野猪家猪AMPD1基因的克隆、表达和遗传变异的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腺苷一磷酸脱氨酶(AMPD)是仅在真核生物中发现的一种酶,是嘌呤代谢中的关键酶之一,它的作用是催化AMP(一磷酸腺苷)脱氨生成IMP(肌苷酸)。AMPD基因由多基因家族编码,家族成员有AMPD1、AMPD2、AMPD3。AMPD1基因在所有的真核生物中都存在,但主要在骨骼肌中高水平表达。有研究发现AMPD1基因与NGFB基因紧密连锁,因NGFB基因定位区域与肉质胴体性状(如胴体重、肩肉重、肌肉重、肌肉面积等)有关,所以也将AMPD1基因作为胴体性状的候选基因来研究。本研究以人、鼠的AMPD1基因序列为基础,首次克隆了野猪和家猪AMPD1基因的cDNA序列;并且以野猪、民猪、大白、长白、杜洛克为研究对象,利用PCR-SSCP方法检测它们的多态性,探讨不同基因型在不同品种(系)间的分布规律;采用半定量RT-PCR方法研究了这个基因在不同组织及相同组织不同生长时期的表达特性。主要研究结果如下:
     1.采用同源克隆首次克隆了家猪和野猪AMPD1基因的cDNA序列,猪AMPD1基因编码区全长2244 bp,编码747个氨基酸;野猪AMPD1基因cDNA全长2240 bp,开放阅读框位于399~2240 bp,编码613个氨基酸。采用生物信息学方法对其编码的多肽链进行了结构和功能域的初步分析。
     2.采用PCR-SSCP方法在AMPD1基因编码区上共寻找到11个单核苷酸突变,其中有4个突变属于错义突变。群体遗传学分析表明,所检测的4个位点中,5个品种间基因型的分布均存在着极显著的差异(P<0.01);野猪和民猪之间除了S5位点基因型的分布存在显著差异外(0.010.05)。
     3.半定量RT-PCR方法检测了野猪和纯种大白猪AMPD1基因在心、肝、胃、肾、脾、肺、肌肉、大肠、小肠、性腺共10种组织表达情况,结果表明猪的AMPD1基因仅在其肌肉组织中表达;同时检测了AMPD1基因肌肉组织不同生长时期的表达特性,结果显示AMPD1基因在1日龄大白猪肌肉组织中表达量最高,其次是7日、15日、21日龄,3月龄表达较少,6月、9月、12月龄几乎不表达,随着日龄的增加,表达量呈依次减弱的趋势。
Adenosine monophosphate deaminase(AMPD)has only been found in all eukaryote. It is one of the key enzymes in the purine nucleotide cycle and catalyzes the deamination of AMP to IMP. AMPD is a complex allosteric enzyme encoded by a multigene family in mammals including AMPD1, AMPD2 and AMPD3. The AMPD1 gene is expressed predominantly in skeletal muscles. It is shown from research that AMPD1 was tightly linked with the NGFB gene. The porcine AMPD1 maps within known QTL with effects on carcass traits (carcass weight cold, shoulder meat weight, bacon meat weight, chops weight, head weight and muscle area). So AMPD1 may be regarded as a positional candidate for these traits. This study was designed to clone the cDNA of swine and wild boar AMPD1 gene based on the sequences of human, rat and mouse AMPD1 gene; to detect the polymorphisms by PCR-SSCP in five breeds of pigs; to investigate the expression characteristic of the gene by RT-PCR. The main results are as follows:
     1. The cDNA sequences of domestic pig and Wild boar AMPD1 gene were cloned in the first time by homologous cloning. The results showed that coding region of swine AMPD1 gene was composed of 2244 bp encoding 747 AA. The cDNA of AMPD1 gene in Wild boar was composed of 2240 bp and the open reading frame encodes 613 AA.
     2. 11 SNPs in exons of AMPD1 gene were found by PCR-SSCP method, and there were 4 missenses. Population genetics analyses showed that in each polymorphic locus, there was extremely significant difference among 5 breeds in the distribution of genotypes (P<0.01). While no significant difference was found between Wild boar and Min pig except the locus detected by primer S5.
     3. The expression characteristic of AMPD1 gene in heart, liver, stomach, kidney, spleen, lung, large intestine, small intestine, muscles and gonad tissue was investigated by RT-PCR in Wild boar and Yorkshire. The results showed that the pig AMPD1 gene was expressed only in skeletal muscle. And the expression of AMPD1 in muscle on different growing period in Yorkshire was analyzed. The expression level in muscle of Yorkshire was the most at the age of birth. There was barely expression at 6、9 and 12-month. Along with the increasing of age, the expression level showed a weakening trend.
