小鼠牙胚发育早期间充质细胞的蛋白质组研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙胚发育早期是牙齿定位与定型的重要阶段。大量研究表明,牙胚发育的起动期决定牙胚形成的位置;帽状期决定牙胚发育的类型,多种生物因子在上皮-间充质间发挥着重要的调控作用。蛋白质组学是一门主要研究蛋白质组的组成成份及生物学功能的新兴学科,从而可以在蛋白水平综合分析影响牙齿发育的调控机制。因此,本实验通过激光捕获显微分离技术分别获取小鼠牙胚发育早期(起动期E11.5天和帽状期E15.5天)的下颌磨牙间充质细胞,采用双向电泳、多级质谱和数据库查询的蛋白质组研究方案,分析小鼠磨牙牙胚发育早期间充质细胞所含蛋白质在数量、种类上的变化,进一步探讨影响牙齿发育的调控因素,以期寻找和发现新的关键因子,从而为牙胚发育研究提供一种新的思路。
     目的:1.熟练掌握小鼠牙胚发育起始期、蕾状期、帽状期、钟状期冰冻切片的制备方法;2.熟练掌握激光捕获显微切割技术,并捕获足够量的细胞样本(E11.5天及E15.5天下颌磨牙间充质细胞);3.获得两组细胞的蛋白质双向凝胶电泳图谱,鉴定差异蛋白点,探讨两个时期影响牙胚发育的分子机制。
     方法:1.获得准确发育天数的C57胎鼠,制备小鼠下颌磨牙牙胚发育各期的冰冻切片;2.使用PixCell IIe激光捕获显微切割系统对冰冻切片上发育各期的间充质细胞进行分离,收集细胞样本至需要量;3.采用第一向等电聚焦电泳、第二向十二烷基硫酸钠聚丙烯酰胺凝胶电泳、硝酸银染色获得两组细胞样本的双向电泳图,图像分析软件比较差异蛋白点4.利用高效液相色谱-串联质谱仪获得差异蛋白点的一级、二级质谱图,以及蛋白氨基酸序列,通过蛋白质组数据库检索并结合差异蛋白质点的分子信息进行综合分析,鉴定差异蛋白。
     结果:1.获得E11.5、12.5、13.5、14.5、15.5、16.5、17.5天小鼠下颌磨牙牙胚冰冻切片;2.经激光捕获得到需要量的两组(E11.5牙胚起动期、E15.5牙胚帽状期)下颌磨牙间充质细胞;3.两组细胞双向电泳图获得20个差异蛋白点,其中15个点得到鉴定。质谱结果显示:E11.5组细胞新增蛋白为膜联蛋白A2、肌动蛋白β、丙酮酸激酶M;E11.5组细胞上调蛋白为ATP合成酶d亚单位、ATP合成酶α亚单位、转酮酶、β烯醇酶;E15.5组细胞新增蛋白为真核翻译延长因子2、乳酸脱氢酶B、M-Septin;E15.5组细胞上调蛋白为真核翻译延长因子1γ、核内核糖核蛋白H2、核内核糖核蛋白X、乳酸脱氢酶A、丝氨酸/苏氨酸蛋白磷酸酯酶1γ。
     结论:1.通过阴栓观察及胎鼠身长测量相结合的方法,提高了胎龄判断的准确性和小鼠的利用率;2.经过对发育各阶段胎鼠头部进行连续冰冻切片,明确下颌磨牙牙胚的具体位置,大大提高了获得牙胚冰冻切片的效率;3.通过激光捕获显微切割技术成功获得目的细胞;4.通过差异蛋白点的鉴定及分析,获得的蛋白主要为细胞糖代谢及能量代谢相关蛋白酶、参与蛋白翻译合成、以及参与某些信号传导途径的信号分子等,这些蛋白分别在小鼠下颌磨牙牙胚发育起动期和帽状期间充质细胞中存在特异性表达或表达上调,为进一步研究牙胚早期发育的调控机制提供了新的线索。
Early tooth development is an important stage determining tooth region and type. Many researches indicated that initiation stage of tooth development determined the tooth region and cap stage determined the tooth type. Signals regulating between epithelial and mesenchymal tissues have made an very important function during the two stages. Proteomics is a new science that investigates the protein composition and function of proteome.The regulating mechanisms of tooth development can be studied on the level of proteome. Therefore in the present study, we captured the mesenchymal cells of mouse lower molar germ at E11.5d (initiantion stage) and E15.5d (cap stage) by laser capture microdissection (LCM). The differentially expressed proteins of the mesenchymal cells at the two stages above-mentioned were analyzed on quantity and quality by two-dimensional gel electrophoresis, mass spectrometry, data base querying technology. The aim of our study was to further investigate the regulating factors, even to find some new signals expressed in the tooth germ and to provide a new method on the mechanisms research of tooth development.
