膜联蛋白A家族与子痫前期
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
子痫前期(preeclampsia,PE)是妊娠期特有的疾病,是妊娠期高血压疾病最常见的类型。流行病学调查显示其发病率在我国约为9.4%-10.4%,国外报道其发病率为7%-12%。尽管围产保健技术不断进步,该病仍严重影响母儿健康,是导致孕产妇和围生儿病率及死亡率增加的主要原因之一。尽管国内外学者对其病因及发病机制做了大量的研究,目前子痫前期的发病机制不明确,尚未发现明确单一致病因素,系多因素综合作用所致。
     膜联蛋白(annexins)是一种非常古老而又广泛存在的蛋白,是一种以钙离子依赖性方式与酸性磷脂结合的蛋白质。大量的研究显示,膜联蛋白在胞吞、胞吐作用、细胞间以及细胞与细胞外基质间的相互作用、离子通道的形成等多种生理过程中起作用。研究发现,某些疾病的发生与膜联蛋白家族在细胞中的表达密切相关。在annexin家族中,annexin A2和annexin A5与凝血-纤溶密切相关。长期以来,研究发现annexin A2和annexin A5与不良妊娠结局如复发性流产、抗磷脂综合症的胎盘变化密切相关,但其与子痫前期的关系尚缺乏深入研究。
     第一部分缺氧条件下滋养细胞的生长及胎盘滋养细胞凋亡和病理检测
     目的:研究体内外缺氧环境对滋养细胞在生长、凋亡的影响及对胎盘的影响。
     方法:采用缺氧培养技术检测体外缺氧情况下滋养细胞的生长。通过流式细胞术检测体内缺氧情况下(子痫前期患者体内的缺氧状态)滋养细胞的凋亡。同时通过HE染色检测子痫前期患者胎盘组织的病理变化。
     结果:
     1体外滋养细胞缺氧状态培养发现,随着缺氧时间的延长,滋养细胞生长受限,膜联蛋白表达水平下调。
     2流式细胞术检测发现,子痫前期(体内缺氧情况下),滋养细胞凋亡尤其是早期凋亡发生改变:早发型轻度子痫前期组为3.21%,早发型子痫重度前期组为5.32%,晚发型轻度子痫前期组为2.43%,晚发型重度子痫前期组为4.28%,正常妊娠组为1.05%。
     3在正常妊娠者的胎盘组织中未发现血管内微血栓的形成。而在子痫前期患者胎盘组织中可以见到胎盘血管内微血栓的形成,且随着病情程度的加重,微血栓形成逐渐增多。
     结论:缺氧情况下,体外滋养细胞生长受限;体内滋养细胞(胎盘滋养细胞)凋亡尤其是早期凋亡明显增加。同时,子痫前期患者胎盘组织血管中可见微血栓形成。
     第二部分膜联蛋白A5在子痫前期患者体内的表达
     目的:探讨膜联蛋白A5(annexinA5)在子痫前期及正常妊娠孕妇外周血及胎盘组织中的表达及其与子痫前期发病的关系。
     方法:选择2007年12月-2009年12月在河北医科大学第二医院住院分娩患者早发型子痫前期(轻度、重度)、晚发型子痫前期(轻度、重度)及健康妊娠孕妇各30例,共150例,收集其外周血及胎盘组织,应用免疫组化研究annexin A5在胎盘组织中的定位、应用Western blot、RT-PCR测定患者外周血及胎盘组织中annexin A5的表达。
     结果:
     1通过免疫组化检测发现,膜联蛋白A5(annexin A5)主要在胎盘滋养细胞表面高表达。与正常妊娠相比,子痫前期患者胎盘滋养细胞表面annexin A5染色减少。
     2通过Western blot检测子痫前期患者胎盘组织及外周血中annexin A5的表达水平。胎盘组织及外周血中annexin A5水平:早发型轻度子痫前期组分别为0.54±0.12及0.62±0.17,早发型重度子痫前期组分别为0.47±0.15及0.56±0.24,晚发型轻度子痫前期组分别为0.74±0.23及1.08±0.32,晚发型重度子痫前期组分别为0.68±0.28及0.72±0.21,正常妊娠组分别为1.73±0.35及1.55±0.27。与正常妊娠相比,子痫前期患者组织中的膜联蛋白A5(annexin A5)表达明显减少。
     3通过RT-PCR技术检测胎盘组织中annexin A5 mRNA的表达水平:早发型轻度子痫前期组为25.0±3.04,早发型重度子痫前期组为24.8±2.96,晚发型轻度子痫前期组为25.4±3.92,晚发型重度子痫前期组为25.1±2.74,正常妊娠组为30.6±2.68。
     结论:通过免疫组化和Western blot检测发现,膜联蛋白A5(annexin A5)主要在胎盘滋养细胞表面高表达,与正常妊娠相比,子痫前期患者胎盘滋养细胞annexin A5表达下调,可能影响胎盘凝血-纤溶系统,促使子痫前期患者高凝状态的形成,与子痫前期的发生、发展相关。
     第三部分膜联蛋白A2在子痫前期患者体内的表达
     目的:探讨膜联蛋白A2(annexin A2)在子痫前期及正常妊娠孕妇外周血及胎盘组织中的表达及其与子痫前期发病的关系。
