膜吸收过程传质强化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜吸收技术是脱除C02等温室气体最有前途的方法之一。然而,多孔膜的存在导致近膜壁面处溶质浓度分布不均(微观层面)以及中空纤维膜接触器壳程流体流动状态的非理想性(宏观层面),给膜吸收传质过程带来了不利的影响。本文针对这两类问题系统地进行了膜吸收过程的传质强化研究。
     通过理论分析,提出了膜吸收过程的传质强化方法,建立数学模型对传质强化过程进行了描述和预测。利用添加固相微粒扰动液相边界层,改善了近膜壁面处溶质浓度分布的不均性;在壳程吸收剂中添加细微粒子或引入外源振荡,加强了中空纤维膜接触器内壳程流体的径向混合,改善了壳程流体的非理想性。具体阐述如下:
     基于表面更新理论并通过传质区域的划分,建立了固相粒子强化膜吸收过程的传质模型。考察了固相粒子固含率、多孔膜孔隙率、吸收剂pH值、粒子粒径等因素对强化过程的影响,使用实验数据对模型结果进行验证,二者吻合良好。所建立的传质模型,可较好地对固相粒子强化膜吸收传质过程进行描述和预测。
     研究了吸收剂中固相粒子的引入对膜吸收过程近膜壁面处传质行为的影响。为屏蔽膜器结构以及壳程非理想性对过程的影响,采用板式膜接触器进行相关研究。固相粒子沿膜壁面的切向运动使得膜壁面处溶质浓度分布趋于均匀,垂直于膜壁面的法向运动扰动边界层,减小了传质阻力。固相粒子的加入在一定程度上减小了不同孔隙率膜之间的传质效果差异,同时还强化了传质,且孔隙率越小固相粒子的强化效果越大。
     为改善壳程流体流动的非理想性,提出了一种通过向吸收剂中引入细微粒子强化中空纤维膜吸收传质过程的技术。吸收过程中,采用超声将固相粒子悬浮在液相吸收剂中。粒子的加入使传质系数提高40%以上,对装填因子较大的膜器强化效果更佳。通过示踪实验获得了固相粒子的传质强化机理:固相粒子的加入减弱了示踪曲线的拖尾现象,加强了壳程流体在径向上的混合,有效地改善了壳程流体的流动状态,进而强化了传质过程。
     采用振荡器带动膜接触器发生振荡的方式,将传质实验与示踪实验相结合,研究了振荡对中空纤维膜器壳程流体流动状态以及传质性能的影响。结果表明,振荡可使膜吸收过程传质系数增加50%以上。当振荡方向与吸收剂流动方向平行时,振荡使得液相边界层与液相主体的混合程度变大,但会带来一定程度的轴向返混;而对于垂直操作模式,膜器的振荡不仅可以增大液相边界层与液相主体的混合程度,还加大了壳程流体在径向的混合,同时在一定程度上减弱了流体在壳程轴向的返混。
Membrane gas absorption technology is one of the most promising alternatives to conventional technologies in carbon dioxide (CO2) capture. However, the heterogenous concentration profile near the membrane surface caused by inducing the microporous membrane decrease the mass transfer rate, and the non-ideal flow condition in the hollow fiber module shell-side also deteriorate the overall mass transfer. For the purpose of overcoming theses issues, experimental and modeling study on intensification of mass transfer in the membrane gas absorption process has been carried out in this work.
     Mathematical model considering the effect of porosity and mathematical model for the intensification process based on surface renewal theory are developed. The effects of solid loading, membrane porosity, absorbent pH value and particle diameter have been investigated. The calculated results have a good agreement with the experimental results.
     Pure CO2 was absorbed by de-ionized water or NaOH aqeous solution using membranes with different porosities in the flat-sheet membrane contactor. In order to improve the distribution of the concentration of solute near the membrane surface, solid particles are added into the absorbent liquid to enhance the turbulence in the boundary layer. The difference of mass transfer coefficient obtained by varied porosities declined by adding solid particles into the absorbent liquid. The higher enhancement factor is obtained at lower porosity.
