致密陶瓷透氧膜和固体氧化物燃料电池电极材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界,能源和环保已成为世界各国共同关心的问题。由于在能源、化工、冶金、环保等领域的巨大潜在应用价值,氧化物陶瓷透氧膜材料的研究在最近二十年受到了学术界和工业界的关注。尽管已经进行了多年的研究,但是目前还没有合适的材料能完全满足实际应用的要求,还需要开发新材料和改进已有的材料。新型双相混合导体材料的出现给透氧膜材料的应用带来了希望,但是还存在诸多的问题亟待解决。本论文主要研究了SrCo_(0.8)Fe_(0.2)O_(3-δ)—SrZrO_3双相材料的结构与性能,并提出了基于该材料的氧气生产过程。此外,本论文提出了新的研究方法和手段用于测量固体氧化物燃料电池(SOFC)阳极材料在类工作状态下的氧离子电导率和锰酸镧中La的最大缺位量。
     第一章简要介绍了混合导体透氧膜材料的应用前景、工作原理和研究进展,着重阐述了钙钛矿型混合导体透氧膜材料的氧渗透相关理论和研究现状。
     第二章研究了SrZrO_3掺杂的SrCo_(0.8)Fe_(0.2)O_(3-δ)(SCF)双相材料的各方面性能。结果表明SrZrO_3掺杂能抑制主相晶粒的生长,提高材料的热机械性能——双相材料的强度提高了约74%、线性热膨胀系数下降了约15%,但是材料的氧渗透能力有所下降,并且透氧活化能升高。采用该复合透氧材料制备了一端密封的透氧膜管,以该膜管组装出小型氧分离器,在900℃能制得高纯度的氧气并能稳定运行较长时间,证明以透氧膜材料来制备纯氧是可行的。
     第三章研究了Zr在SCF中的固溶行为,并研究了Zr固溶到SCF中和生成第二相SrZrO_3对材料结构、微观形貌、稳定性、热学性能、电学性能和透氧性能等性质的影响。结果表明Zr在SCF中的固溶度与温度有关,在1250℃时Zr在SCF中的固溶度为4—5mol%,而在1150℃时平衡固溶度为3mol%左右。Zr固溶到SCF中导致晶格内各离子间相互作用增强,晶格稳定性增加,从而使得材料失氧温度升高而电子、氧离子传输能力下降、活化能升高。生成第二相SrZrO_3则抑制了主相晶粒的生长,提高了材料的热机械性能,对其他性能则没有多大影响。综合来看,Zr固溶对材料性质的影响比生成第二相SrZrO_3大。
     O_2/CO_2混合气已被提出用于燃烧过程以捕获温室气体——CO_2。第四章提出了基于透氧膜材料生产O_2/CO_2混合气的工艺流程,采用以Zr掺杂的SCF材料制备的致密透氧膜管组装了原理型膜组件用于制取O_2/CO_2混合气,验证了基于透氧膜材料生产O_2/CO_2混合气的可行性。此外,还研究了Zr掺杂对SCF材料在CO_2气氛中的稳定性的影响,并探讨了钙钛矿型透氧膜材料与CO_2反应的机理。对于提高钙钛矿材料稳定性的方法及设计、开发新的透氧料,作者认为应该选取具有高的离子势的元素离子来通过掺杂对现有的透氧膜材料进行改善或者合成新的透氧膜材料。
     第五章提出了一种新方法用于测量SOFC的阳极材料在工作状态下的氧离子传导能力。采用氧渗透测量方法,在致密阳极材料膜片的两侧分别通CO_2和CO气体吹扫,CO_2中的O通过膜片传导到CO侧而将CO氧化。从氧渗透速率和氧分压数据可计算出膜片的氧离子电导率。本章以SOFC中最常用的阳极材料Ni/8YSZ作为模型,测量了其致密膜片在CO_2/CO梯度下的氧渗透速率,并计算出其氧离子电导率和活化能分别为0.059 S/cm(1000℃)和81±2 kJ/mol,与文献报道数值非常接近。此外,该方法可用于其他阳极材料的氧离子电导率的测量。
     第六章提出并验证了一种基于X射线衍射(XRD)的方法用于测量钙钛矿结构的LaMnO_(3+δ)中A位缺位的最大值。计算模拟表明三方相的La_(1-x)MnO_(3+δ)的(012)和(024)晶面的XRD峰强度比值随La缺量增加而增大,实验测量证明确实如此,但是峰强比在x>0.09区域基本保持不变,结合高温电导率测量的结果,确定LaMnO_(3+δ)中A位缺位极限在x=0.09-0.10。这是XRD峰强比方法首次用于钙钛矿材料的离子(原子)分布研究,从理论上说该方法也能应用于其他钙钛矿结构材料的组成研究。
     第七章对本论文的工作进行了总结和自评,并对透氧膜材料今后的研究工作进行了展望。
Oxygen permeable membranes have attracted much attention for its potential applications in oxygen production,partial oxidation of methane,and combustion of fossil fuels.Despite years' intensive research and development,no single material has been found that can fulfill all the requirements of oxygen permeability,mechanical strength and chemical stability for the proposed applications.The composite materials show promise to meet these requirements.This dissertation is to investigate the structure and properties of a SrCo_(0.8)Fe_(0.2)O_(3-δ)SrZrO_3 composite and to develop the membrane-based processes for production of oxygen.In addition,the novel experimental methods have been developed to determine the oxygen ionic conductivity of zirconia-nickel composite and the maximum La deficiency in La_(1-x)MnO_(3±δ).
