人工感染传染性支气管炎病毒鸡气管和肾脏的蛋白质组学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冠状病毒具有广泛的宿主范围,能够导致人和多种动物出现不同程度的呼吸道、肠道和神经系统的功能紊乱症状。2003年春季SARS-CoV的出现及其感染并导致的高死亡率引起了人们对冠状病毒的高度重视。对冠状病毒的致病性以及致病机理的研究是当前研究者关注的热点之一。IBV属于γ冠状病毒,主要在家禽的气管、肾脏、腺胃和生殖道等器官组织的上皮细胞中复制。IBV的传播给全球家禽业带来严重的经济损失。已有的研究证明部分其他冠状病毒的感染能够影响宿主细胞的蛋白表达模式。本研究首次利用蛋白质组学以及相关的分子生物学技术对人工感染IBV鸡胚的气管和肾脏组织的差异表达蛋白质、人工感染不同毒力IBV后不同阶段的鸡气管和肾脏组织的差异表达蛋白质进行了鉴定,并应用生物信息学工具对差异表达蛋白质的分子功能、生物学进程和亚细胞分布进行分类,旨在从蛋白质水平上探索IBV与宿主的相互作用以及IBV的致病机制。
     本研究首先利用双向凝胶电泳(2-DE)结合质谱技术对人工感染IBV H120疫苗株72小时时鸡胚和未感染对照组鸡胚气管和肾脏组织的群体蛋白质表达情况进行了分析。鉴定出了一些有显著差异表达的蛋白质。生物信息学分析表明这些蛋白质大多与细胞骨架组成、钙离子结合、能量代谢、抗氧化、应激反应、以及大分子物质合成有关,其中有些蛋白还具有调节细胞凋亡的特性。应用荧光定量PCR技术对热休克蛋白beta-1、胞外脂肪酸结合蛋白、原肌球蛋白alpha-1、膜联蛋白A5、过氧化物还原酶-1、膜联蛋白A2、烯醇酶-1等11种蛋白的转录水平进行了分析,结果表明这些蛋白基因的mRNA水平变化趋势和2-DE结果基本一致。Western blot分析进一步验证了热休克蛋白beta-1和膜联蛋白A5的表达变化,结果与mRNA表达模式的变化也一致。
     本研究着重应用2-DE和荧光差异显示双向凝胶电泳(2-DIGE)结合质谱技术研究了人工感染IBV强毒株ck/CH/LDL/97I P5和其鸡胚传代致弱毒株ck/CH/LDL/97I P115后不同时间点鸡气管和肾脏组织群体蛋白质的表达改变情况,鉴定出62种差异表达蛋白。生物信息学分析表明大部分差异蛋白与细胞骨架组成、急性期应答、抗氧化、应激应答、能量代谢,大分子物质代谢,信号转导和离子运输有关。用荧光定量PCR技术对热休克蛋白beta-1、膜联蛋白A2、波形蛋白、膜联蛋白A5、锰超氧化物歧化酶、线粒体磷酸烯醇丙酮酸羧基酶等14种差异表达蛋白进行转录水平的分析,其动态变化趋势与蛋白质组学的结果大部分是一致的。用western blot方法对三种差异表达蛋白膜联蛋白A2、膜联蛋白A5和热休克蛋白beta-1从表达水平上进行了验证,其结果与蛋白质组学得到的结果是一致的。实验结果表明,IBV强毒株ck/CH/LDL/97I P_5和鸡胚传代致弱毒株ck/CH/LDL/97I P_(115)感染能够诱导包括细胞骨架组成、抗氧化、应激应答、能量代谢等相关蛋白在内的一些在宿主应答过程中可能起重要作用的关键蛋白产生不同模式的表达变化,而且这种表达变化的差异主要发生在感染的早期阶段。
     本研究首次获得了较为完善的人工感染IBV自然宿主鸡的气管和肾脏组织的差异表达蛋白质数据,为进一步阐释IBV的致病机理,以及筛选到有价值的预防或治疗药物提供了有价值的信息。同时,本研究结果也为SARS-CoV等其他冠状病毒的相关研究提供了参考依据。
Coronaviruses can infect a broad range of host including human and animal, cause respiratory, gastrointestinal, and neurological disorder of varying severity. Since the spring of 2003, Coronaviruses were brought to the centre of attention by the appearance of the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) and caused high mortality. Research on the pathogenesis and pathogenicity of coronaviruses is the current focus of attention. Infectious bronchitis virus (IBV) is belonging to gamma coronavirus, which replicates primarily in a large range of epithelial cells of trachea, kidney, proventriculus, and oviduct of chicken, and probably endemic in all regions with intensive impact on poultry production. Previous studies demonstrated that some other coronaviruses infection have dramatic effects on the patterns of host protein expression. In order to understand the IBV-host interaction and the pathogenesis of IBV, in this study, we for the first time used proteomics techniques and other molecular biological methods to study the global protein expression change profiles of trachea and kidney from chicken embryos following IBV H120 vaccine strain infection in ovo, and the trachea and kidney tissues protein expression changes of chickens during different stages after infection in vivo with highly virulent IBV ck/CH/LDL/97I P5 strain and embryo-passaged, attenuated IBV ck/CH/LDL/97I P115 strain. Gene Ontology annotation analysis of differentially expressed proteins was performed according their molecular function, biological process, and subcellular location. The aim of this study is to investigate the interactions of IBV with its host, and the pathogenesis of IBV at the protein level.
     The changes of protein expression in trachea and kidney of chicken embryo at 72h after infection in ovo with IBV H120 vaccine strain were first analyzed using 2-DE coupled with MALDI-TOF/TOF MS method. Seventeen differentially expressed proteins from tracheal tissues and nineteen differentially expressed proteins from kidney tissues were identified successfully. These proteins mostly related to the cytoskeleton organization, binding of calcium ions, response to stress, anti-oxidative, energy metabolism, and macromolecular biosynthesis. Notably, some of the identified proteins have the ability of regulation apoptosis. Eleven altered proteins including annexin A1, annexin A2, annexin A5, tropomyosin 1 alpha, peroxiredoxin-1, Calbindin-D28k, heat shock protein beta-1, myosin light chain type 2, extracellular fatty acid-binding protein, TRIM27.2, and enolase alpha were analyzed further at the mRNA level using real-time PCR. The trends of the changes in their mRNA levels were similar to the patterns of change in their corresponding proteins on 2-DE gels. Western blot analysis further confirmed the changes of annexin A5 and HSPB1. It was also in consisting with results obtained by real-time PCR.
     We focus on study the global protein expression changes in trachea and kidney tissues of chickens during different stages after infection in vivo with highly virulent IBV ck/CH/LDL/97I P5 strain and embryo-passaged, attenuated IBV ck/CH/LDL/97I P115 strain using 2-DE and 2-DIGE coupled with MALDI-TOF/TOF MS method. In total, sixty-two differentially expressed proteins were identified and classified into several functional categories including cytoskeletal organization, macromolecule metabolism, anti-oxidative stress, stress response, acute phase response, signal transduction and ion transport. The dynamic transcriptional alterations of fourteen selected proteins including heat shock protein beta-1, annexin A2, annexin A5, tropomyosin alpha, vimentin, lamin A, manganese-containing superoxide dismutase, and phosphoenolpyruvate carboxykinase mitochondrial were analyzed using real-time PCR method. The majority mRNA level changed trends of these genes were consistent with the change patterns of their corresponding proteins in 2-DE and 2-DIGE gels. Western blot analysis further confirmed the expression changes of HSP beta-1, annexin A2, and annexin A5 obtained by proteomics method. Results demonstrated that some key proteins which were likely to be important in the host response to virus infection, including cytoskeleton organization, anti-oxidative stress, stress responses, and energy metabolism, were resulted in different expressed change patterns between infection with the highly virulent IBV ck/CH/LDL/97I P5 strain and its embryo-passaged, attenuated P115 stain. Additionally, these dramatic differences between P_5- and P_(115)-strain induced changes were mainly observed at the early stage of virus infection.
     In general, these results provide valuable insights into the interactions of IBV with its host, the investigations in pathogenesis of IBV, and screening of preventive and therapeutic medicine. Meanwhile, our study may provide a reference for related research of SARS-CoV and other coronaviruses.