     A method of improving the absorption performance in hollow fiber contactor by adding the third solid phase into the shell-side absorbent is proposed. Ultrasound is used in this work as an approach to make the solid particles suspending in the absorbent. The mass transfer rate is enhanced above 40% by adding solid particles into the absorbent, and the enhancement factors increase with an increase of the packing density. The residence time distributions (RTD) curves are measured, which demonstrate that the addition of the solid particles can improve the flow conditions in the shell-side.
     The influence of shaking on the flow condition in the shell-side of the module and the mass transfer of hollow fiber membrane gas absorption process has been investigated. The results of absorption experiments indicate that the shaking of module raises the mass transfer coefficient above 50%. The mass transfer improvement is higher when the shaking direction vertical to the liquid velocity direction. The shaking of the module can improve the flow status in the shell side of the hollow fiber modules.
引文
[1]Qi Z, Cussler E L. Microporous hollow fibers for gas absorption:Ⅰ. Mass transfer in the liquid [J]. Journal of Membrane Science,1985,23(3):321-332.
    [2]Qi Z, Cussler E L. Microporous hollow fibers for gas absorption:Ⅱ. mass transfer across the membrane [J]. Journal of Membrane Science,1985,23(3):333-345.
    [3]Wang R, Li D F, Zhou C, et al. Impact of DEA solutions with and without CO2 loading on porous polypropylene membranes intended for use as contactors [J]. Journal of Membrane Science, 2004,29:147-157.
    [4]Atchariyawut S, Jiraratananon R, Wang R. Mass transfer study and modeling of gas-liquid membrane contacting process by multistage cascade model for CO2 absorption [J]. Separation and Purification Technology.2008,63:15-22.
    [5]Khaisri S, deMontigny D, Tontiwachwuthikul P, Jiraratananon R. A mathematical model for gas absorption membrane contactors that studies the effect of partially wetted membranes [J]. Journal of Membrane Science.2010,347:228-239.
    [6]Dahuron L, Cussler E L. Protein extractions with hollow fibers [J]. AIChE J.,1988,34:130-136.
    [7]Hutter J C, Vandegrift G F, Nunez L, Redfield D H, Removal of VOCs from groundwater using membrane-assisted solvent extraction [J]. AIChE J.,1994,40:166-177.
    [8]Yang M C, Cussler E L. Designing Hollow-fiber Contactors [J]. AIChE Journal,1986,32: 1910-1916.
    [9]Lu J G, Zheng Y F, Cheng MD. Wetting mechanism in mass transfer process of hydrophobic membrane gas absorption [J]. Journal of Membrane Science,2008,308:180-190.
    [10]Richard W B. Membrane technology and applications [M]. McGraw-Hill:New York,2000, 1-25.
    [11]Lee Y, Noble R D, Yeom B Y, et al. Analysis of CO2 removal by hollow fiber membrane contactors [J]. Journal of Membrane Science,2001,194(1):57-67.
    [12]Feron P H, Jansen A E. CO2 separation with polyolefin membrane contactors and dedicated absorption liquids:performances and prospects [J]. Separation and Purification Technology,2002, 27(3):231-242.
    [13]Ghosh A C, Borthakur S, Dutta N N. Absorption of carbon monoxide in hollow fiber membranes [J]. Journal of Membrane Science,1994,96(3):183-192.
    [14]Karoor S, Sirkar K K. Gas absorption studies in microporous hollow fiber membrane mudules [J]. Ind. Eng. Chem. Res,1993,32:674-684.
    [15]Kreulen H, Smolders C A, Versteeg G F, et al. Determination of mass transfer rates in wetted and non-wetted microporous membranes [J]. Chemical Engineering Science,1993,48(11):2093-2102.
    [16]Gabelman A, Hwang S T. Hollow fiber membrane contactors [J]. Journal of Membrane Science, 1999,159:61-106.
    [17]Sirkar K K. Membranes, Phase Interfaces, and Separations:Novel Techniques and Membraness-An Overview [J]. Ind. Eng. Chem. Res.2008,47,5250-5266.