     Chapter 1 describes the potential applications of mixed conducting materials,the concepts and theories of oxygen permeation and the progresses of research on the oxygen permeable materials especially the perovskite-typed materials.
     In Chapter 2,the oxygen permeability and thermo-mechanical properties of SrCo_(0.08)Fe_(0.2)O_(3-δ)-SrZrO_3 composite are investigated.It is shown that the grain growth of SrCo_(0.8)Fe_(0.2)O_(3-δ)(SCF) is inhibited by the introduction of the SrZrO_3 phase. Compared with the single-phase SCF membrane,the composite exhibits a increase of 74%in bending strength and a decrease of 15%in thermal expansion coefficients, while the oxygen permeability is decreased slightly and the activation energy for oxygen permeation is increased.A prototype oxygen separator was built with a one-end closed membrane tube.By connecting the open-end of the membrane tube to a vacuum pump,oxygen can be separated from air at 900℃.This confirms the feasibility of producing pure oxygen with oxygen permeable membranes.
     In Chapter 3,the SCF doped with zirconium is studied in more detail.It is revealed that the solubility limit of Zr in SCF lies at 4-5 mol%at 1250℃,and about 3 mol%at 1150℃.The dissolution of zirconium leads to an increase in the temperature at which oxygen losses from the lattice and a decrease in the electric and ionic conductivity.These effects are attributed to the stronger interaction between the cations and anions in the lattice.When the Zr content is greater than the solubility limit,SrZrO_3 phase is formed in the SCF matrix.The presence of the SrZrO_3 phase strongly inhibits the growth of the SCF grains,accounting for the improved thermo-mechanical properties of the membrane.
     Oxygen(diluted with CO_2) has been proposed for use as the oxidant for combustion of fossil fuel,because this oxyfuel combustion produces a concentrated and cleaner stream of CO_2,enabling efficient separation and capture of CO_2.In Chapter 4,it is proposed to produce the as-required O_2/CO_2 gas stream by using CO_2 as the sweeping gas to remove the oxygen from the permeate side of the membrane. Although the Zr-doped SCF membrane shows a smaller oxygen permeation flux under the air/CO_2 gradient compared with the case of air/He gradient,the membrane remains well-permeable to oxygen.It is found that the Zr-doping significantly improves the performance of the SCF membrane in the presence of high concentration CO_2,which is attributed to the reduction of the basicity of the SCF membrane due to the incorporation of high valence zirconium ions into the lattice.It is expected that membranes with high oxygen permeability and sufficiently large CO_2 resistance can be obtained by proper doping in the perovskite-structured oxides with metal ions of high valence and small radius such as Ti and Zr ions.
     In Chapter 5,we propose to use the oxygen permeation method to determine the ionic conductivity of the nickel-zirconia composite which is the standard anode material for solid oxide fuel cell(SOFC).An oxygen permeation cell was constructed by exposing one side of the disk-shaped composite to CO_2 and the other side to CO. Under the given CO_2/CO gradient and at elevated temperatures,oxide ions are extracted from CO_2 at one side of the permeation cell and transported through the membrane to the other side to oxidize CO to CO_2.From the oxygen permeation rate through the membrane and the oxygen partial pressures,the oxygen ionic conductivity is derived of 0.059 S/cm at 1000℃.This method can be applied to determine the oxygen ionic conductivity of other potential anode materials.
     In Chapter 6,we propose and verify an X-ray diffraction-based method to determine the maximum La deficiency in perovskite-structured La_(1-x)MnO_(3±δ). Computer simulation predicts that the intensity ratio of(024) and(012) reflections for La_(1-x)MnO_(3±8) in hexagonal setting increases with increasing the La deficiency x.XRD analysis shows that with increasing x until 0.09,the ratio increases as predicted,then levels off with further increase in x.An abrupt change in electrical conductivity is also observed at x of~0.10.It is concluded that the maximum deficiency lies in between 0.09-0.10 for La_(1-x)MnO_(3±δ).The methodology presented in this paper in principle can be applied to other perovskite-structured materials.
     In Chapter 7,the research presented in this dissertation is evaluated and future research needs are identified.
引文
[1]H.J.M.Bowwmeester,A.J.Bruggraaf,Fundamentals of Inorganic Membrane Science and Technology,Elsevier Science B.V.(1996) p.435.
    [2]V.V.Kharton,A.A.Yaremchenko,A.V.Kovalevsky,A.E Viskup,E.N.Naumovich,P.F.Kerko,J.Membr.Sci.,163:307-317(1999).
    [3]P.N.Dyer,R.E.Richards,S.L.Russek,D.M.Taylor,Solid State Ion.,134:21-33(2000).
    [4]E.Ivers-Yiffee,A Weber,D.Herbstritt,J.Eur.Ceram.Sot.,21:1805-1811(2001).
    [5]N.P.Brandon,S.Skinner,B.C.H.Steele,Annu.Rev.Mater.Res.,33:183-213(2003).
    [6]S.J.Skinner,J.A.Kilner,Mater.Today,March 30-37(2003).