     Objectives: 1. To grasp practisedly the preparative method of the frozen sections of mouse germs at different stages(initiation, bud, cap, bell stage) during tooth development; 2. To grasp practisedly the techniqu of LCM and obtain the sufficient amount of cell samples; 3. To establish the atlas of protein two-dimensional gel electrophoresis of the mesenchymal cells in the mouse lower molar germs at the stages of E11.5d and E15.5d. To identify the differently expressed proteins and investigate the molecular mechanisms of tooth development during the two stages above-mentioned.
     Methods: 1. C57 pregnant mice that had accurate fetal ages were obtained and the frozen sections of mouse germs at different stages during tooth development were prepared; 2. The mesenchymal cells on the frozen sections by using PixCell IIe were obtained and sufficient cells of each sample were collected; 3. The atlas of protein two-dimensional gel electrophoresis (2-DE) of samples were obtained by isoelectric focusing electrophoresis (IEF), sodium dodecyl sulfate polyacrylamide gel electropheresis (SDS-PAGE) and AgNO3 staining. The differently expressed proteins were analyzied by image analysis software; 4. First, second class mass-spectrograms and amino acid sequences of proteins were obtained by high performance liquid chromatogram- mass spectrum/ mass spectrum (HPLC-MS/MS). The differently expressed proteins were identifid by protein database querying and protein information analysis.
     Results: 1. The frozen sections of mouse lower molar germs at E11.5、12.5、13.5、14.5、15.5、16.5、17.5d during tooth development were prepared; 2. We have obtained sufficent mesenchymal cells of mouse lower molar germs at E11.5d and 15.5d; 3. We have obtained 20 differently expressed proteins on the atlas of 2-DE and 15 prteins were identified. Annexin A2,β-actin, pyruvate kinase M were expressed specificly in the sample of E11.5d; ATP synthase subunit d, ATP synthase alpha subunit, transketolase, beta-enolase were up-regulatedly expressed in the sample of E11.5d; Eukaryotic translation elongation factor 2, lactate dehydrogenase B, M-Septin(also named Septin 4)were expressed specificly in the sample of E15.5d;Eukaryotic translation elongation factor 1gamma, heterogeneous nuclear ribonucleoprotein H2, heterogeneous nuclear ribonucleoprotein X, lactate dehydrogenase A, serine/threonine-protein phosphatase 1gamma were up-regulatedly expressed in the sample of E15.5d.
     Conclusions: 1. The fetal age could be judged more accuratly and the use ratio of mice could be increased by the combination of observing pessulum and measuring fetal mouse body length; 2. The regoin of lower molar germ in the head had been knowed by using the method of cutting the frozen head embed of different fetal age mice one by one section. Then the efficiency of obtaining the frozen sections of tooth germs was markedly increased; 3. We have obtained the mesenchymal cells from the frozen sections successfully by using LCM;4. Using proteomics methods we have obtained some defferently expressed proteins between two samples.By identifying , the proteins mainly comprised some enzymes correlated with glycometabolism and energy metabolism in the cells, some factors related with the protein translation and some molecules correlated with some signal conduction pathways. They were specificly or up-regulatedly expressed in the mesenchymal cells of mouse lower molar germs at initiation stage and cap stage respectively, which provided a new clue for the research on the regulating mechanisms of tooth development during early stages.
引文
1. Chuong CM. Molecular basis of epithelial appendage mor-phogenesis RG. Landes Company, 1998.157.
    2. Thesleff I, Aberg T. Molecular regulation of tooth development. Bone, 1999, 25(1): 123.
    3. Thesleff I, Nieminen P. Toothmorphogenesis and cell differentiation. Curr Opin Cell Biol, 1996, 8: 844
    4. Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev. 2000; 92(1):19-29.