    [18]Rajabzadeh S, Yoshimoto S, Teramoto M, Al-Marzouqi M, Matsuyama H. CO2 absorption by using PVDF hollow fiber membrane contactors with various membrane structures [J]. Separation and Purification Technology,2009,69:210-220.
    [19]Li K, Kong J F, Wang D. Tailor-Made asymmetric PVDF hollow fibres for soluble gas removal [J]. AIChE J,1999,45(6):1211-1219.
    [20]Jansen A E, Feron P H M, Hanemaaijer J H, et al. Apparatus and method forperforming membrane gas/liquid absorption at elevated pressure [P]. WO Pat:51,1998,11-19.
    [21]Li K, Wang D, Koe C C, et al. Use of asymmetric hollow fibre modules for elimination of H2S from gas streams via a membrane absorption method [J]. Chemical Engineering Science,1998, 53(6):1111-1119.
    [22]Heydari G A, Kaghazchi T. CO2/H2 separation by facilitated transport membranes immobilized with aqueous single and mixed amine solutions:Experimental and modeling study [J]. Journal of Membrane Science,2008,325(1):40-49.
    [23]Kim Y S, Yang S M. Absorption of carbon dioxide through hollow fiber membranes using various aqueous absorbents [J]. Separation and Purification Technology,2000,21:101-109.
    [24]Kumar P S, Hogendoorn J A, Feron P H M, et al. New absorption liquids for the removal of CO2 from dilute gas streams using membrane contactors [J]. Chemical Engineering Science,2002, 57(9):1639-1651.
    [25]Nishikawa N,Ishibashi M, Ohta H, Akutsu N, Matsumoto H, Kamata T, Kitamura H. CO2 removal by hollow fiber gas-liquid contactor [J]. Energy Convers. Manag.1995,36:415-418.
    [26]Rangwala H A. Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors [J]. Journal of Membrane Science,1996,112(2):229-240.
    [27]Kumar P S, Hogendoorn J A, Feron P H M, Versteeg G F. Approximate solution to predict the enhancement factor for the reactive absorption of a gas in a liquid flowing through a microporous membrane hollow fiber [J]. Journal of Membrane Science,2003,213:231-245.
    [28]Yeon S H, Sea B, Park Y I, Lee K H. Determination of mass transfer rates in PVDF and PTFE hollow fiber membranes for CO2 absorptions [J]. Sep. Sci. Technol.2003,38:271-293.
    [29]FalkPedersen O, Dannstrom H. Separation of carbon dioxid from offshore gas turbine exhaust [J]. Energy Convers. Manag.1997,38:81-86.
    [30]Kreulen H, Smolders C A, Versteeg G F, van Swaaij W P M. Microporous hollow fibre membrane modules as gas-liquid contactors Part 2. Mass transfer with chemical reaction [J]. Journal of Membrane Science,1993,78:217-238.
    [31]Zhang H Y, Wang R, Liang D T, et al. Modeling and experimental study of CO2 absorption in a hollow fiber membrane contactor [J]. Journal of Membrane Science,2006,279(1-2):301-310.
    [32]陈澍,张卫东,张泽廷等.酸性气体膜吸收过程的数学模型及模拟[J].北京化工大学学报(自然科学版),2005,32(5):14-18.
    [33]Li K, Kong J, Tan X. Design of hollow fibre membrane modules for soluble gas removal [J]. Chemical Engineering Science,2000,55(23):5579-5588.
    [34]Mavroudi M, Kaldis S P, Sakellaropoulos G P. Reduction of CO2 emissions by a membrane contacting process [J]. Fuel,2003,82(15-17):2153-2159.
    [35]Li J L, Chen B H. Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors [J]. Separation and Purification Technology,2005,41:109-122.
    [36]Happl J. Viscons flow relation to arrays of cylinders[J]. AIChE J,1959.5(2):174-177.
    [37]Yeon S H, Lee K S, Sea B, Park Y I, Lee K H. Application of pilot-scale membrane contactor hybrid system for removal of carbon dioxide from flue gas [J]. Journal of Membrane Science, 2005,257:156-160.