引文
柴丽娟,储明星,文杰,陈继兰,赵桂苹,郑麦青,刘文忠,周忠孝. 2005. 6个鸡种AMPD1基因PCR-RF-SSCP分析[J]. 32(4):451~455
    陈国宏,李慧芳,吴信生. 2002.泰和乌骨鸡肌肉肌苷酸含量变化规律及其遗传力估测[J].扬州大学学报(农业与生命科学版),23(2):29~32
    陈继兰. 2004.鸡肉肌苷酸和肌内脂肪含量遗传规律及相关候选基因的研究.中国农业大学博士学位论文
    李景芬,刘娣,于浩. 2005. 7个猪种MyoD基因家族中3个基因外显子的SNPs检测分析[J].中国畜牧杂志,41(5):21~23
    李景芬,于浩,刘娣. 2006.野猪、家猪及野家杂种猪Leptin基因2、3外显子的SNPs分析[J]. 遗传,28(4)413~416
    罗桂芬,陈继兰,孙世铎,文杰,赵桂萍,孙志杰. 2005.鸡AMPD1基因PCR-SSCP分析与相关性状的研究[J].黑龙江畜牧兽医,(4):8~10
    苏淑贞,吕志强,庞新位,岳振银,李同洲. 1989.不同品种猪肉肌苷酸含量的测定[J].中国畜牧杂志,(6):13~15
    苏淑贞,朱汉炎,刘建梁,李民. 1987.鹌鹑、鸡、鸽子肌肉中的肌苷酸含量的比较[J].家禽,(2):32~33
    陶勇,刘宗华,张牧,任善茂. 2001.不同组合猪肌肉肌苷酸含量的分析[J].黑龙江畜牧兽医,(10):17
    杨秀芹,刘慧,郭丽娟,许尧,刘娣. 2007.野猪、民猪、大白猪μ-钙激活酶基因的变异位点分析[J].遗传,29(5):581~586
    张克英,陈代文,胡祖禹. 2002.次黄嘌呤核苷酸和胶原蛋白与猪肉品质的关系研究[J].四川农业大学学报,20(1):56~60
    张学余,季从亮,陈国宏,黄兆明,苏一军,沈晓鹏. 2004. 6个鸡种腺苷单磷酸脱氨酶1基因克隆及序列分析[J].云南农业大学学报,19(2):224~226
    Abe M, Hiugchi I, Morisaki H, Morisaki T, Osame M. 2000. Myoadenylate deaminase deifciency with progressive muscle weakness and atrophy caused by new missense mutations in AMPD1 gene: case report in a Japanese patient[J]. Neuromuscul Disord, 10(7):472~477
    Anderson JL, Habashi J, Carlquist JF, Muhlestein JB, Horne BD, Bair TL, Pearson RR, Hart N. 2000. A common vairant of the AMPD1 gene predicts improved cardiovascular survival in patients with coronary arteyr disease[J]. J Am Coil Cardiol, 36(4):1248~1252
    Ashby B, Frieden C. 1977. Interaction of AMP-aminohydrolase with myosin and its subfragments[J]. J Biol Chem, 252(6): 1869~1872
    Ashby B, Frieden C. 1978. Adenylate deaminase-kinetic and binding studies on the rabbit muscle enzyme[J]. J Biol Chem, 253(24):8728~8735
    Ashby B, Rrieden C, Bischoff R. 1979. Immunofluorescent and histochemical localization of AMP deaminase in skeletal muscle[J]. J Cell Biology, 81:361~373
    Coffee CJ, Solano C. 1977. Rat muscle 5’adenylic acid aminohydrolase role of K+ and adenylate energy charge in expression of kinetid and regulatory properties[J]. J Biol Chem, 252(5):1606~1612
    Davidek J, Khan AW. 1967. Estimation of inosinic acid in chicken muscle and its formation and degradation during post-mortem aging[J]. J Food Sci, 32:155
    Donna K, Mahnke-Zizelman S, Sabina RL. 1992. Cloning of Human AMP deaminase isoform E cDNAs. Evidence for a third AMPD gene exhibiting alternatively spliced 5`-exons[J]. J Biological Chem, 267(29):20866~20877
    Ellis M. 1995. The eating quality of pork from Meishan and Large Whit pigs and their reciprocal crosses[J]. Animal Sciencs, 60(1):125~131
    Feldman AM, Wagner DR, McNamara DM. 1999. AMPD1 gene mutation in congestive heart failure new insights into the pathobiology of disease progression[J]. Circulation, 99:1397~1399
    Genetta T, Morisaki H, Morisaki T, Holmes EW. 2001. A novel bipartite intronic splicing enhancer promotes the Iinclusion of a mini-exon in the AMP deaminase 1 gene[J]. J Biol Chem, 276 (27):25589~25597
    Goodarzi MO, Taylor KD, Guo X, Quinones MJ, Cui J, Li X, Hang T, Yang H, E Holmes, Hsueh WA, Olefsky J, Rotter JI. 2005. Variation in the gene for muscle-specific AMP deaminase is associated with insulin clearance,a highly heritable trait[J]. Diabetes, 54:1222~1227 Gross M, Morisaki H, Morisaki T, Holmes EW. 1994. Identification of functional domains in AMPD1 by mutational analysis[J]. Biochem Biophys Res Commun, 205(2):1010~1017