    [7]P.N.Dyer,R.E.Richards,S.L.Russek,D.M.Taylor,Solid State Ion.,134:21-33(2000).
    [8]H.Wang,S.Werth,T.Schiestel,J.Caro,Angew.Chem.,117:7066-7069(2005).
    [9]S.Yokoyama,K.Miyahara,K.Tanaka,I.Takakuwa,J.Tashiro,Fuel,58:510-514(1979).
    [10]A.A.Lizzio,L.R.Radovic,Ind.Eng.Chem.Res.,30:1735-1744(1991).
    [11]U.Balachandran,J.T.Dusek,P.S.Maiya,B.Ma,R.L.Mieville,M.S.Kleefisch,C.A.Udovich,Catal.Today,36:265-272(1997).
    [12]U.Balachandran,J.T.Dusek,R.L.Mieville,et al.,Appl.Catal.A,133:19-29(1995).
    [13】 汪波,中国科学技术大学博士论文,合肥,(2006)。
    [14】 高建峰,中国科学技术大学博士论文,合肥,(2003)。
    [15]M.Dokiya,Solid State Ion.,152-153:383-392(2002).
    [16]O.Yamamoto,Electrochim.Acta,45:2423-2435(2000).
    [17]K.F(o|¨)ger,J.G.Love,Solid State Ion.,174:119-126(2004).
    [18]L.Blum,W.A.Meulenberg,H.Nabielek,R.Steinberger-Wilckens,Int.J.Appl.Ceram.Tech.,2(6):482-492(2005).
    [19]W.L.Lundberg,S.E.Veyo,in:H.Yokokawa,S.C.Singhal(Eds.),Proc.7th Int.Symp.SOFC,Tsukuba,The Electrochem.Soc.,Pennington,NJ,USA,(2001) p.78-87.
    [20]Y.Sakaki,A.Nakanishi,M.Hattori,H.Miyamoti,H.Aiki,K.Takenobu,in:H.Yokokawa,S.C.Singhal(Eds.),Proc.7th Int.Symp.SOFC,Tsukuba,The Electrochem.Soc.,Pennington,NJ,USA,(2001) p.72-77.
    [21]Z.P.Shao,S.M.Haile,J.Ahn,et al.Nature,435:795-798(2005).
    [22]S.P.Jiang,S.H.Chan,J.Mater.Sci.,39:4405-4439(2004).
    [23]W.Z.Zhu,S.C.Deevi,Mater.Sci.Engin.A,362:228-239(2003).
    [24]A.Atkinson,S.Barnett,R.J.Gorte,et al.Nature Mater.,3:17-27(2004).
    [25]J.M.Beer,Prog.Energy Combus.Sci.,33:107-134(2007).
    [26]S.G.Sundkvist,T.Griffin,N.P.Thorshaug,in Second Nordic Minisymposium on Carbon Dioxide Capture and Storage,G(o|¨)teborg,2001.
    [27】 谢松,无机致密透氧膜的氧渗透及其机理研究,中国科学技术大学博士学位论文,合肥,(1999)。
    [28]C.S.Chen,A.J.Burggraaf,J.Appl.Electrochem.,29:355-360(1999).
    [29]J.A.Kilner,Solid State Ion.,129:13-23(2000).
    [30]苏勉曾,固体化学导论,北京大学出版社,1986。
    [31]R.F.Klie,Y.Ito,S.Stemmer,N.D.Browning,Ultramicroscopy,86:289-302(2001).
    [32]H.Hayashi,H.Inaba,M.Matsuyama,N.G.Lan,M.Dokiya,H.Tagawa,Solid State Ion.,122:1-15(1999).
    [33]M.Mogensen,D.Lybye,N.Bonanos,P.V.Hendriksen,F.W.Poulsen,Solid State Ion.,174:279-286(2004).
    [34]Y.Teraoka,H.M.Zhang,S.Furukawa and N.Yamazoe,Chem.Lett.,173:1743-1746(1985).
    [35]C.Zener,Phys.Rev.,82:403-405(1951).
    [36]H.U.Anderson,Solid State Ionics,52:33-41(1992).
    [37]Y.Teraoka,Y.Nobanaga,N.Yamazoe,Chem.Lett.,503-506(1988).
    [38]Y.Teraoka,T.Nobunaga,K.Okamoto,N.Miura,N.Yamazoe,Solid State Ion.,48:207-212(1991).
    [39]L.Qiu,T.H.Lee,L.M.Liu,Y.L Yang,A.J.Jacobson,Solid State Ion.,76:321-329(1995).
    [40]V.V.Kharton,E.N.Naumovich,A.V.Nikolaev,V.V.Samokhval,in:Proc.17th Riso Intl.Symp.On Mat.Sci.:High Temperature Electrochemistry:Ceramics and Metals,ed.F.W.Poulsen,N.Bonanos,S.Linderoth,M.Mogensen and B.Zachau-Christiansen,Riso national Laboratory,Roskilde,Denmark,(1996) p.301.
    [41]N.Itoh.T.Kato,K.Uchida,K.Haraya,J.Membr.Sci,92:239-246(1994).