引文
1.周世力,卫灿东,熊朝晖,段淑敏,李德新,王建伟,冷文川,梁米芳,金奇,侯云德.严重急性呼吸综合征(SARS)冠状病毒核蛋白的鉴定与分析.病毒学报, 2003, 19(2):100-103.
    2.常维山,翟静,宋文刚,刘永庆.宿主细胞内SARS-CoV N蛋白相互作用蛋白的筛选与鉴定.生物化学与生物物理进展, 2008, 35(9):1007-1013.
    3.张养军,王京兰,蔡耘,应万涛,郝运伟,李蕾,李晓海,戴舒佳,代景泉,贺福初等.液相色谱-质谱联用方法用于严重急性呼吸系统综合症冠状病毒结构蛋白质的研究.分析化学, 2004, 32(4):415-420.
    4. Ait-Goughoulte M., Banerjee A., Meyer K., Mazumdar B., Saito K., Ray R.B., Ray R. Hepatitis C virus core protein interacts with fibrinogen-beta and attenuates cytokine stimulated acute-phase response. Hepatology 2010, 51:1505-1513.
    5. Akakura N., Hoogland C., Takada Y.K., Saegusa J., Ye X., Liu F.T., Cheung A.T., Takada Y. The COOH-terminal globular domain of fibrinogen gamma chain suppresses angiogenesis and tumor growth. Cancer research 2006, 66:9691-9697.
    6. Akgul B., Zigrino P., Frith D., Hanrahan S., Storey A. Proteomic analysis reveals the actin cytoskeleton as cellular target for the human papillomavirus type 8. Virology 2009, 386:1-5.
    7. Alfonso P., Rivera J., Hernaez B., Alonso C., Escribano J.M. Identification of cellular proteins modified in response to African swine fever virus infection by proteomics. Proteomics 2004, 4:2037-2046.
    8. Alldridge L.C., Bryant C.E. Annexin 1 regulates cell proliferation by disruption of cell morphology and inhibition of cyclin D1 expression through sustained activation of the ERK1/2 MAPK signal. Exp Cell Res 2003, 290:93-107.
    9. Altieri D.C., Plescia J., Plow E.F. The structural motif glycine 190-valine 202 of the fibrinogen gamma chain interacts with CD11b/CD18 integrin (alpha M beta 2, Mac-1) and promotes leukocyte adhesion. The Journal of biological chemistry 1993, 268:1847-1853.
    10. Andersen J.S., Mann M. Functional genomics by mass spectrometry. FEBS letters 2000, 480:25-31.
    11. Anderson N.L., Anderson N.G. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 1998, 19:1853-1861.
    12. Ayuso R., Grishina G., Bardina L., Carrillo T., Blanco C., Ibanez M.D., Sampson H.A., Beyer K. Myosin light chain is a novel shrimp allergen, Lit v 3. J Allergy Clin Immunol 2008, 122:795-802.
    13. Backes P., Quinkert D., Reiss S., Binder M., Zayas M., Rescher U., Gerke V., Bartenschlager R., Lohmann V. Role of annexin A2 in the production of infectious hepatitis C virus particles. J Virol 2010, 84:5775-5789.
    14. Ballesteros M.L., Sanchez C.M., Enjuanes L. Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology1997, 227:378-388.
    15. Banerjee S., An S., Zhou A., Silverman R.H., Makino S. RNase L-independent specific 28S rRNA cleavage in murine coronavirus-infected cells. Journal of virology 2000, 74:8793-8802.
    16. Banerjee S., Narayanan K., Mizutani T., Makino S. Murine coronavirus replication-induced p38 mitogen-activated protein kinase activation promotes interleukin-6 production and virus replication in cultured cells. Journal of virology 2002, 76:5937-5948.
    17. Baumann H., Gauldie J. The acute phase response. Immunology today 1994, 15:74-80.
    18. Beaton A.R., Rodriguez J., Reddy Y.K., Roy P. The membrane trafficking protein calpactin forms a complex with bluetongue virus protein NS3 and mediates virus release. Proceedings of the National Academy of Sciences of the United States of America 2002, 99:13154-13159.
    19. Bellido T., Huening M., Raval-Pandya M., Manolagas S.C., Christakos S. Calbindin-D28k is expressed in osteoblastic cells and suppresses their apoptosis by inhibiting caspase-3 activity. J Biol Chem 2000, 275:26328-26332.
    20. Benedict C.A., Norris P.S., Ware C.F. To kill or be killed: viral evasion of apoptosis. Nat Immunol 2002, 3:1013-1018.
    21. Bhattacharya B., Noad R.J., Roy P. Interaction between Bluetongue virus outer capsid protein VP2 and vimentin is necessary for virus egress. Virol J 2007, 4:7.
    22. Blackstock W.P., Weir M.P. Proteomics: quantitative and physical mapping of cellular proteins. Trends in biotechnology 1999, 17:121-127.
    23. Boguski M.S., McIntosh M.W. Biomedical informatics for proteomics. Nature 2003, 422:233-237.
    24. Bourchookarn A., Havanapan P.O., Thongboonkerd V., Krittanai C. Proteomic analysis of altered proteins in lymphoid organ of yellow head virus infected Penaeus monodon. Biochim Biophys Acta 2008, 1784:504-511.
    25. Brasier A.R., Spratt H., Wu Z., Boldogh I., Zhang Y., Garofalo R.P., Casola A., Pashmi J., Haag A., Luxon B., Kurosky A. Nuclear heat shock response and novel nuclear domain 10 reorganization in respiratory syncytial virus-infected a549 cells identified by high-resolution two-dimensional gel electrophoresis. Journal of virology 2004, 78:11461-11476.
    26. Brian D.A., Baric R.S. Coronavirus genome structure and replication. Current topics in microbiology and immunology 2005, 287:1-30.
    27. Brownstein C., Deora A.B., Jacovina A.T., Weintraub R., Gertler M., Khan K.M., Falcone D.J., Hajjar K.A. Annexin II mediates plasminogen-dependent matrix invasion by human monocytes: enhanced expression by macrophages. Blood 2004, 103:317-324.
    28. Byun Y., Chen F., Chang R., Trivedi M., Green K.J., Cryns V.L. Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis. Cell death and differentiation 2001, 8:443-450.
    29. Cai Y., Liu Y., Yu D., Zhang X. Down-regulation of transcription of the proapoptotic gene BNip3 in cultured astrocytes by murine coronavirus infection. Virology 2003, 316:104-115.
    30. Camozzi D., Pignatelli S., Valvo C., Lattanzi G., Capanni C., Dal Monte P., Landini M.P.Remodelling of the nuclear lamina during human cytomegalovirus infection: role of the viral proteins pUL50 and pUL53. The Journal of general virology 2008, 89:731-740.
    31. Carstens E. Report from the 40th meeting of the Executive Committee of the International Committee of Taxonomy of Viruses. 2009:1571-1574.
    32. Carthagena L., Bergamaschi A., Luna J.M., David A., Uchil P.D., Margottin-Goguet F., Mothes W., Hazan U., Transy C., Pancino G., Nisole S. Human TRIM gene expression in response to interferons. PLoS One 2009, 4:e4894.
    33. Cavanagh D. Coronavirus IBV: structural characterization of the spike protein. J Gen Virol 1983, 64 ( Pt 12):2577-2583.
    34. Cavanagh D. Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus. Avian Pathol 2003, 32:567-582.
    35. Cavanagh D. Coronaviruses in poultry and other birds. Avian pathology : journal of the WVPA 2005, 34:439-448.
    36. Cavanagh D. Coronavirus avian infectious bronchitis virus. Veterinary research 2007, 38:281-297.
    37. Cavanagh D., Davis P.J. Evolution of avian coronavirus IBV: sequence of the matrix glycoprotein gene and intergenic region of several serotypes. J Gen Virol 1988, 69 ( Pt 3):621-629.
    38. Cermelli S., Zerega B., Carlevaro M., Gentili C., Thorp B., Farquharson C., Cancedda R., Cancedda F.D. Extracellular fatty acid binding protein (Ex-FABP) modulation by inflammatory agents: "physiological" acute phase response in endochondral bone formation. Eur J Cell Biol 2000, 79:155-164.
