensis (Oliv.)Diels[J]. Int J Biol Macromol.2010;46(1):115-122.
    [159] Jeff IB, Yuan X, Sun L, Kassim RM, Foday AD, Zhou Y. Purification and in vitroanti-proliferative effect of novel neutral polysaccharides from Lentinus edodes[J]. Int JBiol Macromol.2013;52:99-106.
    [160] Cao W, Li XQ, Liu L, Wang M, Fan HT, Li C, Lv Z, Wang X, Mei Q. Structuralanalysis of water-soluble glucans from the root of Angelica sinensis (Oliv.) Diels[J].Carbohydr Res.2006;341(11):1870-1877.
    [161]孔繁利,孙新,佟海滨,林琪,刘妍,李玉林.糙皮侧耳碱提水溶性多糖对肿瘤的抑制作用及其机制[J].林大学学报.2012;38(6):1091-1095.