    5. Anderson DJ. Cellular and molecular biology of neural crest cell lineage determination. Trends Genet, 1997, 13(7):276 – 280.
    6. Artinger KB, Chitnis AB, Mercola M, Driever W. Zebrafish narrowminded suggests a genetic link between formation of neural crest and primary sensory neurons. Development, 1999,126(18):3969-3979
    7. Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development, 2000, 127(5):1671-1679.
    8. Mcmahon AP, Joyner AL, Bradley A. The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Ce11, 1992, 69(3):581-595.
    9. Imai H, Osumi-Yamashita N, Ninomiya Y. Contribution of early-emigrating midbrain crest cells to the dental mesenchyme of mandibular molar teeth in rat embryos. Dev boil, 1996, 176(6):151-165.
    10. Aberg T, Wozney J, Thesleff I. Expression patterns of bone morphogeneticproteins (Bmps) in the developing mouse tooth suggest roles in morphogenesis and cell differentiation. Dev Dyn, 1997, 210(12):383-396.
    11. Thesleff I.Genetic basis of tooth development and dental defects. Acta Odontol Scand. 2000, 58(10):191-194.
    12. Arias AM. Epithelial mesenchymal interactions in cancer and development. Cell, 2001, 105 (2):425-431.
    13. Cobourne MT, Hardcastle Z, Sharpe PT. Sonic hedgehog regulates epithelial proliferation and cell survival in the developing tooth germ. J Dent Res, 2001, 80(11):1974-1979.
    14. Sarkar L, Cobourne M, Naylor S. Wnt/Shh interactions regulate ectodermal boundary formation during mammalian tooth development. PNAS, 2000, 97 (9):4520-4524.
    15. Lidral AC, Reising BC. The role of MSX1 in human tooth agenesis. J Dent Res, 2002, 81 (4): 274-278.
    16. Thomas BL, Tucker AS, Qiu MS. Role of Dlx-1 and Dlx-2 genes in patterning of the murine dentition. Development, 1997, 124(22):4811-4818.
    17. 金岩主编.《口腔颌面组织胚胎学》, 陕西科技出版社, 第 123-124 页.
    18. Bronner-Fraser M. Origins and developmental potential of the neural crest. Exp Cell Rea, 1995, 2(3):405 -417.
    19. Wang XP, Suomalainen M, Jorgez CJ, Matzuk MM, Werner S, Thesleff I. Follistatin regulates enamel patterning in mouse incisors by asymmetrically inhibiting BMP signaling and ameloblast differentiation. Dev Cell. 2004 Nov; 7(5):719-30.
    20. Takeda M, Otsuka F, Otani H, Inagaki K, Miyoshi T, Suzuki J, Mimura Y, Ogura T, Makino H. Effects of peroxisome proliferator-activated receptor activation on gonadotropin transcription and cell mitosis induced by bone morphogenetic proteins in mouse gonadotrope LbetaT2 cells. J Endocrinol. 2007 Jul; 194(1):87-99.
    21. Zhu Q, Fan M, Bian Z. In situ hybridization analysis of transforming growthfactor-beta 1 RNA expression during mouse tooth development. Chin J Dent Rea, 2000, 3(2):21-25.
    22. Begue-Kirn C, Ruch JV, Ridall AL. Comparative analysis of mouse DSP and DPP expression in odontoblasts, preameloblasts, and experimentally induced odontoblast-like cells.Eur J Oral Sci, 1998, 106 (1) :254-259.
    23. Tziafas D, Papadimitriou S. Role of exogenous TGF-beta in induction of reparative dentinogenesis in vivo. Eur J Oral Sci, 1998, 106(1):192-196.
    24. Hu CC, Zhang C, Qian Q. Reparative dentin formation in rat molars after direct pulp capping with growth factors. J Endod. 1998, 24(11):744-751.
    25. Tanikawa Y, Bawden JM. The immunohistochemical localization of phospholipase Cgamma and the epidermal growth-factor, platelet-derived growth-factor and fibroblast growth-factor receptors in the cells of the rat molar enamel organ during early amelogenesis. Arch Oxsl Biol, 1999, 44(9):771-780.
    26. Gospodarowicz D. Purification of a fibroblast growth factor from bovine pituitary. J Biol Chem. 1975; 250(7):2515-2520.