    [38]Zhu Z Z, Hao Z L, Shen Z S, Chen J. Modified modeling of the effect of pH and viscosity on the mass transfer in hydrophobic hollow fiber membrane contactors [J]. Journal of Membrane Science, 2005,250:269-276.
    [39]朱振中,郝卓莉,沈志松,陈坚.膜吸收法处理焦化厂废水中的氨及苯酚[J].工业水处理,2006,26(5):50-53.
    [40]王建黎,徐又一,徐志康,徐红.膜接触器从混合气中脱氨性能的研究[J].环境化学,2001,20(6):588-594.
    [41]时钧,袁权,高从增.膜技术手册[M].北京:化学工业出版社,2001.
    [42]Rogers J D, Long R L. Modeling hollow fiber membrane contactors using film theory, Voronoi tessellations, and facilitation factors for systems with interface reactions [J]. Journal of Membrane Science,1997,134(1):1-17.
    [43]Scovazzo P, Hoehn A, Todd P. Membrane porosity and hydrophilic membrane-based dehumidification performance[J]. Journal of Membrane Science,2000,167(2):217-225.
    [44]Iversen S B, Bhatia V K, Dam J K, et al. Characterization of microporous membranes for use in membrane contactors [J]. Journal of Membrane Science,1997,130(1-2):205-217.
    [45]Atchariyawut S, Feng C S, Wang R, et al. Effect of membrane structure on mass-transfer in the membrane gas-liquid contacting process using microporous PVDF hollow fibers [J]. Journal of Membrane Science,2006,285(1-2):272-281.
    [46]陈勇,王从厚,吴鸣.气体膜分离技术与应用[M].北京:化学工业出版社,2004:3540.
    [47]Kreulen H, Smolders C.A, Versteeg G F, et al. Microporous hollow fibre membrane modules as gas-liquid contactors Part 1. Physical mass transfer processes Aspecific application:Mass transfer in highly viscous liquids [J]. Journal of Membrane Science,1993,78:197-216.
    [48]Evren V. A numerical approach to the determination of mass transfer performances through partially wetted microporous membranes:transfer of oxygen to water [J]. Journal of Membrane Science,2000,175(1):97-110.
    [49]Dindore V Y, Brilman D W F, Geuzebroek F H, et al. Membrane-solvent selection for CO2 removal using membrane gas-liquid contactors [J]. Separation and Purification Technology,2004, 40(2):133-145.
    [50]郝欣.孔隙率对多孔膜气体吸收过程传质性能的研究[D].北京:北京化工大学,2004.
    [51]高坚.膜吸收过程传质性能的研究[D].北京:北京化工大学,2006.
    [52]Gao J, Ren Z Q, Zhang Z T, et al. Experimental studies on the influence of porosity on membrane absorption process [J]. Front Chem Eng China,2007, 1(4):385-389.
    [53]Keller K H, Stein T R. A two-dimensional analysis of porous membrane transport [J]. Math. Biosci.1967,1:421-437.
    [54]Malone D M, Anderson J L. Diffusional boundary-layer resistance for membranes with low porosity [J]. AICHE J,1977,23(2):177-184.
    [55]Wakeham W A, Mason E A. Diffusion through Multiperforate Laminae [J]. Industrial & Engineering Chemistry Fundamentals,1979,18(4):301-305.
    [56]陈庚.膜吸收过程传质行为的模型化研究[D].北京:北京化工大学,2009.
    [57]Qi Z. Clssler E L. Hollow fiber gas membranes [J]. AIChE J.1985,31:1548-1553.
    [58]Yang M C. Cussler E L. Designing Hollow-fiber Contactors [J]. AIChE J.1986,32:1910-1916.
    [59]Prasad R, Sirkar K K. Dispersion-free solvent extraction with microporous hollow-fiber modules [J]. AIChE J.1988,34:177-188.
    [60]Dahuron L, Cussler E L. Protein extractions with hollow fibers [J]. AIChE J.1988,34:130-136.
    [61]戴猷元,王秀丽,汪家鼎.膜萃取过程的传质特性研究[J].高校化学工程学报,1991,5(2):87-93.