     方法:选择2007年12月-2009年12月在河北医科大学第二医院住院分娩患者早发型子痫前期(轻度、重度)、晚发型子痫前期(轻度、重度)及健康妊娠组患者各30例,共150例,收集其外周血及胎盘组织,应用免疫组化研究annexin A2在胎盘组织中的定位、应用Western blot、RT-PCR测定患者外周血及胎盘组织中annexin A2的表达。
     结果:
     1通过免疫组化发现,膜联蛋白A2(Annexin A2)主要在胎盘滋养细胞表面高表达。与正常妊娠相比,子痫前期患者胎盘滋养细胞表面annexin A2染色减少。
     2通过Western blot检测子痫前期患者胎盘组织及外周血中annexin A2的表达水平。胎盘组织及外周血中annexin A2水平:早发型轻度子痫前期组分别为0.77±0.15及0.63±0.09,早发型重度子痫前期组分别为0.76±0.19及0.66±0.13,晚发型轻度子痫前期组分别为0.74±0.23及0.71±0.23,晚发型重度子痫前期组分别为0.81±0.35及0.59±0.14,正常妊娠组分别为1.82±0.18及0.50±0.04。与正常妊娠相比,子痫前期患者组织中的膜联蛋白A2(annexin A2)表达明显减少。
     3通过RT-PCR技术检测胎盘组织中annexin A2 mRNA的表达水平:早发型轻度子痫前期组为27.94±1.49,早发型重度子痫前期组为27.23±1.26,晚发型轻度子痫前期组为28.27±0.85,晚发型重度子痫前期组为28.54±0.65,正常妊娠组为32.34±0.71。
     结论:通过免疫组化和Western blot发现,膜联蛋白A2(annexin A2)主要在胎盘滋养细胞表面高表达,与正常妊娠相比,子痫前期患者胎盘滋养细胞annexin A2表达下调,抑制了子痫前期患者的纤溶系统,促使子痫前期患者体内高凝状态的形成,与子痫前期的发生、发展相关。
     第四部分胎盘组织膜联蛋白A5提取纯化和体外抗凝试验
     目的:探讨体内及体外膜联蛋白A5(annexin A5)的抗凝作用及其对体内凝血系统的影响。
     方法:选择2007年12月-2009年12月在河北医科大学第二医院住院分娩健康妊娠者,收集其胎盘组织进行annexin A5提纯。通过体外实验测定不同浓度annexin A5对凝血系统的影响。同时收集子痫前期组及正常妊娠组患者的外周血,测定凝血功能。
     结果:
     1.当annexin A5的浓度≥30μg/ml时,APTT逐渐延长,各组间有统计学差异并呈梯度性依赖性增加。
     2.与正常妊娠组比较,子痫前期患者外周凝血功能检测未见明显差异,但D-Dimmer升高。
     结论:Annexin A5的抗凝活性同其浓度密切相关。当annexin A5浓度≥30μg/ml,APTT与annexin A5浓度呈依赖性相关。随着annexin A5浓度增加,APTT逐渐延长。子痫前期患者外周血的APTT未见明显变化,但D-Dimmer升高。
     第五部分相关抗体的检测及分析
     目的:检测子痫前期及正常妊娠孕妇外周血中的相关抗体,并分析其在子痫前期发病机制中的作用。
     方法:应用ELISA方法检测子痫前期及正常妊娠孕妇外周血中的anti-annexin A5、anti-annexin A2、anti-β2GPI、ACL水平。
     结果:
     1与正常妊娠相比,子痫前期患者外周血中anti-annexin A5水平增加,但无统计学意义(P=0.83)。
     2与正常妊娠相比,子痫前期患者外周血中anti-annexin A2水平增加,且具有显著性差异(P=0.02)。但子痫前期各组之间,早发型子痫前期高于晚发型子痫前期,重度子痫前期高于轻度子痫前期,但各组之间无统计学差异(P=0.69)。
     3与正常妊娠相比,子痫前期患者外周血中anti-β2GPI水平增加,且具有显著性差异(P=0.04)。但子痫前期各组之间,早发型子痫前期高于晚发型子痫前期,重度子痫前期高于轻度子痫前期,但各组之间无统计学差异(P=0.79)。
     4与正常妊娠相比,子痫前期患者外周血中ACL阳性率增加。
     结论:子痫前期患者外周血中的抗体可与相应抗原结合,从而影响了annexin A2、annexin A5的功能,破坏了体内的凝血-纤溶系统平衡,促使子痫前期患者体内高凝状态的形成。
Preeclampsia is a disease which occures only in pregnancy. Epidemiological survey of its incidence in China is about 9.4% -10.4%, and foreign reports are 7% -12%. Although a lot of researches were done on the pathogenesis of PE, the mechanism remains largely unknown. And it cause maternal and child morbidity and mortality.