    27. Zhang N, Deuel TF. Pleiotrophin and midkine, a family of mitogenic and angiogenic heparin-binding growth and differentiation factors. Curr Opin Hematol. 1999; 6 (1):44-50.
    28. 孙铭. FGFS/FGFRS 信号传递的研究进展. 国外医学-分子生物学分册, 2000; 22(3):142-145.
    29. Thesleff I. Genetic basis of tooth development and dental defects. Acta Odontol Scand 2000; 58(5):191-194.
    30. Neubuser A, Koseki H, Balling R. Protein, Nucleotide Characterization and developmental expression of Pax9, a paired-box-containing gene related to Pax1. Dev Biol. 1995; 170(2):701-716.
    31. Tucker AS, Matthews KL, Sharpe P. Transformation of tooth type induced by inhibition of BMP signaling. Science. 1998; 82:1136-1138.
    32. Kettunen P, Laurikkala J, Itaranta P, et al. Associations of FGF-3 andFGF-10 with signaling networks regulating tooth morphogenesis. Dev Dyn. 2000; 219(3):322-332.
    33. Sahlberg C, Aukhil I, Thesleff I. Tenascin-C in developing mouse teeth: expression of splice variants and stimulation by TGFbeta and FGF. Eur J Oral Sci. 2001; 109(2):114-124.
    34. Bei M, Maas R. FGFs and BMP4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development. Development. 1998; 125 (21): 4325-4333.
    35. Coin R, Lesot H, Vonesch JL. Aspects of cell proliferation kinetics of the inner dental epithelium during mouse molar and incisor morphogenesis: a reappraisal of the role of the enamel knot area. Int J Dev Biol. 1999; 43 (3):261-267.
    36. Hammerschmidt M, Brook A, McMahon AP. The world according to hedgehog. Trends Genet, 1997, 13(1):14-21.
    37. Hardcastle Z, Hui CC, Sharpe PT. The Shh signalling pathway in early tooth development. Cell Mol Biol, 1999, 45(5): 567-578.
    38. Dassule HR, Lewis P, Bei M, Maas R, McMahon AP. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development, 2000, l27 (22):4775-4785.
    39. Hardcastle Z, Mo R, Hui CC. The Shh signalling pathway in tooth development: defects in Gli2 and Gli3 mutants. Development, 1998, 125(15):2803-2811.
    40. Jemvall J, Thesleff I. Retune of lost structure in the developmental control of tooth shape.Development, Function and Evolution of Teeth, Cambridge, United Kingdom: Cambridge University press, 2000:13-21.
    41. Koyama E, Yamaai T, lseki S. Polarizing activity, Sonic hedgehog, and toothdevelopment in embryonic and postnatal mouse. Dev Dyn, 1996, 206(1):59-72.
    42. Martín A, Unda FJ, Bègue-Kirn C, Ruch JV, Aréchaga J. Effects of aFGF, bFGF, TGFbeta1 and IGF-I on odontoblast differentiation in vitro. Eur J Oral Sci, 1998, 106(Suppl1):1l7-121.
    43. 唐志英.Wnt 信号通道的分子学机制及在牙胚发育中的调控作用.国外医学口腔医学分册, 2002, 29(5):265-267.
    44. Sarkar L, Sharpe PT. Expression of Wnt signalling Pathway genes during tooth development. Mech Dev, 1999, 85(l-2):197-200.
    45. Dassule HR,McMahon AP. Analysis of epithelial-mesenchymal interactions in the initial morphogenesis of the mammalian tooth. Dev Biol, 1998, 202(2):215-227.
    46. Kadiri A, Kuchler-Rope S, Haikel YL Immunolocalization of BMP-2/-4, and Wntl0b in the Developing Mouse First Lower Molar. Histochem Cytochem, 2004, 5 2(1):103-112.
    47. AndI T, Reddy ST, Gaddapara Tl. WNT signals are required or the initiation of hair follicle development. Dev. Cell, 2002, 16: (2)643-653.
    48. Campbell K, Flavin N, Ivens A. The human homeobox gene HOX7 maps to
    4p16.1 and is deleted in Wolf-Hirschhorn syndrome patients. Am J HumGenet, 1989, 45 (suppl.): A179.