    [62]Viegas R M C, Luque S, Alvarez J R, et al. Mass transfer correlations in membrane extraction: Analysis of Wilson-plot methodology [J]. Journal of Membrane Science,1998,145(1):129-142.
    [63]Zhu Z Z, Hao Z L, Shen Z S, et al. Modified modeling of the effect of pH and viscosity on the mass transfer in hydrophobic hollow fiber membrane contactors [J]. Journal of Membrane Science, 2005,250(1-2):269-276.
    [64]Wickramasinghe S R, Semmens M J, Cussler E L. Mass transfer in various hollow fiber geometries [J]. Journal of Membrane Science,1992,69(3):235-250.
    [65]Costello M J, Fane A G, Hogan P A, Schofield R W. The effect of shell side hydrodynamics on the performance of axial flow hollow fiber modules [J]. Journal of Membrane Science,1993,80: 1-11.
    [66]Wu J, Chen V. Shell-side mass transfer performance of randomly packed hollow fiber modules [J]. Journal of Membrane Science 2000,172:59-74.
    [67]Gawronski R. Wrzesinska B. Kinetics of solvent extraction in hollow-fiber contactors [J]. Journal of Membrane Science,2000,168:213-222.
    [68]Zheng J M, Xu Z K, Li J K, et al. Influence of random arrangement of hollow fiber membranes on shell side mass transfer performance:a novel model prediction [J]. Journal of Membrane Science, 2004,236(1-2):145-151.
    [69]张卫东,李云峰,戴猷元.中空纤维膜萃取器的子通道模型[J].膜科学与技术,1996.16(1):56-61.
    [70]Chen V, Hlavacek M. Application of Voronoi tessellation for modeling randomly packed hollow fiber bundles [J]. AIChE J,1994,40:606-612.
    [71]Wang Y Y, Chen F, Wang Y, et al. Effect of random packing on shell-side flow and mass transfer in hollow fiber module described by normal distribution function [J]. Journal of Membrane Science,2003,216(1-2):81-93.
    [72]Zheng J, Xu Y, Xu Z. Flow distribution in a randomly packed hollow fiber membrane module [J]. Journal of Membrane Science,2003,211(2):263-269.
    [73]Zheng J, Xu Y Y, Xu Z K. Shell side mass transfer characteristics in a parallel flow hollow fiber membrane module [J]. Separation Science and Technology,2003,38(6):1247-1267.
    [74]Noda I, Dimabo G, Gryte C. Effect of flow maldistribution on hollow fiber dialysis experimental studies [J]. Journal of Membrane Science,1979,5:209-225.
    [75]Seibert A F, Py X, Mshewa M, et al. Hydraulics and mass transfer efficiency of a commerical-scale membrane extractor [J]. Separation Science and Technology,1993,28:343-359.
    [76]Yoshidawa S, Ogawa K, Minegishi S, et al. Experimental study of flow mechanism in a hollow fiber module for plasma separation [J]. J. Chem. Eng. Japan.,1994,27(3):385-390.
    [77]陈华,曹春,徐连禄,等.中空纤维气体膜分离器丝外流速分布及其对分离性能的影响[J].化工学报,1997,48(5):608-615.
    [78]Wang Y, Chen F, Wang Y, Luo G, Dai Y. Effect of random packing on shell-side flow and mass transfer in hollow fiber module described by normal distribution function [J]. Journal of Membrane Science,2003,216:81-93.
    [79]王玉军,骆广生,王岩,等.中空纤维膜萃取器内流动特性[J].清华大学学报,2001,41(12):56-58.
    [80]Bao L, Lipscomb G G. Effect of random fiber packing on the performance of shell-fed hollow-fiber gas separation modules [J]. Desalination,2002,146(1-3):243-248.
    [81]Zheng J M, Dai Z W, Wong F S, et al. Shell side mass transfer in a transverse flow hollow fiber membrane contactor [J]. Journal of Membrane Science,2005,261(1-2):114-120.