    39. Chahed K., Kabbage M., Hamrita B., Guillier C.L., Trimeche M., Remadi S., Ehret-Sabatier L., Chouchane L. Detection of protein alterations in male breast cancer using two dimensional gel electrophoresis and mass spectrometry: the involvement of several pathways in tumorigenesis. Clin Chim Acta 2008, 388:106-114.
    40. Charley B., Laude H. Induction of alpha interferon by transmissible gastroenteritis coronavirus: role of transmembrane glycoprotein E1. Journal of virology 1988, 62:8-11.
    41. Chau T.N., Lee K.C., Yao H., Tsang T.Y., Chow T.C., Yeung Y.C., Choi K.W., Tso Y.K., Lau T., Lai S.T., Lai C.L. SARS-associated viral hepatitis caused by a novel coronavirus: report of three cases. Hepatology 2004, 39:302-310.
    42. Chen C.J., Makino S. Murine coronavirus replication induces cell cycle arrest in G0/G1 phase. Journal of virology 2004, 78:5658-5669.
    43. Chen C.J., Sugiyama K., Kubo H., Huang C., Makino S. Murine coronavirus nonstructural protein p28 arrests cell cycle in G0/G1 phase. Journal of virology 2004, 78:10410-10419.
    44. Chen J.H., Chang Y.W., Yao C.W., Chiueh T.S., Huang S.C., Chien K.Y., Chen A., Chang F.Y., Wong C.H., Chen Y.J. Plasma proteome of severe acute respiratory syndrome analyzed by two-dimensional gel electrophoresis and mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America 2004, 101:17039-17044.
    45. Chen J.Y., Chen W.N., Liu L.L., Lin W.S., Jiao B.Y., Wu Y.L., Lin J.Y., Lin X. Hepatitis B splicedprotein (HBSP) generated by a spliced hepatitis B virus RNA participates in abnormality of fibrin formation and functions by binding to fibrinogen gamma chain. Journal of medical virology 2010, 82:2019-2026.
    46. Chen W., Gao N., Wang J.L., Tian Y.P., Chen Z.T., An J. Vimentin is required for dengue virus serotype 2 infection but microtubules are not necessary for this process. Arch Virol 2008, 153:1777-1781.
    47. Chen Y., Zhang H., Xu A., Li N., Liu J., Liu C., Lv D., Wu S., Huang L., Yang S., et al. Elevation of serum l-lactate dehydrogenase B correlated with the clinical stage of lung cancer. Lung Cancer 2006, 54:95-102.
    48. Choi Y.W., Tan Y.J., Lim S.G., Hong W., Goh P.Y. Proteomic approach identifies HSP27 as an interacting partner of the hepatitis C virus NS5A protein. Biochemical and biophysical research communications 2004, 318:514-519.
    49. Christakos S., Liu Y. Biological actions and mechanism of action of calbindin in the process of apoptosis. J Steroid Biochem Mol Biol 2004, 89-90:401-404.
    50. Chu V.C., McElroy L.J., Aronson J.M., Oura T.J., Harbison C.E., Bauman B.E., Whittaker G.R. Feline aminopeptidase N is not a functional receptor for avian infectious bronchitis virus. Virol J 2007, 4:20.
    51. Cinatl J., Jr., Hoever G., Morgenstern B., Preiser W., Vogel J.U., Hofmann W.K., Bauer G., Michaelis M., Rabenau H.F., Doerr H.W. Infection of cultured intestinal epithelial cells with severe acute respiratory syndrome coronavirus. Cellular and molecular life sciences : CMLS 2004, 61:2100-2112.
    52. Cinatl J., Morgenstern B., Bauer G., Chandra P., Rabenau H., Doerr H.W. Treatment of SARS with human interferons. Lancet 2003, 362:293-294.
    53. Ciocca D.R., Jorge A.D., Jorge O., Milutin C., Hosokawa R., Diaz Lestren M., Muzzio E., Schulkin S., Schirbu R. Estrogen receptors, progesterone receptors and heat-shock 27-kD protein in liver biopsy specimens from patients with hepatitis B virus infection. Hepatology 1991, 13:838-844.
    54. Clem R.J., Miller L.K. Apoptosis reduces both the in vitro replication and the in vivo infectivity of a baculovirus. J Virol 1993, 67:3730-3738.
    55. Concannon C.G., Gorman A.M., Samali A. On the role of Hsp27 in regulating apoptosis. Apoptosis : an international journal on programmed cell death 2003, 8:61-70.
    56. Coombs K.M., Berard A., Xu W., Krokhin O., Meng X., Cortens J.P., Kobasa D., Wilkins J., Brown E.G. Quantitative proteomic analyses of influenza virus-infected cultured human lung cells. Journal of virology 2010, 84:10888-10906.
    57. Corse E., Machamer C.E. The cytoplasmic tail of infectious bronchitis virus E protein directs Golgi targeting. Journal of virology 2002, 76:1273-1284.
    58. Corse E., Machamer C.E. The cytoplasmic tails of infectious bronchitis virus E and M proteins mediate their interaction. Virology 2003, 312:25-34.
    59. D'Acquisto F., Perretti M., Flower R.J. Annexin-A1: a pivotal regulator of the innate and adaptive immune systems. Br J Pharmacol 2008, 155:152-169.
    60. Dalpke A.H., Thomssen R., Ritter K. Oxidative injury to endothelial cells due to Epstein-Barr virus-induced autoantibodies against manganese superoxide dismutase. J Med Virol 2003, 71:408-416.
    61. Daly K.A., Lefevre C., Nicholas K., Deane E., Williamson P. Characterization and expression of Peroxiredoxin 1 in the neonatal tammar wallaby (Macropus eugenii). Comp Biochem Physiol B Biochem Mol Biol 2008, 149:108-119.
    62. Dantzig J.A., Liu T.Y., Goldman Y.E. Functional studies of individual myosin molecules. Ann N Y Acad Sci 2006, 1080:1-18.
    63. Dar A., Munir S., Vishwanathan S., Manuja A., Griebel P., Tikoo S., Townsend H., Potter A., Kapur V., Babiuk L.A. Transcriptional analysis of avian embryonic tissues following infection with avian infectious bronchitis virus. Virus Res 2005, 110:41-55.
    64. Derry M.C., Sutherland M.R., Restall C.M., Waisman D.M., Pryzdial E.L. Annexin 2-mediated enhancement of cytomegalovirus infection opposes inhibition by annexin 1 or annexin 5. J Gen Virol 2007, 88:19-27.
    65. Descalzi Cancedda F., Dozin B., Zerega B., Cermelli S., Cancedda R. Extracellular fatty acid binding protein (ex-FABP) is a stress protein expressed during chondrocyte and myoblast differentiation. Osteoarthritis Cartilage 2001, 9 Suppl A:S118-122.
    66. Eleouet J.F., Chilmonczyk S., Besnardeau L., Laude H. Transmissible gastroenteritis coronavirus induces programmed cell death in infected cells through a caspase-dependent pathway. J Virol 1998, 72:4918-4924.
    67. Emmott E., Rodgers M., Macdonald A., McCrory S., Ajuh P., Hiscox J.A. Quantitative proteomics using stable isotope labeling with amino acids in cell culture (SILAC) reveals changes in the cytoplasmic, nuclear and nucleolar proteomes in Vero cells infected with the coronavirus infectious bronchitis virus. Mol Cell Proteomics 2010.
    68. Emmott E., Rodgers M.A., Macdonald A., McCrory S., Ajuh P., Hiscox J.A. Quantitative proteomics using stable isotope labeling with amino acids in cell culture reveals changes in the cytoplasmic, nuclear, and nucleolar proteomes in Vero cells infected with the coronavirus infectious bronchitis virus. Mol Cell Proteomics 2010, 9:1920-1936.
    69. Emmott E., Smith C., Emmett S.R., Dove B.K., Hiscox J.A. Elucidation of the avian nucleolar proteome by quantitative proteomics using SILAC and changes in cells infected with the coronavirus infectious bronchitis virus. Proteomics 2010, 10:3558-3562.