    49. Satokata I, Maas R. Msx-1 deficient mice exhibit cleftpalate and abnormalities of craniofacial and tooth development. Nat Genet, 1994, 6(2): 348-350.
    50. Chen Y, Bei M, Woo I. Msx-1 controls inductivesignalling in mammalian tooth morphogenesis [J]. Development, 1996, 122(1): 3035-3039.
    51. Vastardis H, Karimbux N, Guthua SW. A human Msx-1 homeodomainmissense mutation causes selectivetooth agenesis. Nat Genet, 1996, 13(1): 417-421.
    52. 郑梁, 吴补领, 轩昆. 小鼠牙胚发育帽状期 Msx2、BMP-4 基因的表达和意义. 牙体牙髓牙周病学杂志, 2001,11(4):222-226.
    53. 轩昆, 杨富生. Msx-2 mRAN 在犬恒牙牙根发育过程中的表达及意义牙体牙髓牙周病学杂志,2001,11(3):140-145.
    54. Tucker AS, Sharpe PT. Molecular genetics of tooth morphogenes and patterning: the right shape in the right place. Dent Res, 1999, 78(4): 826-832.
    55. Vaahtokari A, AbergT, Jernvall J. The enamel knot as a signling center in the developing mouse tooth. Mech Dev, 1996, 54(3): 396-411.
    56. Carroll TJ, Vize PD. Synergism between Pax-8 and lim-1 in embryonic kidney development. Dev Biol. 1999. 214(1):46 -59.
    57. Furumoto TA, Miura N, Akassaka T. Notochord-dependent expression of MFH1 and PAX1 cooperates to maintain the proliferation of sclerotome cells during the vertebral column development. Dev Biol, 1999, 210(1):15-29.
    58. Neubuser A, Peters H, Balling R. Notochord-dependent expression of MFH1 and PAX1 cooperates to maintain the proliferation of sclerotome cells during the vertebral column development. Cell, 1997, 90(2):247-255.
    59. Chen Y, Zhang Y, Jiang TX. Conservation of early odontogenic signaling pathways in Aves. Prac Natl Acad Sci USA. 2000, 97(18):10044-10049.
    60. Peters H, Neubuser A,Kratochwil K. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev, 1998, 12(17):2735-2747.
    61. Peters H, Balling R. Teeth. Where and how to make them. Trends Genet,1999, 15 (2):59-65.
    62. Stackton DW,Das P, Goldenberg M. Mutation of PAX9 is associated with oligodontia. Nature Genetics, 2000, 24(1):18-19.
    63. Thomas BI, Tucker AB, Ferguson C. Molecular control of odontogenic patternming: positional dependent initiation and morphogenesis. Eur Joral Sci, 1998, 106 (Suppl 1):44-47.
    64. Mitsisdis TA, Mucchielli ML, Raffo S. Expression of the transcription factors 0 tlx 2, Bar1 and Sox9 during mouse odontogenesia. Eur Joral Sci, 1998, 106 (Suppl 1):112-116.
    65. Aberg T, Wang X-F, Kim JH. Runx2 mediates FCF signaling from epithelium to mesenchyme during tooth morphogenesis. Dev-Biol, 2004, 270(1): 76-93.
    66. 轩东英, 金岩, 金明, 轩昆, 邢向辉, 郑梁, 赵征. 新基因 mcpr1 在小鼠牙 胚 发 育 中 的 时 空 表 达 和 意 义 . 实 用 口 腔 医 学 杂 志 , 2005, 21(6):730-732.
    67. MacDougall M, SimmonsT, Luan X. Dentin phosphoprotein and dentin sialoproprein are cleavage products expressed from a singale transcript codededby a gene on humen chromosome 4. J Biol Chem, 1997, 272(3):83-92.
    68. Sharpe PT. Neural crest and tooth morphogenesis. Adv Dent Res, 2001, 15(l):4-7.
    69. Ferguson CA, Tucker AS, Sharpe PT. Temporospatial cell interactions regulating mandibular and maxillary arch patterning. Development, 2000,127 (2):403-412.
    70. Couly G, Creuzet S, Bennaceur S. Interactions between Hox-negative cephalic neural crest cells and the foregut endoderm in patterning the facialskeleton in the vertebrate head. Development, 2002, 129(5):1061-1073.