    [42]R.H.E.Van Doorn,H.Kruidhof,H.J.M.Bouwmeester,A.J.Burggraaf,in:Materials Research Society Symposium Proceedings,Vol.369,Solid State Ionics Ⅳ,ed.G.A.Nazri,J.M.Taracson and M.S.Schreiber,Materials Research Society,Pittsburgh,PA,(1995) p.373.
    [43]V.V.Kharton,E.N.Naumovich,A.A.Vecher,A.V.Nikolaev,J.Solid State Chem.,120:128-136(1995).
    [44]H.W.Brinkman,H.Kruidhof,A.J.Burggraaf,Solid State Ion.,68:173-176(1994).
    [45]N.Sakai,T.Horita,H.Yokokawa,M.Dokiya,T.Kawada,Solid State Ion.,86-88:1273-1276(1996).
    [46]T.Kawada,T.Horita,N.Sakai,H.Yokokawa,M.Dokiya,Solid State Ion.,79:201-207(1995).
    [47]H.Yokokawa,N.Sakai,T.Kawada,M Dokiya,J.Electrochem.Soc,138:1018-1027(1991).
    [48]H.Iwahara,T.Esaka,T.Mangahara,J.Appl.Electrochem.,18:173-177(1988).
    [49]S.Xie,W.Liu,K.Wu,P.H.Yang,G.Y.Meng,C.S.Chen,Solid State Ion.,118:23-28(1999).
    [50]Z.P.Shao,W.S.Yang,Y.Cong,H.Dong,J.H.Tong,G.X.Xiong,J.Membrane Sci.,172:177-188(2000).
    [51]B.C.H.Steele,Mater.Sci.Engin.B,13:79-87(1992).
    [52]T.Ishihara,Y.Ysuruta,C.Y.Yu,T.Todaka,H.Nishiguchi,Y.Takita,J.Eletronchem.Sot.,150:E17(2003).
    [53]M.Schwartz,J.H.White,A.F.Sammells,Iner.Patent WO 99/21649,(1999).
    [54]A.F.Sammellls,M.Schwartz,R.A.Mackay,T.F.Barton,D.R.Peterson,Catal.Today,56:325(2000).
    [55]R.E.Schaak,T.E.Mallouk,Chem.Mater.,14:1455-1471(2002).
    [56]F.Prado,T.Armstrong,A.Caneiro,A.Manthiram,J Electrochem.Soc.,148(4):J7-J14(2001).
    [57]U.Balachandran,B.Ma,P.S.Maiya,R.L.Mieville,J.T.Dusek,J.J Picciolo,J.Guan,S.E.Dorris,M.Liu,Solid State Ion.,108:363-370(1998).
    [58]B.Ma,U.Balachandran,J-H.Park,Solid State Ion.,83:65-71(1996).
    [59]M.G.Martha,Curr Opin.Solid St.M.,2:174(1997).
    [60]V.V.Kharton,A.P.Viskup,A.V.Kovalevsky,E.N.Naurnovich,F.M.B.Marques,J.Mater.Chem.,9:2623-2629(1999).
    [61]V.V.Kharton,A.P.Viskup,A.V.Kovalevsky,E.N.Naunaovich,F.M.B.Marques,Solid State Ion.,143:337-353(2001).
    [62]V.V.Vashook,S.P.Tolochko,I.I.Yushkevich,et al Solid State Ion.,110:245-253(1998).
    [63]C.S.Chen,S.Ran,W.Liu,P.H.Yang,D.K.Peng,H.J.M.Boumaeester,Angew.China.Int. Ed.40:784-786(2001).
    [64]C.S.Chen,W.Liu,S.Xie,G.G.Zhang,H.Liu,G.Y.Meng,D.K.Peng,Advan.Mater.12:1132-1134(2000).
    [65]C.Wagner,Naturwissenshaften,265(1943).
    [66]Y.Nigara,J.Mizusaki,M.Ishigame,Solid State Ion.,79:208-214(1995).
    [67]H.Arashi,H.Naito,Solid State Ion.,53-56:431-435(1992).
    [68]H.Iwahara,T.Esaka,K.Takeda,Advances in Ceramics,Vol 24A,ed.S.Somiya,N.Yamamoto,H.Yanegida,the American Ceramic Society,Inc.,Westerville,OH,(1988) p.907.
    [69]G.Z.Cao,X.Q.Liu,H.W.Brinkman,K.J.De Vires,A.J.Burggraaf,Science and technology of Zirconia V,ed S.R S.Badwal et al.,Technomic Publications,Lancaster,(1993) p.576.
    [70]G.Z.Cao,J.Appl.Electrochem.,24:1222-1227(1994).
    [71]B.A.Boukamp,H.J.M.Bouwmeester,A.J.Burggraaf,The surface Oxygen Exchange Process in Oxygen Conducting Materials,Prc.2~(nd) Intl.Symp.On Ionic and mixed conducting oxides,ed.T.A.Ramanarayanan,W.L.Worrell and H.L.Tuller,Proc.vol.94-12,The Electrochem.Soc.,Pennington,N J,(1994) p.141-149.
    [72]P.Lacorre,et al Nature,404:856(2000).
    [73]F.Goutenoire,et al Chem.Mater.,12:2575(2000).
    [74]F.Goutenoire,et al J.Mater.Chem.,11:119(2001).
    [75]S.Nakayama,H.Aono,Y.Sadaoka,Chem.Lett.,24:431-432(1995).