    70. Emmott E., Wise H., Loucaides E.M., Matthews D.A., Digard P., Hiscox J.A. Quantitative proteomics using SILAC coupled to LC-MS/MS reveals changes in the nucleolar proteome in influenza A virus-infected cells. Journal of proteome research 2010, 9:5335-5345.
    71. Enjuanes L., Almazan F., Sola I., Zuniga S. Biochemical aspects of coronavirus replication and virus-host interaction. Annual review of microbiology 2006, 60:211-230.
    72. Fang Y.T., Lin C.F., Liao P.C., Kuo Y.M., Wang S., Yeh T.M., Shieh C.C., Su I.J., Lei H.Y., Lin Y.S. Annexin A2 on lung epithelial cell surface is recognized by severe acute respiratory syndrome-associated coronavirus spike domain 2 antibodies. Mol Immunol 2010, 47:1000-1009.
    73. Ferns G., Shams S., Shafi S. Heat shock protein 27: its potential role in vascular disease. Int J Exp Pathol 2006, 87:253-274.
    74. Franzen B., Linder S., Uryu K., Alaiya A.A., Hirano T., Kato H., Auer G. Expression of tropomyosin isoforms in benign and malignant human breast lesions. Br J Cancer 1996, 73:909-913.
    75. Galan C., Sola I., Nogales A., Thomas B., Akoulitchev A., Enjuanes L., Almazan F. Host cell proteins interacting with the 3' end of TGEV coronavirus genome influence virus replication. Virology 2009, 391:304-314.
    76. Gallagher T.M., Buchmeier M.J. Coronavirus spike proteins in viral entry and pathogenesis. Virology 2001, 279:371-374.
    77. Gao G., Luo H. The ubiquitin-proteasome pathway in viral infections. Can J Physiol Pharmacol 2006, 84:5-14.
    78. Gentili C., Tutolo G., Zerega B., Di Marco E., Cancedda R., Cancedda F.D. Acute phase lipocalin Ex-FABP is involved in heart development and cell survival. J Cell Physiol 2005, 202:683-689.
    79. Gerke V., Moss S.E. Annexins: from structure to function. Physiol Rev 2002, 82:331-371.
    80. Gingras A.C., Raught B., Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annual review of biochemistry 1999, 68:913-963.
    81. Goldman R.D., Grin B., Mendez M.G., Kuczmarski E.R. Intermediate filaments: versatile building blocks of cell structure. Current opinion in cell biology 2008, 20:28-34.
    82. Gong Z.J., De Meyer S., van Pelt J., Hertogs K., Depla E., Soumillion A., Fevery J., Yap S.H. Transfection of a rat hepatoma cell line with a construct expressing human liver annexin V confers susceptibility to hepatitis B virus infection. Hepatology 1999, 29:576-584.
    83. Gonzalez-Reyes S., Garcia-Manso A., del Barrio G., Dalton K.P., Gonzalez-Molleda L., Arrojo-Fernandez J., Nicieza I., Parra F. Role of annexin A2 in cellular entry of rabbit vesivirus. J Gen Virol 2009, 90:2724-2730.
    84. Gorg A., Boguth G., Kopf A., Reil G., Parlar H., Weiss W. Sample prefractionation with Sephadex isoelectric focusing prior to narrow pH range two-dimensional gels. Proteomics 2002, 2:1652-1657.
    85. Griffiths G., Rottier P. Cell biology of viruses that assemble along the biosynthetic pathway. Semin Cell Biol 1992, 3:367-381.
    86. Gygi S.P., Rist B., Gerber S.A., Turecek F., Gelb M.H., Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999, 17:994-999.
    87. Haagmans B.L., Kuiken T., Martina B.E., Fouchier R.A., Rimmelzwaan G.F., van Amerongen G., van Riel D., de Jong T., Itamura S., Chan K.H., et al. Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nature medicine 2004,10:290-293.
    88. Han Z., Sun C., Yan B., Zhang X., Wang Y., Li C., Zhang Q., Ma Y., Shao Y., Liu Q., et al. A 15-year analysis of molecular epidemiology of avian infectious bronchitis coronavirus in China. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases 2011, 11:190-200.
    89. Harrist A.V., Ryzhova E.V., Harvey T., Gonzalez-Scarano F. Anx2 interacts with HIV-1 Gag at phosphatidylinositol (4,5) bisphosphate-containing lipid rafts and increases viral production in 293T cells. PLoS One 2009, 4:e5020.
    90. Hayes M.J., Longbottom R.E., Evans M.A., Moss S.E. Annexinopathies. Sub-cellular biochemistry 2007, 45:1-28.
    91. Hayes M.J., Moss S.E. Annexins and disease. Biochem Biophys Res Commun 2004, 322:1166-1170.
    92. Ho C., Shanmugasundararaj S., Miller K.W., Malinowski S.A., Cook A.C., Slater S.J. Interaction of anesthetics with the Rho GTPase regulator Rho GDP dissociation inhibitor. Biochemistry 2008, 47:9540-9552.
    93. Huang R.T., Lichtenberg B., Rick O. Involvement of annexin V in the entry of influenza viruses and role of phospholipids in infection. FEBS Lett 1996, 392:59-62.
    94. Huang R.T., Lichtenberg B., Rick O. Involvement of annexin V in the entry of influenza viruses and role of phospholipids in infection. FEBS letters 1996, 392:59-62.
    95. Huang Y., Jin Y., Yan C.H., Yu Y., Bai J., Chen F., Zhao Y.Z., Fu S.B. Involvement of Annexin A2 in p53 induced apoptosis in lung cancer. Mol Cell Biochem 2008, 309:117-123.
    96. Huber P., Laurent M., Dalmon J. Human beta-fibrinogen gene expression. Upstream sequences involved in its tissue specific expression and its dexamethasone and interleukin 6 stimulation. The Journal of biological chemistry 1990, 265:5695-5701.
    97. Huo X.F., Zhang J.W. Annexin1 regulates the erythroid differentiation through ERK signaling pathway. Biochem Biophys Res Commun 2005, 331:1346-1352.
    98. Hwang H.J., Moon C.H., Kim H.G., Kim J.Y., Lee J.M., Park J.W., Chung D.K. Identification and functional analysis of salmon annexin 1 induced by a virus infection in a fish cell line. J Virol 2007, 81:13816-13824.
    99. Issaq H.J., Veenstra T.D., Conrads T.P., Felschow D. The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochemical and biophysical research communications 2002, 292:587-592.
    100. Issaq H.J., Xiao Z., Veenstra T.D. Serum and plasma proteomics. Chemical reviews 2007, 107:3601-3620.
    101. Ivaska J., Pallari H.M., Nevo J., Eriksson J.E. Novel functions of vimentin in cell adhesion, migration, and signaling. Experimental cell research 2007, 313:2050-2062.
    102. Jeffers S.A., Tusell S.M., Gillim-Ross L., Hemmila E.M., Achenbach J.E., Babcock G.J., Thomas W.D., Jr., Thackray L.B., Young M.D., Mason R.J., et al. CD209L (L-SIGN) is a receptor forsevere acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 2004, 101:15748-15753.
    103. Jiang X.S., Tang L.Y., Dai J., Zhou H., Li S.J., Xia Q.C., Wu J.R., Zeng R. Quantitative analysis of severe acute respiratory syndrome (SARS)-associated coronavirus-infected cells using proteomic approaches: implications for cellular responses to virus infection. Molecular & cellular proteomics : MCP 2005, 4:902-913.
    104. Kajaste-Rudnitski A., Pultrone C., Marzetta F., Ghezzi S., Coradin T., Vicenzi E. Restriction factors of retroviral replication: the example of Tripartite Motif (TRIM) protein 5alpha and 22. Amino Acids 2009.
    105. Kang X., Xu Y., Wu X., Liang Y., Wang C., Guo J., Wang Y., Chen M., Wu D., Bi S., et al. Proteomic fingerprints for potential application to early diagnosis of severe acute respiratory syndrome. Clinical chemistry 2005, 51:56-64.
    106. Kapczynski D.R., Sellers H.S., Rowland G.N., Jackwood M.W. Detection of in ovo-inoculated infectious bronchitis virus by immunohistochemistry and in situ hybridization with a riboprobe in epithelial cells of the lung and cloacal bursa. Avian Dis 2002, 46:679-685.