    71. Emmert-Buck M R, Bonner R F, Smith P D. Laser capture microdissection. Science. 1996, 274(5289):998-1001.
    72. Bonner RF, Emmert-Buck M, Cole K, Pohida T, Chuaqui R, Goldstein S, Liotta LA. Laser capture microdissection: molecular analysis of tissue. Science. 1997, 278(5342):1481-1483.
    73. Simone NL, Bonner RF, Gillespie JW, Emmert-Buck MR, Liotta LA. Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet. 1998, 14(7):272-276.
    74. Schütze K, Lahr G. Identification of expressed genes by laser-mediated manipulation of single cells. Nat Biotechnol. 1998, 16(8):737-742.
    75. Suarez-Quian CA, Goldstein SR, Pohida T, Smith PD, Peterson JI, Wellner E, Ghany M, Bonner RF. Laser capture microdissection of single cells from complex tissues. Biotechniques. 1999, 26(2):328-335.
    76. Bornstein SR, Willenberg HS, Scherbaum WA. Progress in molecular medicine: "Laser capture microdissection". Med Klin.1998, 3(12):739-743.
    77. Leethanakul C, Patel V, Gillespie J, Shillitoe E, Kellman RM. Gene expression profiles in squamous cell carcinomas of the oral cavity: use of laser capture microdissection for the construction and analysis of stage-specific cDNA libraries. Oral Oncol. 2000, 36(5):474-483.
    78. St John MA, Li Y, Zhou X, Denny P, Ho CM. Interleukin 6 and interleukin 8 as potential biomarkers for oral cavity and oropharyngeal squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2004, 30(8):929-935.
    79. Hoffmann M, Olson K, Cavender A, Pasqualini R, Gaikwad J, D'Souza RN. Gene expression in a pure population of odontoblasts isolated by laser-capture microdissection. J Dent Res. 2001, 80(11):1963-1967.
    80. Yao S, Ring S, Henk WG, Wise GE. In vivo expression of RANKL in the rat dental follicle as determined by laser capture microdissection. Arch Oral Biol. 2004, 49(6):451-456.
    81. Wise GE, Yao S. Regional differences of expression of bone morphogenetic protein-2 and RANKL in the rat dental follicle. Eur J Oral Sci. 2006, 114(6):512-516.
    82. Wilikins MR, Pasquali C, Appel RD. From Proteins to Proteomes: Large Scale Protein Identification by Two-Dimensional Electrophoresis and Amino Acid Analysis. Biotechnology, 1996,14(1):61-65.
    83. Jurir, matthia M. What does it mean to identify a protein in proteomics.Trends in Biochemical Sciences, 2002, 27(2):74-79.
    84. Petricoin E F, Ardekani A M, Hitt B A. Use of proteomic patterns in serum to identify ovarian cancer. Lancet, 2002, 359(5):572-577.
    85. Jones M B, Krutzsch H, ShuH. Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics, 2002, 2(1): 76-84. 
    86. Kong F,Nicole white C,Xiao X. Using proteomic approaches to identify new biomarkers for detection and monitoring of ovarian cancer. Gynecol Oncol, 2006, 100(2): 247-53.
    87. 李丽莉, 温博海, 王恒晖. 蛋白质组技术进展, 生物技术通讯,2006, 4(17): 662-668.
    88. Drews O, Reil G, Parlar H. Setting up standards and a reference map for the alkaline proteome of the Gram-positive bacterium Lactococcus Lactis. Proteomics, 2004, 4(5): 1239.
    89. Field S. Proteomics in genomeland. Science, 2001; 29(11):1219-1223.
    90. Opiteck GJ, Rvmirez SM, Jorgenson JW. Comprehensive two-dimensional high-performance liquid chromatography for the isolation of overexpressed proteins and proteome mapping. Anal Biochem. 1998, 258(2):349-361.
    91. Mauno V. Bioinformatics in proteomics. Biomolecular Engineering, 2001, 18(2):241-246.
    92. Wright JT, Hart TC. The genome projects: implications for denial practice and education. Dent Educ, 2002, 66(5): 659-671.
    93. Knezevic V, Leethanakul C, Bichsel VE. Profiling of the cancer microenvironment by antibody arrays. Proteomics, 2001, 1(10): 1271-1278.