    Gross M, Rotzer E, Kolle P, Mortier W, Reichmann H, Goebel HH, Lochmuller H, Pongratz D, Mahnke-Zizelmman DK, Sabina RL. 2002. A G468T AMPD1 mutant allele contributes to the high incidence of myoadenylate deaminase deifciency in the caucasian population[J]. Neuromuscul Disord, 12(6):558~565
    Gross M. 1997. Clinical heterogeneity and molecular mechanisms in inborn muscle AMP deaminase deficiency[J]. J Inher Metab Dis, 20:186~192
    Harmsen E, Verwoerd TC, Achterberg PW, De Jong JW. 1983. Regulation of porcine heart and skeletal muscle AMP deaminase by adenylate energy charge[J]. Comp Biochem Physiol B, 75(1):1~3
    Hettleman BD, Sabina RL, Drezner MK, Holmes EW, Swain JL. 1983. Defective adenosinetriphosphate synthesis. An explanation for skeletal muscle dysfunction in phosphate-deficient mice[J].J Clin Invest, 72(2):582~589
    Hisatome I, Morisaki T, Kamma H, Sugama T, Morisaki H, Ohtahara A, Holmes EW. 1998. Control of AMP deaminase 1 binding to myosin heavy chain[J]. Am J Physiol, 275(3 Pt 1):870~881
    Janero DR, Yarwood C. 1995. Oxidative modulation and inactivation of rabbit cardiac adenylate deaminase[J]. Biochem J, 306 (2):421~427
    Kham AW, Davide KJ, Lentz CP. 1968. Degradation of inosinic acid in chicken muscle during aseptic storage and its possible use as an index of qulity[J]. J Food Sci, 33:25
    Loh E, Rebbeck TR, Mahoney PD, DeNofrio D, Swain JL, Holmes EW. 1999. A common variant in AMPD1 gene predicts improved clinical outcome in patients with heart failure[J]. Circulation, 99(11):1422~1425
    Lucia A, Martin MA, Esteve-Lanao J, San Juan AF, Rubio JC, Oliván J, Arenas J. 2006. C34T mutation of the AMPD1 gene in an elite white runner[J]. Br J Sports Med, 40(3):e7
    Mahnke-Zizelman DK, D’cunha J, Wojnar JM, Brogley MA, Sabina RL. 1997. Regulation of rat AMP deaminase 3 (isoform C) by development and skeletal muscle fibre type[J]. Biochem J, 326(2):521~529
    Mahnke-Zizelman DK, Sabina RL. 2001. Localization of N-terminal sequences in Human AMP deaminase isoforms that influence contractile protein binding[J]. Biochem Biophys Res Commun, 285(2):489~495
    Mahnke-Zizelman DK, Sabinal RL. 2002. N-terminal cytoplasmic membrane binding of human AMP deaminase isoform E[J]. J Biol Chem, 277(45):42654~42662
    Mahnke-Zizelman DK, Tullson PC, Sabina RL. 1998. Novel aspects of tetramer assembly and N-terminal domain structure and function are revealed by recombinant expression of human AMP deaminase isoforms[J]. J Biol Chem, 273(52):35118~35125
    Mangani S, Benvenuti M, Moir AJ, Ranieri-Raggi M, Martini D, Sabbatini AR, Raggi A.2007. Characterization of the metallocenter of rabbit skeletal muscle AMP deaminase. Evidence for a dinuclear zinc site[J]. Biochim Biophys Acta, 1774(2):312~322
    Manoba T, Hasegawa K. 1991. Sensory changes in umami taste of inosine 5’-monophosphate solution after heating[J]. J Food Sci, 56(5):1429~1432
    Marquentant R, Sabina RL, Holmes EW. 1989. Identification of a noncatalytic domain in AMP deaminase that influences binding to myosin[J]. Biochenistry, 28(22):8744~8749
    Marquetant R, Desai NM, Sabina RL, Holmes EW. 1987. Evidence for sequential expression of multiple AMP deaminase isoforms during skeletal muscle development[J]. Proc Natl Acad Sci U S A, 84(8):2345~2349