    107. Kim J.W., Dang C.V. Multifaceted roles of glycolytic enzymes. Trends in biochemical sciences 2005, 30:142-150.
    108. Kim S.Y., Kim T.J., Lee K.Y. A novel function of peroxiredoxin 1 (Prx-1) in apoptosis signal-regulating kinase 1 (ASK1)-mediated signaling pathway. FEBS Lett 2008, 582:1913-1918.
    109. Koh H.J., Lee S.M., Son B.G., Lee S.H., Ryoo Z.Y., Chang K.T., Park J.W., Park D.C., Song B.J., Veech R.L., et al. Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. J Biol Chem 2004, 279:39968-39974.
    110. Kolb A.F., Hegyi A., Siddell S.G. Identification of residues critical for the human coronavirus 229E receptor function of human aminopeptidase N. The Journal of general virology 1997, 78 ( Pt 11):2795-2802.
    111. Kong Q., Xue C., Ren X., Zhang C., Li L., Shu D., Bi Y., Cao Y. Proteomic analysis of purified coronavirus infectious bronchitis virus particles. Proteome Sci 2010, 8:29.
    112. Kostenko S., Moens U. Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell Mol Life Sci 2009, 66:3289-3307.
    113. Kuhn M., Desloges N., Rahaus M., Wolff M.H. Varicella-zoster virus infection influences expression and organization of actin and alpha-tubulin but does not affect lamin A and vimentin. Intervirology 2005, 48:312-320.
    114. Kyuwa S., Cohen M., Nelson G., Tahara S.M., Stohlman S.A. Modulation of cellular macromolecular synthesis by coronavirus: implication for pathogenesis. J Virol 1994, 68:6815-6819.
    115. Lai C.C., Jou M.J., Huang S.Y., Li S.W., Wan L., Tsai F.J., Lin C.W. Proteomic analysis of up-regulated proteins in human promonocyte cells expressing severe acute respiratory syndrome coronavirus 3C-like protease. Proteomics 2007, 7:1446-1460.
    116. LeBouder F., Morello E., Rimmelzwaan G.F., Bosse F., Pechoux C., Delmas B., Riteau B. AnnexinII incorporated into influenza virus particles supports virus replication by converting plasminogen into plasmin. J Virol 2008, 82:6820-6828.
    117. Lee C.P., Chen M.R. Escape of herpesviruses from the nucleus. Reviews in medical virology 2010, 20:214-230.
    118. Lee C.W., Brown C., Jackwood M.W. Tissue distribution of avian infectious bronchitis virus following in ovo inoculation of chicken embryos examined by in situ hybridization with antisense digoxigenin-labeled universal riboprobe. J Vet Diagn Invest 2002, 14:377-381.
    119. Lee S.M., Koh H.J., Park D.C., Song B.J., Huh T.L., Park J.W. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 2002, 32:1185-1196.
    120. Leong W.F., Chow V.T. Transcriptomic and proteomic analyses of rhabdomyosarcoma cells reveal differential cellular gene expression in response to enterovirus 71 infection. Cell Microbiol 2006, 8:565-580.
    121. Leong W.F., Tan H.C., Ooi E.E., Koh D.R., Chow V.T. Microarray and real-time RT-PCR analyses of differential human gene expression patterns induced by severe acute respiratory syndrome (SARS) coronavirus infection of Vero cells. Microbes and infection / Institut Pasteur 2005, 7:248-259.
    122. Li F.Q., Tam J.P., Liu D.X. Cell cycle arrest and apoptosis induced by the coronavirus infectious bronchitis virus in the absence of p53. Virology 2007, 365:435-445.
    123. Li F.Q., Xiao H., Tam J.P., Liu D.X. Sumoylation of the nucleocapsid protein of severe acute respiratory syndrome coronavirus. FEBS letters 2005, 579:2387-2396.
    124. Li Q., Wang L., Dong C., Che Y., Jiang L., Liu L., Zhao H., Liao Y., Sheng Y., Dong S., Ma S. The interaction of the SARS coronavirus non-structural protein 10 with the cellular oxido-reductase system causes an extensive cytopathic effect. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology 2005, 34:133-139.
    125. Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A., Somasundaran M., Sullivan J.L., Luzuriaga K., Greenough T.C., et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003, 426:450-454.
    126. Li Y., Fu L., Gonzales D.M., Lavi E. Coronavirus neurovirulence correlates with the ability of the virus to induce proinflammatory cytokine signals from astrocytes and microglia. Journal of virology 2004, 78:3398-3406.
    127. Lisacek F., Cohen-Boulakia S., Appel R.D. Proteome informatics II: bioinformatics for comparative proteomics. Proteomics 2006, 6:5445-5466.
    128. Liu N., Song W., Wang P., Lee K., Chan W., Chen H., Cai Z. Proteomics analysis of differential expression of cellular proteins in response to avian H9N2 virus infection in human cells. Proteomics 2008, 8:1851-1858.
    129. Liu S., Chen J., Kong X., Shao Y., Han Z., Feng L., Cai X., Gu S., Liu M. Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas). TheJournal of general virology 2005, 86:719-725.
    130. Liu S., Kong X. A new genotype of nephropathogenic infectious bronchitis virus circulating in vaccinated and non-vaccinated flocks in China. Avian Pathol 2004, 33:321-327.
    131. Liu Y., Cai Y., Zhang X. Induction of caspase-dependent apoptosis in cultured rat oligodendrocytes by murine coronavirus is mediated during cell entry and does not require virus replication. J Virol 2003, 77:11952-11963.
    132. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25:402-408.
    133. Loutfy M.R., Blatt L.M., Siminovitch K.A., Ward S., Wolff B., Lho H., Pham D.H., Deif H., LaMere E.A., Chang M., et al. Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study. JAMA : the journal of the American Medical Association 2003, 290:3222-3228.
    134. Luo X.G., Li S.F., Lu L., Liu B., Kuang X., Shao G.Z., Yu S.X. Gene expression of manganese-containing superoxide dismutase as a biomarker of manganese bioavailability for manganese sources in broilers. Poult Sci 2007, 86:888-894.
    135. Madu I.G., Chu V.C., Lee H., Regan A.D., Bauman B.E., Whittaker G.R. Heparan sulfate is a selective attachment factor for the avian coronavirus infectious bronchitis virus Beaudette. Avian Dis 2007, 51:45-51.
    136. Mahadev K., Raval G., Bharadwaj S., Willingham M.C., Lange E.M., Vonderhaar B., Salomon D., Prasad G.L. Suppression of the transformed phenotype of breast cancer by tropomyosin-1. Exp Cell Res 2002, 279:40-51.
    137. Malhotra R., Ward M., Bright H., Priest R., Foster M.R., Hurle M., Blair E., Bird M. Isolation and characterisation of potential respiratory syncytial virus receptor(s) on epithelial cells. Microbes Infect 2003, 5:123-133.
    138. Maynard N.D., Gutschow M.V., Birch E.W., Covert M.W. The virus as metabolic engineer. Biotechnol J 2010, 5:686-694.
    139. McCarthy F.M., Bridges S.M., Wang N., Magee G.B., Williams W.P., Luthe D.S., Burgess S.C. AgBase: a unified resource for functional analysis in agriculture. Nucleic acids research 2007, 35:D599-603.
    140. Meier T.J., Ho D.Y., Sapolsky R.M. Increased expression of calbindin D28k via herpes simplex virus amplicon vector decreases calcium ion mobilization and enhances neuronal survival after hypoglycemic challenge. J Neurochem 1997, 69:1039-1047.
    141. Miguel B., Pharr G.T., Wang C. The role of feline aminopeptidase N as a receptor for infectious bronchitis virus. Brief review. Arch Virol 2002, 147:2047-2056.
    142. Mizutani T., Fukushi S., Murakami M., Hirano T., Saijo M., Kurane I., Morikawa S. Tyrosine dephosphorylation of STAT3 in SARS coronavirus-infected Vero E6 cells. FEBS letters 2004, 577:187-192.
    143. Mizutani T., Fukushi S., Saijo M., Kurane I., Morikawa S. Importance of Akt signaling pathway forapoptosis in SARS-CoV-infected Vero E6 cells. Virology 2004, 327:169-174.