    94. Patel V, Leethanakul C, Gutkind JS. New approaches to the understanding of the molecular basis of oral cancer. Grit Rev Oral Biol Med, 2001, 12(1): 55-63.
    95. Hubbard MJ, Kon JC. Proteomic analysis of dental tissues. Chromatogr B Analyt Technol Biomed Life Sci, 2002, 771(1-2):211-220.
    96. Hu S, Xie Y, Ramachandran P, Ogorzalek Loo RR, Li Y, Loo JA, Wong DT. Large-scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and two-dimensional gel electrophoresis-mass spectrometry. TProteomics, 2005; 5(6):1714-28.
    97. Monk BC, Mason AB, Kardos TB, Perlin DS. Targeting the fungal plasma membrane proton pump. Acta Biochim Pol. 1995; 42(4):481-496.
    98. Pardo M, Ward M, Pitarch A, Sánchez M, Nombela C, Blackstock W, Gil C. Cross-species identification of novel Candida albicans immunogenic proteins by combination of two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Electrophoresis. 2000; 21(13):2651-2659.
    99. Marichal P, Vanden Bossche H, Odds FC, Nobels G, Warnock DW, Timmerman V, Van Broeckhoven C, Fay S, Mose-Larsen P. Molecular biological characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother,1997, 41(10):2229-2237.
    100.Seipelt J, Liebig HD, Sommergruber W, Gerner C, Kuechler E. 2A proteinase of human rhinovirus cleaves cytokeratin 8 in infected HeLa cells. J Biol Chem. 2000 Jun 30; 275(26):20084-20089.
    101.Triantafilou K, Triantafilou M. A biochemical approach reveals cell-surface molecules utilised by Picornaviridae: Human Parechovirus 1 and Echovirus 1. J Cell Biochem, 2001; 80(3):373-381.
    102.Rosengarth A, Gerke V, Lueche H. X-ray structure of full-length annexin 1 and implications for membrane aggregation. J Mol Biol, 2001, 306(3): 489~498.
    103.Bitto E, Li M, Tikhonov A M. Mechanism of annexin1-mediated membranes aggregation. Biochemistry, 2000, 39(44):13469~13477.
    104.Alldridge LC, Harris H J, Plevin R. The annexin protein lipocortin 1 regulates the MAPK/ERK pathway. J Biol Chem, 1999, 274(53): 37620~37628.
    105.Mckanna JA, Cohen S. The EF receptor kinase substrate P35 in the noor plate of the embryonic rat CNS. Science, 1989, 243(4897):1477-1479.
    106.Chepenik KP, Shipman AP, Ahn N. Developmental regulation of vatious annexins in the embrvonic palate of the monse dexamethasone affects expression of annexin-1. Craniofac Genet Der Biol, 1995, 15(4):171-181.
    107.Levsky, J. M., Shenoy, S. M., Pezo, R. C. & Singer, R. H. Single-cell gene expression profiling. Science, 2002, 297 (8):836-840.
    108.Eigenbrodt E, Basenau D, Holthusen S.Quantification of Tumor Type M2 Pyruvate Kinase (Tu M2-PK) in Human Carcinomas. Anticancer Research, 1997, 17 (10):3153-3156.
    109.Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature, 1990,348(2):125–132.
    110.Merrick WC., Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev. 1992, 56 (6):291–315.
    111.Tas F, Aydiner A, Demir C. Serum lactate dehydrogenase levels at presentation predict outcome of patients with limited-stagesmall-celllung cancer. Am J Clin Oncol, 2001, 24(4):376-385.
    112.Kremer BE, Haytead T, Macaza IG. Mammalian septins regulate microtubulestability through interaction with the microtubule-binding protein MAP4. Mol BioI Cell, 2005, 16(36):4648-4659.
    113.Moser TL. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc. Natl. Acad. Sci, 1999, 96(20):2811-2816.
    114.杨立新, 郁卫东, 陈清轩. 小鼠 2-细胞胚胎ATP合成酶 6 基因特异表达分析及鉴定. 中国生物化学与分子生物学报. 2003, 19(2): 201-204.
    115.Ford LP, Wright WE, Shay JW. A model for heterogeneous nuclear ribonucleoproteins in telomere and telomerase regulation. Oncogene, 2002, 21(4): 580- 583.