    [76]S.Nakayama,M.Sakamoto,J.Eur.Ceram.Soc.,18:1413(1998).
    [77]S.Tao,J.T.S.Irvine,Mater.Res.Bull.,36:1245(2001).
    [78]H.Arikawa,H.Nishiguchi,T.Ishihara,Y.Takita,Solid State Ion.,136-137:31(2000).
    [79]F.Abraham,M.F.Debreuille-Gresse,G.Mairesse,G.Nowogrocki,Solid State Ion.,25-30:529-532(1988).
    [80]T.J.Mazanec,T.L.Cable and J.G.Frye,Solid State Ion.,53-56:111-118(1992).
    [81]C.S.Chen,PhD thesis,University of Twente,the Netherlands(1994).
    [82]Y.Shen,M.Liu,D.Taylor,S.Bolagopal,A.Joshi,K.Krist,in Proc.2~(nd) Intl.Syrup.on Ionic and mixed conducting ceramics,ed.T.A.Ramanarayanan,W.L.Worrell and H.L.Tuller,Proc.Vol.94-12,The Electrochemical Society,Pennington,NJ,1994,p.574.
    [83]C.S.Chen,H.Kruidhof,H.J.M.Bouwmeester,H.Verweij,A.J.Burggraaf,Solid State Ion.,86-85:569-572(1996).
    【84】 吴宽,中国科学技术大学硕士学位论文,合肥,(2001)。
    [85]H.S.Spacil,US Patent 03,503,809(1970).
    [86]W.Z.Zhu,S.C.Deevi,Mater.Sci.Engin.A,362:228-239(2003).
    [87]S.P.Jiang,S.H.Chan,J.Mater.Sci.,39:4405-4439(2004).
    [88]J.D.Kim,G.D.Kim,J.W.Moon,Y.Park,W.H.Lee,et al Solid State Ion.,143:379-389(2001).
    [89]易建新,中国科技大学博士论文,合肥,(2006)。
    [90]X.Yin,L.Hong,Z.L.Liu,J.Membr.Sci.,268:2-12(2006).
    [91]R.Pelosato,I.N.Sora,G.Dotelli,R.Ruffo,C.M.Mari,J.Eur.Ceram.Sot.,25:2587-2591(2005).
    [92]R.L.Cook,A.F.Ammells,Solid State Ion.,45:311-321(1991).
    [93]J.B.Goodenough,A.Manthiram,P.Paranthaman,Y.S.Zhen,Solid State Ion.,52:105-109(1992).
    [94]M.Cherry,M.S.Islam,C.R.A.Catlow,J.Solid State Chem.,118:125-132(1995).
    [95】 邓增强,中国科学技术大学博士论文,合肥,2002。
    [96]J.Yoo,A.Verma,S.Wang,A.J.Jacobson,J Electrochem.Soc.,152(3):A497-A505(2005).
    [97]C.Zener,Phys.Rev.,82(3):403-405(1951).
    [98]A.J.Millis,P.B.Littlewood,B.Shraiman,Phys.Rev.Lett.,74(25):5144-5147(1995).
    [99]G.M.Zhao,K.Conder,et al Nature,381:676-678(1996).
    [100]C.H.Booth,F.Bridges,et al Phys.Rev.B,54:15606-15609(1996).
    [101]M.Mori,Y.Hiei,T.Yamamoto,J.Am.Ceram.Soc.,84(4):781-786(2001).
    [102]V.V.Kharton,A.L.Shaula,F.M.M.Snijkers,et al J.Membr.Sci.,252:215-225(2005).
    [103]D.R.Lide,CRC Handbook of Chemistry and Physics(3rd electronic edition),CRC Press,Inc.,(2000).
    [104]H.Yokokawa,N.Sakai,T.Kawada,M.Dokity,Solid State Ion.,52:43-56(1992).
    [105]K.Kamata,T.Nakamura,T.Sata,Mat.Res.Bull.,10:373(1975).
    [106]N.Kimizuka,T.Katsura,J.Solid State Chem.,15:151(1975).
    [107]T.Katsura,T.Sekine,K.Kitayama,T.Sugihara,N.Kimizuka,J.Solid State Chem.,23:43(1978).
    [108]K.Kamata,T.Nakajima,T.Hayashi,T.Nakamura,Mat.Res.Bull,13:49(1978).
    [109]T.Nakamura,G.Petzow and L.J.Gauckler,Mat.Res.Bull.,14:649(1979).
    [110]H.Schmalzried,W.Laqua and P.L.Lin,Z Naturforsch.,A,34(2):192(1979).
    [111]R.H.E.van Doorn,H.J.M.Bouwmeester,A.J.Burggraaf,Solid State Ion.,111:263-272(1998).
    [112】 冯绍杰,中国科学技术大学博士论文,合肥,(2003)。
    [113]L.M.Liu,T.H.Lee,L.Qiu,Y.L.Yang,A.J.Jacobson,Mater.Res.Bull.,31(1):29-35(1996).
    [114]Z.Shao,W.Yang,Y.Cong,H.Dong,J.Tong,G.Xiong,J.Membr.Sci.,172:177-188(2000).
    [115]V.V.Kharton,A.V.Kovalevsky,V.N.Tikhonovich,E.N.Naumovich,A.P.Viskup,Solid State Ion.,110:53-60(1998).