    144. Mizutani T., Fukushi S., Saijo M., Kurane I., Morikawa S. Phosphorylation of p38 MAPK and its downstream targets in SARS coronavirus-infected cells. Biochemical and biophysical research communications 2004, 319:1228-1234.
    145. Modaressi S., Brechtel K., Christ B., Jungermann K. Human mitochondrial phosphoenolpyruvate carboxykinase 2 gene. Structure, chromosomal localization and tissue-specific expression. Biochem J 1998, 333 ( Pt 2):359-366.
    146. Mota S., Mendes M., Freitas N., Penque D., Coelho A.V., Cunha C. Proteome analysis of a human liver carcinoma cell line stably expressing hepatitis delta virus ribonucleoproteins. J Proteomics 2009, 72:616-627.
    147. Munday D.C., Emmott E., Surtees R., Lardeau C.H., Wu W., Duprex W.P., Dove B.K., Barr J.N., Hiscox J.A. Quantitative proteomic analysis of A549 cells infected with human respiratory syncytial virus. Molecular & cellular proteomics : MCP 2010, 9:2438-2459.
    148. Munger J., Bajad S.U., Coller H.A., Shenk T., Rabinowitz J.D. Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog 2006, 2:e132.
    149. Narayan R., Gangadharan B., Hantz O., Antrobus R., Garcia A., Dwek R.A., Zitzmann N. Proteomic analysis of HepaRG cells: a novel cell line that supports hepatitis B virus infection. J Proteome Res 2009, 8:118-122.
    150. Ng L.F., Hibberd M.L., Ooi E.E., Tang K.F., Neo S.Y., Tan J., Murthy K.R., Vega V.B., Chia J.M., Liu E.T., Ren E.C. A human in vitro model system for investigating genome-wide host responses to SARS coronavirus infection. BMC infectious diseases 2004, 4:34.
    151. O'Farrell P.H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975, 250:4007-4021.
    152. Oh J.S., Song D.S., Park B.K. Identification of a putative cellular receptor 150 kDa polypeptide for porcine epidemic diarrhea virus in porcine enterocytes. Journal of veterinary science 2003, 4:269-275.
    153. Ong S.E., Blagoev B., Kratchmarova I., Kristensen D.B., Steen H., Pandey A., Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002, 1:376-386.
    154. Ostap E.M. Tropomyosins as discriminators of myosin function. Adv Exp Med Biol 2008, 644:273-282.
    155. Otto J.M., Grenett H.E., Fuller G.M. The coordinated regulation of fibrinogen gene transcription by hepatocyte-stimulating factor and dexamethasone. The Journal of cell biology 1987, 105:1067-1072.
    156. Pancholi V. Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci 2001, 58:902-920.
    157. Pang R.T., Poon T.C., Chan K.C., Lee N.L., Chiu R.W., Tong Y.K., Wong R.M., Chim S.S., Ngai S.M., Sung J.J., Lo Y.M. Serum proteomic fingerprints of adult patients with severe acute respiratory syndrome. Clin Chem 2006, 52:421-429.
    158. Pastorino B., Boucomont-Chapeaublanc E., Peyrefitte C.N., Belghazi M., Fusai T., Rogier C., Tolou H.J., Almeras L. Identification of cellular proteome modifications in response to West Nile virus infection. Mol Cell Proteomics 2009, 8:1623-1637.
    159. Pedersen S.K., Harry J.L., Sebastian L., Baker J., Traini M.D., McCarthy J.T., Manoharan A., Wilkins M.R., Gooley A.A., Righetti P.G., et al. Unseen proteome: mining below the tip of the iceberg to find low abundance and membrane proteins. Journal of proteome research 2003, 2:303-311.
    160. Perlman S., Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nature reviews Microbiology 2009, 7:439-450.
    161. Qi Y.X., Qu M.J., Long D.K., Liu B., Yao Q.P., Chien S., Jiang Z.L. Rho-GDP dissociation inhibitor alpha downregulated by low shear stress promotes vascular smooth muscle cell migration and apoptosis: a proteomic analysis. Cardiovasc Res 2008, 80:114-122.
    162. Raaben M., Groot Koerkamp M.J., Rottier P.J., de Haan C.A. Mouse hepatitis coronavirus replication induces host translational shutoff and mRNA decay, with concomitant formation of stress granules and processing bodies. Cellular microbiology 2007, 9:2218-2229.
    163. Radtke K., Dohner K., Sodeik B. Viral interactions with the cytoskeleton: a hitchhiker's guide to the cell. Cellular microbiology 2006, 8:387-400.
    164. Radulovic M., Godovac-Zimmermann J. Proteomic approaches to understanding the role of the cytoskeleton in host-defense mechanisms. Expert review of proteomics 2011, 8:117-126.
    165. Ragland M., Hutter C., Zabetian C., Edwards K. Association between the ubiquitin carboxyl-terminal esterase L1 gene (UCHL1) S18Y variant and Parkinson's Disease: a HuGE review and meta-analysis. Am J Epidemiol 2009, 170:1344-1357.
    166. Rand J.H., Wu X.X., Giesen P. A possible solution to the paradox of the "lupus anticoagulant": antiphospholipid antibodies accelerate thrombin generation by inhibiting annexin-V. Thrombosis and haemostasis 1999, 82:1376-1377.
    167. Ratra R., Kar-Roy A., Lal S.K. ORF3 protein of hepatitis E virus interacts with the Bbeta chain of fibrinogen resulting in decreased fibrinogen secretion from HuH-7 cells. The Journal of general virology 2009, 90:1359-1370.
    168. Raval G.N., Bharadwaj S., Levine E.A., Willingham M.C., Geary R.L., Kute T., Prasad G.L. Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors. Oncogene 2003, 22:6194-6203.
    169. Ravassa S., Bennaghmouch A., Kenis H., Lindhout T., Hackeng T., Narula J., Hofstra L., Reutelingsperger C. Annexin A5 down-regulates surface expression of tissue factor: a novel mechanism of regulating the membrane receptor repertoir. The Journal of biological chemistry 2005, 280:6028-6035.
    170. Raynor C.M., Wright J.F., Waisman D.M., Pryzdial E.L. Annexin II enhances cytomegalovirus binding and fusion to phospholipid membranes. Biochemistry 1999, 38:5089-5095.
    171. Ren Y., He Q.Y., Fan J., Jones B., Zhou Y., Xie Y., Cheung C.Y., Wu A., Chiu J.F., Peiris J.S., TamP.K. The use of proteomics in the discovery of serum biomarkers from patients with severe acute respiratory syndrome. Proteomics 2004, 4:3477-3484.
    172. Rescher U., Gerke V. Annexins--unique membrane binding proteins with diverse functions. J Cell Sci 2004, 117:2631-2639.
    173. Reymond A., Meroni G., Fantozzi A., Merla G., Cairo S., Luzi L., Riganelli D., Zanaria E., Messali S., Cainarca S., et al. The tripartite motif family identifies cell compartments. EMBO J 2001, 20:2140-2151.
    174. Roos-Mattjus P., Sistonen L. The ubiquitin-proteasome pathway. Ann Med 2004, 36:285-295.
    175. Roulston A., Marcellus R.C., Branton P.E. Viruses and apoptosis. Annu Rev Microbiol 1999, 53:577-628.
    176. Rubel C., Gomez S., Fernandez G.C., Isturiz M.A., Caamano J., Palermo M.S. Fibrinogen-CD11b/CD18 interaction activates the NF-kappa B pathway and delays apoptosis in human neutrophils. European journal of immunology 2003, 33:1429-1438.
    177. Ruiz M.C., Cohen J., Michelangeli F. Role of Ca2+in the replication and pathogenesis of rotavirus and other viral infections. Cell Calcium 2000, 28:137-149.
    178. Ryzhova E.V., Vos R.M., Albright A.V., Harrist A.V., Harvey T., Gonzalez-Scarano F. Annexin 2: a novel human immunodeficiency virus type 1 Gag binding protein involved in replication in monocyte-derived macrophages. J Virol 2006, 80:2694-2704.
    179. Salanueva I.J., Carrascosa J.L., Risco C. Structural maturation of the transmissible gastroenteritis coronavirus. Journal of virology 1999, 73:7952-7964.