    [82]Frank Lipnizki, Robert W. Field. Mass transfer performance for hollow fibre modules with shell-side axial feed flow:using an engineering approach to develop a framework [J]. Journal of Membrane Science,2001,193:195-208.
    [83]Wang K L, Cussler E L. Baffled membrane modules madewith hollow fiber fabric [J]. Journal of Membrane Science,1993,85:265-278.
    [84]Jansen A E, Klaassen R, Feron P H M, et al., Membrane gas absorption processes in environmental applications [J]. Membrane Processes in Separation and Purification,1994, 343-356.
    [85]Dindore V Y, Brilman D W F, Versteeg G F. Modelling of cross-flow membrane contactors:Mass transfer with chemical reactions [J]. Journal of Membrane Science,2005,255(1-2):275-289.
    [86]Dindore V Y, Brilman D W F, Versteeg G F. Modelling of cross-flow membrane contactors: physical mass transfer processes [J]. Journal of Membrane Science,2005,251(1-2):209-222.
    [87]Sengupta A, Peterson P A, Miller B D, et al. Large-scale application of membrane contactors for gas transfer from or to ultrapure water [J]. Separation and Purification Technology,1998,14(1-3): 189-200.
    [88]Wickramasinghe S R, Semmens M J, Cussler E L. Hollow fiber modules made with hollow fiber fabric [J]. Journal of Membrane Science,1993,84:1-14.
    [89]Moulin P, Rouch J C, Serra C, Clifton M J, Aptel P. Mass transfer improvement by secondary flows:Dean vortices in coiled tubular membranes [J]. Journal of Membrane Science,1996,114: 235-244.
    [90]顾维藻,神家锐,马重芳等.强化传热[M].北京:科学出版社,1990.150-154.
    [91]闫建民,袁其朋,马润宇.用缠绕式膜组件强化传递过程的研究[J].膜科学与技术,2001,21(4)):13-17.
    [92]Costello M J, Hogan P A, Fane A G. Mass transfer improvement by secondary flows:Dean vortices in membrane distilllation. In:EurMembrbrane 97', Netherlands:European membrane society, 1997,403-405.
    [93]刘舜华,骆广生,戴猷元.利用螺旋管技术提高中空纤维膜传质性能[J].膜科学与技术,2001,21(4):9-12.
    [94]Liu S H, Luo G S, Wang Y, Wang Y J. Preparation of coiled hollow-fiber membrane and masstransfer performance in membrane extraction [J]. Journal of Membrane Science,2003,215: 203-211.
    [95]Schanbel S, Moulin P, Nguyen Q T, et al. Removal of volatile organic components (VOCs) from water by pervaporation:separation improvement by Dean vortices [J]. Journal of Membrane Science,1998,142:129-141.
    [96]张卫东,朱慎林,骆广生,等.中空纤维封闭液膜技术的传质强化研究[J].膜科学与技术,1998,18(3):53-57.
    [97]Ghosh R. Enhancement of membrane permeability by gas-sparging in submerged hollow fibre ultrafiltration of macromolecular solutions:Role of module design [J]. Journal of Membrane Science.2006,274:73-82.
    [98]Lu Y, Ding Z W, Liu L Y, Wang Z J, Ma R Y. The influence of bubble characteristics on the performance of submerged hollow fiber membrane module used in microfiltration [J]. Separation and Purification Technology.2008,61:89-95.
    [99]Maier U, Buchs J. Characterisation of the gas-liquid mass transfer in shaking bioreactors [J]. Biochemical Engineering Journal.2001,7:99-106.
    [100]Maier U, Losen M, Buchs J. Advances in understanding and modeling the gas-liquid mass transfer in shake flasks [J]. Biochemical Engineering Journal.2004,17:155-167.
    [101]Mrotzek C, Anderlei T, Henzler H-J, Biichs J. Mass transfer resistance of sterile plugs in shaking bioreactors [J]. Biochemical Engineering Journal.2001,7:107-112.
    [102]Ellenberger J, van Baten J M, Krishna R. Intensification of bubble columns by vibration excitement [J]. Catalysis Today.2003,79-80:181-188.