    [116]J.Tong,W.Yang,R.Cai,B.Zhu,G.Xiong,L.Lin,Separ.Purific.Tech.,32:289-299(2003).
    [117]H.Lu,J.Tong,Z.Deng,Y.Cong,W.Yang,Mater.Res.Bull.,41:683-689(2006).
    [118]J.Tong,W.Yang,B,Zhu,R.Cai,J.Membr.Sci.,203:175-189(2002).
    [119]J.Tong,W.Yang,H.Suda,K.Haraya,Catal.Today,118:144-150(2006).
    [120]Y.Teraoka,H.Shimokawa,Ch.Y.Kang,H.Kusaba,K.Sasaki,Solid State Ion.,177:2245-2248(2006).
    [121]H.Wang,C.Tablet,A.Feldhoff,J.Caro,Adv.Mater.,17:1785-1788(2005).
    [122]K.Huang,R.S.Tichy,J.B.Goodenough,J.Am.Ceram.Soc.,81(10):2565-2575(1998).
    [123]A.A.Yaremchenko,A.L.Shaula,D.I.Logvinovich,V.V.Kharton,et al.,Mater.Chem.Phys.,82:684-690(2003).
    [124]T.Ishihara,Y.Takita,Catal.Surv.Japan,4(2):125-133(2000).
    [125]C.G.Fan,Z.Q.Deng,Y.B.Zuo,W.Liu,C.S.Chen,Solid State Ion.,166:339-342(2004).
    [126]D.Li,W.Liu,H.Zhang,G.Jiang,C.Chen,Mater.Lett.,58:1561-1564(2004).
    [127]S.Li,W.Jin,P.Huang,N.Xu,J.Shi,et al.,AIChE J.,45(2):276-284(1999).
    [128]Z.Wu,W.Jin,N.Xu,J.Membr.Sci.,279:320-327(2006).
    [129]A.A.Yaremchenko,V.V.Kharton,A.L.Shaula,et al.,J.Electrochem.Soc.,153:J50(2006).
    [1]Y.Teraoka,H.M.Zhang,S.Fufukawa,N.Yamazoe,Chem.Lett.,1743-1746(1985).
    [2]D.C.Li,W.Liu,Y.X.Zhang,P.H.Yang,C.S.Chen,Solid State Commun.,131:235-239(2004).
    [3]C.G.Fan,Z.Q.Deng,Y.B.Zuo,W.Liu,C.S.Chen,Solid State Ion.,166:339-342(2004).
    [4]邓增强,《新型无机透氧膜材料研究》,中国科学技术大学博士学位论文,2002.
    [5]苏勉曾,《固体化学导论》,北京大学出版社,P23,1987.
    [6]Y.S.Zhao,D.J.Weidner,Phys.Chem.Miner.,18:294-301(1991).
    [7]E.A.Slonimskaya,A.V.Belyakov,Glass Ceram.,58:54-55(2001).
    [8]L.Yang,L.Tan,X.H.Gu,H.Qi,W.Q.Jin,L.X.Zhang,N.P.Xu,AIChE Journal,49:2374-2382(2003).
    [9]J.C.Wurst,J.A.Nelson,J.Am.Ceram.Soc.,55:109(1972).
    [10]G.Etchegoyen,T.Chartier,A.Julian,P.Del-Gallo,J.Membr.Sci.,268:86-95(2006).
    [11]D.C.Li,W.Liu,H.L.Zhang,G.S.Jiang,C.S.Chen,Mater.Lett.,58:1561-1564(2004).
    [12]V.S.Bakunov,A.V.Belyakov,Inorg.Mater.,38:411-415(2002).
    [13]F.M.Figueiredo,F.M.B.Marques,J.R.Frade,Solid State Ion.,138:173-182(2001).
    [14]周玉,雷廷权,《陶瓷材料学》,哈尔滨工业大学出版社,P446,1995.
    [15]S.McIntosh,J.F.Bente,W.G.Haije,D.H.A.Blank,H.J.M.Bouwmeester,Solid State Ion.,177:1737-1742(2006).
    [16]N.E.Trofimenko,H.Ullmann,J.Eur.Ceram.Soc.,20:1241-1250(2000).
    [17]G.Garcia-Belmonte,J.Bisquert,F.Fabregat,V.Kozhukharov,J.B.Carda,Solid State Ion.,107:203-211(1998).
    [18]L.Qiu,T.H.Lee,L.M.Liu,Y.L.Yang,A.J.Jacobson,Solid State Ion.,76:321-329(1995).
    [19]H.Kruidhof,H.J.M.Bouwmeester,R.H.E.van Doom,A.J.Burggraaf,Solid State Ion.,63/65:816-822(1993).
    [20]K.Zhang,Y.L.Yang,D.Ponnusamy,A.J.Jacobson,K.Salama,J.Mater.Sci.,34:1367-1372(1999).
    [21]J.A.迪安 主编,尚久方、操时杰、辛无名等 译,《兰氏化学手册》(第十三版),科学出版社 1991.
    [22]李荣久 主编,《陶瓷-金属复合材料》,冶金工业出版社 2004.