    180. Samali A., Robertson J.D., Peterson E., Manero F., van Zeijl L., Paul C., Cotgreave I.A., Arrigo A.P., Orrenius S. Hsp27 protects mitochondria of thermotolerant cells against apoptotic stimuli. Cell Stress Chaperones 2001, 6:49-58.
    181. Sauri H., Ashjian P.H., Kim A.T., Shau H. Recombinant natural killer enhancing factor augments natural killer cytotoxicity. J Leukoc Biol 1996, 59:925-931.
    182. Schneider R.J., Shenk T. Impact of virus infection on host cell protein synthesis. Annual review of biochemistry 1987, 56:317-332.
    183. Schultze B., Herrler G. Bovine coronavirus uses N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. J Gen Virol 1992, 73 ( Pt 4):901-906.
    184. Schwarz K.B. Oxidative stress during viral infection: a review. Free radical biology & medicine 1996, 21:641-649.
    185. Seo S.H., Wang L., Smith R., Collisson E.W. The carboxyl-terminal 120-residue polypeptide of infectious bronchitis virus nucleocapsid induces cytotoxic T lymphocytes and protects chickens from acute infection. Journal of virology 1997, 71:7889-7894.
    186. Shi S.T., Huang P., Li H.P., Lai M.M. Heterogeneous nuclear ribonucleoprotein A1 regulates RNA synthesis of a cytoplasmic virus. The EMBO journal 2000, 19:4701-4711.
    187. Shi S.T., Lai M.M. Viral and cellular proteins involved in coronavirus replication. Current topics in microbiology and immunology 2005, 287:95-131.
    188. Shiina T., Briles W.E., Goto R.M., Hosomichi K., Yanagiya K., Shimizu S., Inoko H., Miller M.M. Extended gene map reveals tripartite motif, C-type lectin, and Ig superfamily type genes within a subregion of the chicken MHC-B affecting infectious disease. J Immunol 2007, 178:7162-7172.
    189. Shoeman R.L., Honer B., Stoller T.J., Kesselmeier C., Miedel M.C., Traub P., Graves M.C. Human immunodeficiency virus type 1 protease cleaves the intermediate filament proteins vimentin, desmin, and glial fibrillary acidic protein. Proceedings of the National Academy of Sciences of the United States of America 1990, 87:6336-6340.
    190. Sitrin R.G., Pan P.M., Srikanth S., Todd R.F., 3rd. Fibrinogen activates NF-kappa B transcription factors in mononuclear phagocytes. Journal of immunology 1998, 161:1462-1470.
    191. Smiley S.T., King J.A., Hancock W.W. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. Journal of immunology 2001, 167:2887-2894.
    192. Solito E., Kamal A., Russo-Marie F., Buckingham J.C., Marullo S., Perretti M. A novel calcium-dependent proapoptotic effect of annexin 1 on human neutrophils. FASEB J 2003, 17:1544-1546.
    193. Stefanovic S., Windsor M., Nagata K.I., Inagaki M., Wileman T. Vimentin rearrangement during African swine fever virus infection involves retrograde transport along microtubules and phosphorylation of vimentin by calcium calmodulin kinase II. Journal of virology 2005, 79:11766-11775.
    194. Stohlman S.A., Baric R.S., Nelson G.N., Soe L.H., Welter L.M., Deans R.J. Specific interaction between coronavirus leader RNA and nucleocapsid protein. J Virol 1988, 62:4288-4295.
    195. Sun J., Jiang Y., Shi Z., Yan Y., Guo H., He F., Tu C. Proteomic alteration of PK-15 cells after infection by classical swine fever virus. J Proteome Res 2008, 7:5263-5269.
    196. Sun J., Shi Z., Guo H., Tu C. Changes in the porcine peripheral blood mononuclear cell proteome induced by infection with highly virulent classical swine fever virus. J Gen Virol 2010.
    197. Suresh D.R., Annam V., Pratibha K., Prasad B.V. Total antioxidant capacity--a novel early bio-chemical marker of oxidative stress in HIV infected individuals. Journal of biomedical science 2009, 16:61.
    198. Surjit M., Liu B., Chow V.T., Lal S.K. The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells. The Journal of biological chemistry 2006, 281:10669-10681.
    199. Suzuki H., Taguchi F. Analysis of the receptor-binding site of murine coronavirus spike protein. Journal of virology 1996, 70:2632-2636.
    200. Tahara S.M., Dietlin T.A., Bergmann C.C., Nelson G.W., Kyuwa S., Anthony R.P., Stohlman S.A. Coronavirus translational regulation: leader affects mRNA efficiency. Virology 1994, 202:621-630.
    201. Tahara S.M., Dietlin T.A., Nelson G.W., Stohlman S.A., Manno D.J. Mouse hepatitis virus nucleocapsid protein as a translational effector of viral mRNAs. Adv Exp Med Biol 1998, 440:313-318.
    202. Takashima M., Kuramitsu Y., Yokoyama Y., Iizuka N., Fujimoto M., Nishisaka T., Okita K., Oka M., Nakamura K. Overexpression of alpha enolase in hepatitis C virus-related hepatocellular carcinoma: association with tumor progression as determined by proteomic analysis. Proteomics 2005, 5:1686-1692.
    203. Tan Y.J., Tham P.Y., Chan D.Z., Chou C.F., Shen S., Fielding B.C., Tan T.H., Lim S.G., Hong W. The severe acute respiratory syndrome coronavirus 3a protein up-regulates expression of fibrinogen in lung epithelial cells. Journal of virology 2005, 79:10083-10087.
    204. Tang B.S., Chan K.H., Cheng V.C., Woo P.C., Lau S.K., Lam C.C., Chan T.L., Wu A.K., Hung I.F., Leung S.Y., Yuen K.Y. Comparative host gene transcription by microarray analysis early after infection of the Huh7 cell line by severe acute respiratory syndrome coronavirus and human coronavirus 229E. Journal of virology 2005, 79:6180-6193.
    205. Thanthrige-Don N., Abdul-Careem M.F., Shack L.A., Burgess S.C., Sharif S. Analyses of the spleen proteome of chickens infected with Marek's disease virus. Virology 2009, 390:356-367.
    206. Tonge R., Shaw J., Middleton B., Rowlinson R., Rayner S., Young J., Pognan F., Hawkins E., Currie I., Davison M. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 2001, 1:377-396.
    207. Tresnan D.B., Levis R., Holmes K.V. Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J Virol 1996, 70:8669-8674.
    208. Unlu M., Morgan M.E., Minden J.S. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997, 18:2071-2077.
    209. Van Aelst L., D'Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev 1997, 11:2295-2322.
    210. van Diepen A., Brand H.K., Sama I., Lambooy L.H., van den Heuvel L.P., van der Well L., Huynen M., Osterhaus A.D., Andeweg A.C., Hermans P.W. Quantitative proteome profiling of respiratory virus-infected lung epithelial cells. J Proteomics 2010.
    211. van Diepen A., Brand H.K., Sama I., Lambooy L.H., van den Heuvel L.P., van der Well L., Huynen M., Osterhaus A.D., Andeweg A.C., Hermans P.W. Quantitative proteome profiling of respiratory virus-infected lung epithelial cells. Journal of proteomics 2010, 73:1680-1693.
    212. Veiga-Malta I., Duarte M., Dinis M., Tavares D., Videira A., Ferreira P. Enolase from Streptococcus sobrinus is an immunosuppressive protein. Cell Microbiol 2004, 6:79-88.
    213. Vennema H., Godeke G.J., Rossen J.W., Voorhout W.F., Horzinek M.C., Opstelten D.J., Rottier P.J. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. The EMBO journal 1996, 15:2020-2028.
    214. Vester D., Rapp E., Kluge S., Genzel Y., Reichl U. Virus-host cell interactions in vaccine production cell lines infected with different human influenza A virus variants: a proteomic approach. Journal of proteomics 2010, 73:1656-1669.
    215. Vogels M.W., van Balkom B.W., Kaloyanova D.V., Batenburg J.J., Heck A.J., Helms J.B., Rottier P.J., de Haan C.A. Identification of host factors involved in coronavirus replication by quantitativeproteomics analysis. Proteomics 2010.