    [103]Ellenberger J, Krishna R. Levitation of air bubbles in liquid under lowfrequency vibration excitement [J]. Chemical Engineering Science.2007,62:5669-5673.
    [104]Van Suijdam J C, Kossen N W F, Joha A C. Model for oxygen transfer in a shake flask [J]. Biotechnol. Bioeng.1978,20:1695-1709.
    [105]Veljkovic V, Nikolic S, Lazic M, Engeler C. Oxygen transfer in flasks shaken on orbital shakers [J]. Hem. Ind.1995,49 (6):265-272.
    [106]冯若,李化茂.声化学及应用[M].合肥:安徽科学技术出版社,1992.
    [107]Thompson L H, Doraiswamy L K. Sonochemistry:science and engineering [J]. Ind. Eng. Chem. Res.1999,38:1215-1249.
    [108]Simon A, Penpenic L, Gondrexon N, et al. A comparative study between classical stirred and ultrasonically-assisted dead-end ultrafiltration [J]. Ultrason. Sonochem.2000,7:183-186.
    [109]Kobayashi T, Chai X, Fujii N. Ultrasound enhanced cross-flow membrane filtration [J]. Separation and Purification Technology.1999,17, (1):31-40.
    [110]Liu L Y, Ding Z W, Chang L J, Ma R Y, Yang Z R. Ultrasonic enhancement of membrane-based deoxygenation and simultaneous influence on polymeric hollow fiber membrane [J]. Separation and Purification Technology,2007,56:133-142.
    [111]薛娟琴,兰新哲,王召启,孟令嫒.烟气膜吸收法脱除SO2的超声波强化处理[J].化工学报,2007,58(3):750-754.
    [112]Beenackers A A C M, van Swaaij W P M. Mass transfer in gas-liquid slurry reactors [J]. Chemical Engineering Science.1993,48:3109-3139.
    [113]Zhang J M, Duan Z Y, Xu C J, Zhou M. Solid effects on gas-liquid mass transfer in catalytic slurry system of isobutene hydration over fine ion exchange resin particles [J]. Chemical Engineering Journal.2008,136:276-281.
    [114]Tinge J T, Drinkenburg A A H. The enhancement of the physical absorption of gases in aqueous activated carbon slurries [J]. Chemical Engineering Science.1995,50:937-942.
    [115]Sharma M M, Mashelkar R A. Absorption with reaction in bubble columns [J]. Institute of Chemical Engineers Symposium Series.1968,28:10-21.
    [116]Dagaonkar M V, Heeres H J, Beenackers A A C M, Pangarkar V G The application of fine TiO2 particles for enhanced gas absorption [J]. Chemical Engineering Journal.2003,92:151-159.
    [117]Ozkan O, Calimli A, Berber R, Oguz H. Effect of inert solid particles at low concentrations on gas-liquid mass transfer in mechanically agitated reactors [J]. Chemical Engineering Science. 2000,55:2737-2740.
    [118]Saha A K, Bandhopadhyay S S, Biswas A K. Absorption of carbon dioxide in alkanolamines in the presence of fine activated carbon particles [J]. Canadian Journal of Chemical Engineering. 1992,70:193-196.
    [119]Alper E, Ozturk. Effect of fine solid particles on gas-liquid mass transfer rate in a slurry reactor [J]. Chem. Eng. Commun.1986,46:147-158.
    [120]Kars R L, Best R J, Drinkenburg A A H. The adsorption of propane in slurries of active carbon in water [J]. Chemical Engineering Journal.1979,17:201-210.
    [121]Tinge J T, op't Ende H C, Berendsen H J C, Drinkenburg A A H. The Absorption of propane and ethane in slurries of activated carbon in water Ⅱ[J]. Chemical Engineering Science.1991,46: 343-350.
    [122]Quicker G, Alper E, Deckwer W D. Effect of fine activated carbon particles on the rate of CO2 absorption [J]. AIChE J.1987,33:871-875.
    [123]Quicker G, Alper E, Deckwer W D. Gas absorption rates in a stirred cell with plane interface in the presence of fine particles [J]. Can. J. Chem. Eng.1989,67:32-38.