    [1]杭州大学化学系分析化学教研室 编《分析化学手册--化学分析》(第二版),化学工业出版社(1997)。
    [2]R·蒲希比 著,李焕然、陈焕光等 译《实用络合滴定》,中山大学出版社(1987)。
    [3]周俊英,金谷,张贤萱,尹香莲等,定量化学分析实验,中国科学技术大学出版社,合肥(1995)。
    [4]孟广耀,材料中的速率过程,中国科学技术大学出版社,合肥(2002)。
    [5]L.W.Yai,M.M.Nasrallah,H.U.Anderson,D.M.Sparlin,S.R.Sehlin,Solid State Ion.,76:273-283(1995).
    [6]关振铎,张中太,焦金生,无机材料物理性能,清华大学出版社,北京(1992)p.124。
    [7]D.R.Lide,CRC Handbook of Chemistry and Physics(3rd electronic edition),CRC Press,Inc.,(2000).
    [8]陈培榕,邓勃,现代仪器分析实验与技术,清华大学出版社,北京(1999)。
    [1]J.M.Beer,Prog.Energy Combus.Sci.,33:107-134(2007)
    [2]A.M.Wolsky,E.J.Daniels,B.J.Jody,J.Air Waste Manage.Assoc.,41:449-454(1991).
    [3]H.J.Herzog,E.M.Drake,Annu.Rev.Energy Environ.,21:145-166(1996).
    [4]M.Arnold,H.H.Wang,A.Feldhoff,J.Membr.Sci.,293:44-52,2007.
    [5]G.Juhasz,Z.Homonnay,K.Nomura,T.Hayakawa,S.Hamakawa,A.Vertes,Solid State Ion.,139:219-231(2001).
    [6]Z.Homonnay,K.Nomura,G.Juhasz,M.Gal,K.Solymos,S.Hamakawa,T.Hayakawa,A.Vertes,Chem.Mater.,14:1127-1135(2002).
    [7]K.Nomura,Y.Ujihira,T.Hayakawa,K.Takehira,Appl.Catal.,137:25-36(1996).
    [8]H.Iwahara,Solid State Ion.,77:289-298(1995).
    [9]S.M.Haile,G.Staneff,K.H.Ryu,J.Mater.Sci.,36:1149-1160(2001).
    [10]C.D.Zuo,S.E.Dorris,U.Balachandran,M.L.Liu,Chem.Mater.,18:4647-4650(2006).
    [11]易建新,中国科技大学博士论文,合服,2006。
    [12]D.R.Lide,CRC Handbook of Chemistry and Physics(3rd electronic edition),CRC Press,Inc.,(2000).
    [13]S.McIntosh,J.F.Vente,W.G.Haije,D.H.A.Blank,H.J.M.Bouwmeester,Solid State Ion.,177:1737-1742(2006).
    [14]T.Horiuchi,H.Hidaka,T.Fukui,Y.Kubo,M.Horio,K.Suzuki,T.Mori,Appl.Catal.A,167:195-202(1998).
    [15]P.K.Gallagher,J.P.Sanders,P.M.Woodward,I.N.Lokuhewa,J.Thermal Analy.Calori.,80:217-223(2005).
    [16]曹锡章,宋天佑,王杏乔,无机化学(第三版),高等教育出版社,1994。
    [17]H.Tsuji,A.Okamura-Yoshida,T.Shishido,H.Hattori,Langmuir,19:8793-8800(2003).
    [18]H.Tsuji,T.Shishido,A.Okamura-Yoshida,Y.Gao,H.Hattori,H.Kita,J.Chem.Soc.,Faraday Trans.,90:803(1994).
    [19]G.Pacchioni,J.M.Ricart,F.Illas,J.Am.Chem.Soc.,116:10152-10158(1994).
    [20]黄昆,韩汝琦 编著 固体物理学,高等教育出版社,1988。
    [21]苏勉曾 编著 固体化学导论,北京大学出版社,1986。
    [22]K.Tanabe,Y.Fukuda,React.Kinet.Catal.Lett.,1:21(1974).
    [23]K.Tanabe,K.Saito,J.Catal.,35:247(1974).
    [24]M.Mohri,K.Tanabe,H.Hattori,J.Catal.,32:144(1974).
    [25]H.Hattori,K.Maruyama,K.Tanabe,J.Catal.,44:50(1976).
    [1]Z.P.Shao,S.M.Haile,J.Alan,et al.Nature,435:795-798(2005).
    [2]L.Blum,W.A.Meulenberg,H.Nabielek,et al.Int.J.Appl.Ceram.Tech.,2(6):482-492(2005).
    [3]R.M.Ormerod,Chem.Soc.Rev.,32:17-28(2003).
    [4]S.C.Singhal,Solid State lon.,135:305-313(2000).
    [5]A.Atkinson,S.Barnett,R.J.Gorte,et al.Nature Mater.,3:17-27(2004).
    [6]S.Xie,W.Liu,K.Wu,et al.Solid State Ion.,118:23-28(1999).
    [7]A.Benisek,W.Sitte,J.Electrochem.Soc.,152(10):H157-H160(2005).
    [8]H.S.Spacil,US Patent 03,503,809(1970).
    [9]S.P.Jiang,S.H.Chan,J.Mater.Sci.,39:4405-4439(2004).
    [10]W.Z.Zhu,S.C.Deevi,Mater.Sci.Engin.A,362:228-239(2003).