    216. Vogels M.W., van Balkom B.W., Kaloyanova D.V., Batenburg J.J., Heck A.J., Helms J.B., Rottier P.J., de Haan C.A. Identification of host factors involved in coronavirus replication by quantitative proteomics analysis. Proteomics 2011, 11:64-80.
    217. Walzog B., Weinmann P., Jeblonski F., Scharffetter-Kochanek K., Bommert K., Gaehtgens P. A role for beta(2) integrins (CD11/CD18) in the regulation of cytokine gene expression of polymorphonuclear neutrophils during the inflammatory response. The FASEB journal : official publication of the Federation of American Societies for Experimental Biology 1999, 13:1855-1865.
    218. Wan J., Sun W., Li X., Ying W., Dai J., Kuai X., Wei H., Gao X., Zhu Y., Jiang Y., et al. Inflammation inhibitors were remarkably up-regulated in plasma of severe acute respiratory syndrome patients at progressive phase. Proteomics 2006, 6:2886-2894.
    219. Wang C.L., Coluccio L.M. New insights into the regulation of the actin cytoskeleton by tropomyosin. Int Rev Cell Mol Biol 2010, 281:91-128.
    220. Wang H.C., Leu J.H., Kou G.H., Wang A.H., Lo C.F. Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. Dev Comp Immunol 2007, 31:672-686.
    221. Wang J., Fang S., Xiao H., Chen B., Tam J.P., Liu D.X. Interaction of the coronavirus infectious bronchitis virus membrane protein with beta-actin and its implication in virion assembly and budding. PLoS One 2009, 4:e4908.
    222. Wang M., Howell J.M., Libbey J.E., Tainer J.A., Fujinami R.S. Manganese superoxide dismutase induction during measles virus infection. Journal of medical virology 2003, 70:470-474.
    223. Wang X., Rosa A.J., Oliverira H.N., Rosa G.J., Guo X., Travnicek M., Girshick T. Transcriptome of local innate and adaptive immunity during early phase of infectious bronchitis viral infection. Viral immunology 2006, 19:768-774.
    224. Wang Y., Zhang X. The nucleocapsid protein of coronavirus mouse hepatitis virus interacts with the cellular heterogeneous nuclear ribonucleoprotein A1 in vitro and in vivo. Virology 1999, 265:96-109.
    225. Wiese S., Reidegeld K.A., Meyer H.E., Warscheid B. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 2007, 7:340-350.
    226. Wildgruber R., Harder A., Obermaier C., Boguth G., Weiss W., Fey S.J., Larsen P.M., Gorg A. Towards higher resolution: two-dimensional electrophoresis of Saccharomyces cerevisiae proteins using overlapping narrow immobilized pH gradients. Electrophoresis 2000, 21:2610-2616.
    227. Winter C., Schwegmann-Wessels C., Cavanagh D., Neumann U., Herrler G. Sialic acid is a receptor determinant for infection of cells by avian Infectious bronchitis virus. J Gen Virol 2006, 87:1209-1216.
    228. Wong C.K., Lam C.W., Wu A.K., Ip W.K., Lee N.L., Chan I.H., Lit L.C., Hui D.S., Chan M.H., Chung S.S., Sung J.J. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clinical and experimental immunology 2004, 136:95-103.
    229. Wright J.C., Hubbard S.J. Recent developments in proteome informatics for mass spectrometryanalysis. Combinatorial chemistry & high throughput screening 2009, 12:194-202.
    230. Wright J.F., Kurosky A., Pryzdial E.L., Wasi S. Host cellular annexin II is associated with cytomegalovirus particles isolated from cultured human fibroblasts. J Virol 1995, 69:4784-4791.
    231. Xiao H., Xu L.H., Yamada Y., Liu D.X. Coronavirus spike protein inhibits host cell translation by interaction with eIF3f. PLoS One 2008, 3:e1494.
    232. Yang Y., Xiong Z., Zhang S., Yan Y., Nguyen J., Ng B., Lu H., Brendese J., Yang F., Wang H., Yang X.F. Bcl-xL inhibits T-cell apoptosis induced by expression of SARS coronavirus E protein in the absence of growth factors. The Biochemical journal 2005, 392:135-143.
    233. Yesilkaya H., Kadioglu A., Gingles N., Alexander J.E., Mitchell T.J., Andrew P.W. Role of manganese-containing superoxide dismutase in oxidative stress and virulence of Streptococcus pneumoniae. Infection and immunity 2000, 68:2819-2826.
    234. Ying W., Hao Y., Zhang Y., Peng W., Qin E., Cai Y., Wei K., Wang J., Chang G., Sun W., et al. Proteomic analysis on structural proteins of Severe Acute Respiratory Syndrome coronavirus. Proteomics 2004, 4:492-504.
    235. Yokomori K., Lai M.M. Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors. J Virol 1992, 66:6194-6199.
    236. Yokota S., Yokosawa N., Kubota T., Okabayashi T., Arata S., Fujii N. Suppression of thermotolerance in mumps virus-infected cells is caused by lack of HSP27 induction contributed by STAT-1. J Biol Chem 2003, 278:41654-41660.
    237. Yount B., Curtis K.M., Baric R.S. Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model. Journal of virology 2000, 74:10600-10611.
    238. Zantema A., de Jong E., Lardenoije R., van der Eb A.J. The expression of heat shock protein hsp27 and a complexed 22-kilodalton protein is inversely correlated with oncogenicity of adenovirus-transformed cells. J Virol 1989, 63:3368-3375.
    239. Zeng R., Ruan H.Q., Jiang X.S., Zhou H., Shi L., Zhang L., Sheng Q.H., Tu Q., Xia Q.C., Wu J.R. Proteomic analysis of SARS associated coronavirus using two-dimensional liquid chromatography mass spectrometry and one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by mass spectroemtric analysis. J Proteome Res 2004, 3:549-555.
    240. Zhang B., Zhang Y., Dagher M.C., Shacter E. Rho GDP dissociation inhibitor protects cancer cells against drug-induced apoptosis. Cancer Res 2005, 65:6054-6062.
    241. Zhang C., Xue C., Li Y., Kong Q., Ren X., Li X., Shu D., Bi Y., Cao Y. Profiling of cellular proteins in porcine reproductive and respiratory syndrome virus virions by proteomics analysis. Virol J 2010, 7:242.
    242. Zhang H., Guo X., Ge X., Chen Y., Sun Q., Yang H. Changes in the cellular proteins of pulmonary alveolar macrophage infected with porcine reproductive and respiratory syndrome virus by proteomics analysis. J Proteome Res 2009, 8:3091-3097.
    243. Zhang L., Jia X., Zhang X., Sun J., Peng X., Qi T., Ma F., Yin L., Yao Y., Qiu C., Lu H. Proteomic analysis of PBMCs: characterization of potential HIV-associated proteins. Proteome Sci 2010,8:12.
    244. Zhang L., Zhang Z.P., Zhang X.E., Lin F.S., Ge F. Quantitative proteomics analysis reveals BAG3 as a potential target to suppress severe acute respiratory syndrome coronavirus replication. J Virol 2010, 84:6050-6059.
    245. Zhang X., Zhou J., Wu Y., Zheng X., Ma G., Wang Z., Jin Y., He J., Yan Y. Differential proteome analysis of host cells infected with porcine circovirus type 2. J Proteome Res 2009, 8:5111-5119.
    246. Zhao J., Wang W., Yuan Z., Jia R., Zhao Z., Xu X., Lv P., Zhang Y., Jiang C., Gao X.M. A study on antigenicity and receptor-binding ability of fragment 450-650 of the spike protein of SARS coronavirus. Virology 2007, 359:362-370.
    247. Zheng X., Hong L., Shi L., Guo J., Sun Z., Zhou J. Proteomics analysis of host cells infected with infectious bursal disease virus. Mol Cell Proteomics 2008, 7:612-625.
    248. Zhou Q., Snider N.T., Liao J., Li D.H., Hong A., Ku N.O., Cartwright C.A., Omary M.B. Characterization of in vivo keratin 19 phosphorylation on tyrosine-391. PLoS One 2010, 5:e13538.
    249. Zhou Y., Frey T.K., Yang J.J. Viral calciomics: interplays between Ca2+ and virus. Cell Calcium 2009, 46:1-17.