    Martini D, Ranieri-Raggi M, Sabbarini AR, Moir AJ, Polizzi E, Mangani S, Raggi A. 2007. Characterization of the metallocenter of rabbit skeletal muscle AMP deaminase. A new model for substrate interactions at a dinuclear cocatalytic Zn site[J]. Biochim Biophys Acta, 1774(12):1508~1518
    Merkler DJ, Schramm VL. 1993. Catalytic mechanism of yeast adenosine 5’-monophosphate deaminase, Zinc content, substrate specificity, PH studies, and solvent isotope effects[J]. Biochemistry, 32(22):5792~5799
    Mineo I, Clarke PRH., Sabina R.L, Holmes EW. 1990. A Novel pathway for alternative splicing: identification of an RNA intermediate that generates an alternative 5’splice donor site not present in the primary transcript of AMPD1[J]. Mol Cel Biol, 10(10): 5271~5278
    Mineo I, Holmes EW. 1991. Exon recognition and nucleocytoplasmic partitioning determine AMPD1 alternative transcript production[J]. Mol Cell Biol, 11(10):5356–5363
    Morisaki H, Morisaki T, Kariko K, Gentta T, Holmes EW. 2000. Positive and negative elements nediate control of alternative splicing in the AMPD1 gene[J]. Gene, 246(1-2):365~372
    Morisaki H, Morisaki T, Newby LK, Holmes EW. 1993. Alternative splicing: a mechanism for phenotypic rescue of a common inherited defect[J]. J. Clin. Invest, 91(5):2275~2280
    Morisaki T, Gross M, Morisaki H, Pongratz D, Zollner N, Holmes EW. 1992. Molecular basis of AMP deaminase deficiency in skeletal muscle[J]. Proc.Nat l. Acad. Sci, 89(14):6457~6461
    Morisaki T, Holmes EW. 1993. Functionally distinct elements are required for expression of the AMPD1 gene in myocytes[J]. Molecular and cellular biology, 13(9):5854~5860
    Morisaki T, Sabina RL, Holmes EW. 1990. Adenylate deaminase a multigene family in humans and rats[J]. J Biol Chem, 265(20): 11482~11486
    Norman B, Mahnke-Zizelman DK, Vallis A, Sabina RL. 1998. Genetic and other determinants of AMP deaminase activity in healthy adult skeletal muscle [J]. J Appl Physiol, 85:1273~1278
    Norman B, Sabina RL, Jansson E. 2001. Reuglation of skeletal muscle ATP catabolism by AMPD1 genotype during sprint exercise in asymptomatic subjects[J]. J Appl Physiol, 91(1):258~264
    Noumi T, Mosher ME, Natori S, Futai M, Kanazawa H. 1984. A phenylalanine for serine substitution in the beta subunit of escherichia coli F1-ATPase affects dependence of its activity on divalent cations[J]. J Biol Chem, 259(16):10071~10075
    Ogasawara N, Goto H, Yamada Y, Watanabe T, Asano T. 1982. AMP deaminase isozymes in human tissues[J]. Biochim Biophys Acta, 714(2):298~306
    Ogasawara N, Goto H, Yamada Y, Watanabe T. 1978. Distribution of AMP deaminase isozymes in rat tissues[J]. Eur J Biochem, 87(2):297~304
    Qiu FH, Wada K, Stahl GL,Serhan CN. 2000. IMP and AMP deaminase in reperfusion injury down-regulates neutrophil recruitment[J]. PNAS, 97 (8): 4267~4272
    Ranieri-Raggi M, Montali U, Ronca F, Sabbatini A, Brown PE, Moir AJ, Raggi A. 1997. Association of purified skeletal-muscle AMP deaminase with a histidine–proline-rich-glycoprotein-like molecule[J]. Biochem.J, 326(Pt 3): 641~648
    Ronca F, Ranieri-Raggi M, Brown PE, Moir AJ, Raggi A. 1994. Evidence of a species differentiated regulatory domain within the N-terminal region of skeletal muscle AMP deaminase[J]. Biochim Biophys Acta, 1209(1):123~129