    [124]Pal S K, Sharma M M, Juvekar V A. Fast reactions in slurry reactors:catalyst particle size smaller than film thickness:oxidation of aqueous sodium sulfide solutions with activated carbon particles as catalyst at elevated temperatures [J]. Chemical Engineering Science.1982,37: 327-336.
    [125]Chandrasekaran K, Sharma M M. Absorption of oxygen in aqueous solutions of sodium sulfide in the presence of activated carbon as catalyst [J]. Chemical Engineering Science.1977,32: 669-671.
    [126]Sada E, Kumazawa H, Lee C H. Chemical absorption in a bubble column Loading concentrated slurry [J]. Chemical Engineering Science.1983,38:2047-2051.
    [127]Lee Y Y, Tsao G T. Oxygen absorption into glucose solution [J]. Chemical Engineering Science. 1972,27:1601-1608.
    [128]成弘,周明,张缨,许春建,余国琮.吸附剂细粉增强气液两相传质(Ⅱ)实验[J].化工学报.1999,50:772-777.
    [129]Robinson C W, Wilke C R. Simultaneous measurements of interfacial area and mass transfer coefficients for a well-mixed gas dispersion in aqueous electrolytic solutions [J]. AIChE J.1974, 20:285-294.
    [130]Alper E, Whichtendahl B, Deckwer W D. Gas absorption mechanism in catalytic slurry reactors [J]. Chemical Engineering Science.1980,35:217-222.
    [131]Ruthiya K C, Kuster B F M, Schouten J C. Gas-liquid mass transfer enhancement in a surface aeration stirred slurry reactor [J]. Canadian Journal of Chemical Engineering.2003,81:632-639.
    [132]Ruthiya K C, van der Schaaf J, Kuster B F M, Schouten J C. Mechanisms of Physical and Reaction Enhancement of Mass Rransfer in a Gas Inducing Stirred Slurry Reactor [J]. Chemical Engineering Journal.2003,96:55-69.
    [133]Lu J G, Zheng Y F, Cheng M D, Wang L J. Effects of activators on mass-transfer enhancement in a hollow fiber contactor using activated alkanolamine solution [J]. Journal of Membrane Science. 2007,289:138-149.
    [134]Wang R, Li D F, Liang D T. Modeling of CO2 capture by three typical amine solutions in hollow fiber membrane contactors [J]. Chemical Engineering and Processing,2004,43(7):849-856.
    [135]Zhang W D, Chen G, Sun W, Li J. Effect of Membrane Structure Characteristics on Mass Transfer in Membrane Absorption Process [J]. Sep. Sci.& Tech.,2010,45:1-12.
    [136]Patankar. Numerical Heat Transfer and Fluid Flow [M]. Hemisphere Publishing Corporation, 1980.
    [137]Versteeg H K, Malalasekera W. An introduction to computational fluid dynamics The finite volume method [M]. Longman Scientific&Technical:New York,1995:85-206.
    [138]王正烈,周亚平,李松林等.物理化学[M].北京:高等教育出版社,2001.
    [139]徐士良.FORTRAN常用算法程序集第二版[M].北京:清华大学出版社,1997.
    [140]Danckwerts P. V. Gas-Liquid Reactions [M]. McGraw-Hill, New York, USA,1970.
    [141]Vinke H., Hamersma P. J., and Fortuin J. M. H. Enhancement of gas absorption rate in agitated slurry reactors by gas-absorbing particles adhering to gas bubbles [J]. Chem. Eng. Sci.,1993,48: 2197-2210.
    [142]Gary D C. Analytical chemistry [M]. New YorK:Wiley,2004.
    [143]Wickramasinghe S R, Semmens M J, Cussler E L. Better hollow fiber contactors [J]. Journal of Membrane Science.1991,62:371-388.
    [144]deMontigny D, Tontiwachwuthikul P, Chakma A. Using polypropylene and polytetrafluoroethy-lene membranes in a membrane contactor for CO2 absorption [J]. Journal of Membrane Science, 2006,277:99-107.