    [11]H.J.Park,G.M.Choi,J.Europ.Ceram.Soc.,25:2577-2581(2005).
    [12]T.Kawada,N.Sakai,H.Yokokawa,M.Dokiya,Solid State Ion.,53-56:418-425(1992).
    [13]G.M.Barrow,Physical Chemistry(3rd edition),McGraw-Hill,NY(1973).
    [14]W.J.Moore,Physical Chemistry(5th edition),Prentice-Hall Inc.,NJ(1972).
    [15]L.Grahl-Madsen,P.H.Larsen,N.Bonanos,et al.J.Mater.Sci,41:1097-1107(2006).
    [16]H.S.Hong,U.Chae,S.Choo,et al.J.Power Sources,149:84-89(2005).
    [17]A.J.Feighery,J.T.S.Irvine,Solid State Ion.,121:209-216(1999).
    [18]O.Yamamoto,Electrochim.Acta,45:2423-2435(2000).
    [19]F.T.Ciacchi,K.M.Crane,S.P.S.Badwal,Solid State Ion.,73:49-61(1994).
    [20]J.Drennan,S.P.S.Badwal,in Advances in Ceramics,Vol.24,Science and Technology of Zirconia Ⅲ,The American Ceramic Society,Inc.(1988) p.807.
    [21]易建新,中国科技大学博士论文,合肥,(2006)p.63。
    [22]J.H.Kim,G.M.Choi,Solid State Ion.,130:157-168(2000).
    [1]J.A.M.van Roosmalen,J.P.P.Huijsmans,L.Plomp,Solid State Ion.,66:279-284(1993).
    [2]J.T(o|¨)pfer,J.B.Goodenough,Chem.Mater.,9:1467-1474(1997).
    [3]G.Dezanneau,A.Sin,H.Roussel et al,J.Solid State Chem.,173:216-226(2003).
    [4]S.de Brion,F.Ciorcas,G.Chouteau et al,Phys.Rev.B59(2):1304-1310(1999).
    [5]A.Gupta,T.R.McGuire,P.R.Duncombe,M.Rupp,J.Z.Sun,W.J.Gallagher,G.Xiao,Appl.Phsy.Lett.,67(23):3494-3496(1995).
    [6]J.Nowotny,M.Rekas,J.Am.Ceram.Soc.,81(1):67-80(1998).
    [7]G.J.Chen,Y.H.Chang,H.W.Hsu,Mater.Sci.Eng.B 68:104-110(1999).
    [8]P.A.Joy,C.Raj Sankar,S.K.Date,J.Phys.:Condens.Matter,14:L663-L669(2002).
    [9]J.A.M.Van Roosmalen,P.van Vlaanderen,E.H.P.Cordfunke et al,J Solid State Chem.,114:516-523(1995).
    [10]G.Dezanneau,M.Audier,H.Vincent,Phys.Rev.B,69:014412(2004).
    [11]G.Dezanneau,O.Isnard,H.Roussel,A.Sin,M.Audier,H.Vincent,Crystal Engin.,5:347-354(2002).
    [12]R.K.Datta and R.Roy,J.Am.Ceram.Soc.,50(11):578-583(1967).
    [13]Z.B.Wang,C.H.Zhao,P.H.Yang,A.J.A.Winnubst and C.S.Chen,J.Eur.Ceram.Soc.,26:2833-2837(2006).
    [14]梁敬魁,粉末衍射法测定晶体结构,科学出版社,北京,(2003)。
    [15]G.Nolze,W.Kraus,Powder Diffr.,13:256-259(1998).
    [16]J.A.M.Van Roosmalen,E.H.P.Cordfunke,J.Solid State Chem.,110:106-108(1994).
    [17]K.Nakamura,K.Ogawa,J.Solid State Chem.,163:65-76(2002).
    [18]A.K.Cheetham,C.N.R.Rao,T.Vogt,J.Solid State Chem.,126:337-341(1996).
    [19]R·蒲希比 著,李焕然、陈焕光 译,实用络合滴定,中山大学出版社,广州,(1987)。
    [20]周俊英,金谷,张贤萱,尹香莲,定量化学分析实验,中国科学技术大学出版社,合肥,(1995)。
    [21]S.Miyoshi,A.Kaimai,H.Matsumoto,K.Yashiro,Y.Nigara,T.Kawada,J.Mizusaki,Solid State Ion.,175:383-386(2004).
    [22]J.A.Alonso,M.J.Martinez-Lope,M.T.Casais,J.L.MacManus-Driscoll,P.S.I.P.N.de Silva,L.F.Cohen,M.T.Fernandez-Diaz,J.Mater.Chem.,7:2139-2144(1997).
    [23]J.Mizusaki,Y.Yonemura,H.Kamata,K.Ohyama,N.Mori,H.Takai,H.Tagawa,M.Dokiya,K.Naraya,T.Sasamoto,H.Inaba,T.Hashimoto,Solid State Ion.,132:167-180(2000).
    [24]S.J.Kim,C.S.Kim,S.Park,B.W.Lee,J.Appl.Phys.,89:7416-7418(2001).
    [25]M.Mori,N.M.Sammes,E.Suda,Y.Takeda,Solid State Ion.,164:1-15(2003).