    Rubio JC, Martin MA, Rabadan M, Gomez-Gallego F, San Juan AF, Alonso JM, Chicharro JL, Perez M, Arenas J, Lucia A. 2005. Frequency of the C34T mutation of the AMPD1 gene in world-class endurance athletes:does this mutation impair performance? [J]. J Appl Physiol, 98:2108~2112
    Rundell KW, Tullson PC, Terjung RL. 1992. Altered kinetics of AMP deaminase by myosin binding[J]. Am J Physiol, 263(2 Pt 1):294~299
    Rundell KW,Tullson PC,Terjung RL. 1992. AMP deaminase binding in contracting rat skeletal muscle[J]. Am J Physiol, 263(2 Pt 1):C287~293
    Sabina RL, Kernstine KH, Boyd RL, Holmes EW, Swain JL. 1982. Metabolism of 5-amino-4 imidazole carboxamide riboside in cardiac and skeletal muscle. Effects on purine nucleotide synthesis[J]. J Biol Chem, 257(17):10178~10183
    Sabina RL, Mahnke-Zizelman DK. 2000. Towards an understanding of the functional significance of N-terminal domain divergence in human AMP deaminase isoforms[J]. Pharmacol Ther, 87 (2~3):279~283
    Sabina RL, Marquetant R, Desai NM, Kaletha K, Holmes EW. 1987. Cloning and sequence of rat myoadenylate deaminase cDNA: evidence for tissue-specific and developmental regulation[J]. J Biol Chem, 262(26):12397~12400
    Sabina RL, Morisaki T, Clarke P, Eddy R, Shows TB, Morton CC, Holmes EW. 1990.
    Characterization of the human and rat myoadenylate deaminase genes[J]. J Biol Chem, 265 (16):9423~9433
    Sabina RL, Ogasawara N, Holmes EW. 1989. Expression of three stage-specific transcripts of AMP deaminase during myogenesis[J]. Mol Cell Biol, 9(5):2244~2246
    Sabina RL, Swain JL, Olanow CW, Bladley WG., Fishbein WN, DiMauro S, Holmes EW. Myoadenylate deaminase deficiency. Functional and metabolic abnormalities associated with disruption of the purine nucleotide cycle[J]. J Clin Invest, 73(3):720~730
    Sabina RL, Swain JL, Patten BM, Ashizawa T, Obrien W, Holmes EW. 1980. Disruption of the purine nucleotide cycle. A potential explanation for muscle dysfunction in myoadenylate deaminase deficiency[J]. J Clin Invest, 66:1419~1423
    Sims B, Mahnke-Zizelman DK, Profit AA, Prestwich GD, Sabina RL, Theibert AB. 1999.Regulation of AMP deaminase by phosphoinositides[J]. J Biol Chem, 274(36):25701~25707
    Strail A, Knoll A, Moser G, Kopecny M, Geldermann H. 2000. The procine adenosine monophosphate deaminase 1(AMPD1) gene maps to chromosome 4[J]. Anim Genet, 31:140~157
    Tullson PC, Rush JW, Wieringa B, Terjung RL. 1998. Alterations in AMP deaminase activity and kinetics in skeletal muscle of creatine kinase-deficient mice[J]. Am J Physiol Cell Physiol, 274: 1411~1416
    Tullson PC, Terjung RL. 1993. Purine nucleoside formation in rat skeletal muscle fiber types[J]. Am J Physiol, 264(5 Pt 1):C1246~1251
    Wang X, Morisaki H, Sermsuvitayawong K, Mineo I, Toyama K, Ogasawara N, Mukai T, Morisaki T. 1997. Cloning and expression of cDNA encoding heart-type isoform of AMP deaminase[J]. Gene, 188(2):285~290
    Yacoub MH, Yuen AH, Kalsi KK, Birks EJ, Taeqtmeyer A, Barton PJ, Johnson PH, Suznki K, Smolenski RT. 2004. C34T AMP deaminase 1 gene mutation protects cardiac function in donors[J]. Transplantation, 77(10):1621~1623
    Yazaki Y, Muhlestein JB, Carlquist JF, Bair TL, Horne BD, Renlund DG, Anderson JL. 2004. A common variant of the AMPD1 gene predicts improved suvrival in patients with ischemic left ventricular dysfunction[J]. J Card Fail, 10(4):316~320