     Annexins is a very ancient and widespread protein, which is a calcium-dependent manner to acidic phospholipid binding proteins. A large number of studies have shown that annexins play a role in a variety of physiological processes, including endocytosis, exocytosis, cells and extracellular matrix interactions, formation of ion channels. Some diseases is associated with the expression and the activity of annexins. In the annexin family, annexin A2 and annexin A5 are mainly related to the coagulation and fibrinolysis systerm. For a long time, the study shows that annexin A2 and annexin A5 are closely related to the adverse pregnancy outcomes, such as recurrent miscarriage, antiphospholipid syndrome. But the relationship of PE and annexins are rare. Part one The growth and apoptosis of trophoblast cells in hypoxia and pathological test.
     Objective: To investigate the growth and apoptosis of trophoblast cells in hypoxia.
     Methods: Detect the growth of trophoblast cells in hypoxia in vitro. Trophoblast apoptosis in hypoxic in vivo were detceted by flow cytometry. Also placental pathology was detected by immunohistochemistry.
     Results:
     1 Trophoblast cells in hypoxia in vitro was found that with prolonged hypoxia, trophoblast growth restriction, decreased protein levels.
     2 In hypoxia, the apoptosis of trophoblast cell, especially early apoptosis increased: early-onset mild preeclampsia group was 3.21%, early-onset severe preeclampsia group was 5.32%, late-onset mild preeclampsia group was 2.43%, late-onset severe preeclampsia group was 4.28%, and the healthy pregnant group was 1.05%.
     3 Compared with normal pregnancy, the formation of microthrombi can be seen in placenta of preeclampsia with disease severity.
     Conclusion: In hypoxia, the JAR cell growth was restriction in vitro, the apoptosis of trophoblastic in vivo (placental trophoblast cells) was significantly increased, especially the early apoptosis. And microthrombosis was found in the placenta of PE. Part two The expression of annexin A5 in patients of preeclampsia
     Objective: To investigate the annexinA5 in maternal blood and placental tissue and its relationship with the pathogenesis of preeclampsia.
     Methods: 120 preeclampsia and 30 matched normal pregnant controls were included in the study. Expression of annexin A5 mRNA in placental tissues was analyzed using quantitative real time RT-PCR. Annexin A5 protein in placentas as well as blood was determined by western blot analysis and immunohistochemistry.
     Results: The expression levels of annexin A5 mRNA were significantly decreased in preeclampsia compared to normal pregnancies. The levels of annexin A5 protein in placentas were also significantly reduced in patients with preeclampsia, compared with healthy pregnant women.
     1 Annexin A5 mainly expressed in the surface of trophoblast cell. Compared with normal pregnancy, the expression of annexin A5 in placental trophoblast of preeclampsia cell surface is reduced.
     2 The expression level of annexin A5 in placental tissue and peripheral blood. Placental tissue and peripheral blood levels of annexin A5: early-onset mild preeclampsia group are 0.54±0.12 and 0.62±0.17, early-onset severe preeclampsia group are 0.47±0.15 and 0.56±0.24, late-onset mild preeclampsia group are 0.74±0.23 and 1.08±0.32, late-onset severe preeclampsia group are 0.68±0.28 and 0.72±0.21, and healthy pregnant group are 1.73±0.35 and 1.55±0.27.
     3 The mRNA levels of annexin A5 by RT-PCR in placental tissue: early-onset mild preeclampsia group is 25.0±3.04, early-onset severe preeclampsia group is 24.8±2.96, late-onset mild preeclampsia group is 25.4±3.92, late-onset severe preeclampsia group is 25.1±2.74, and healthy pregnancy group is 30.6±2.68.
     Conclusion: Annexin A5 mainly expresses on the surface of trophoblast cell. Compared with normal pregnancy, annexin A5 in placental of preeclampsia was decreased, which affect placental blood coagulation - fibrinolytic system. It may play an important role in the occurrence and the development of preeclampsia. Part three The expression of annexin A2 in patients of preeclampsia
     Objective: To investigate the annexinA2 in maternal blood and placental tissue and its relationship with the pathogenesis of preeclampsia.
     Methods: 120 preeclampsia and 30 matched normal pregnant controls were included in the study. Expression of annexin A2 mRNA in placental tissues was analyzed using quantitative real time RT-PCR. Annexin A2 protein in placentas as well as blood was determined by western blot analysis and immunohistochemistry.
     Results: The expression levels of annexin A2 mRNA were significantly decreased in preeclampsia compared to normal pregnancies. The levels of annexin A2 protein in placentas were also significantly reduced in patients with preeclampsia, compared with healthy pregnant women.
     1 Annexin A2 mainly expressed in the surface of trophoblast cell. Compared with normal pregnancy, the expression of annexin A2 in placental trophoblast of preeclampsia cell surface is reduced.
     2 The expression level of annexin A2 in placental tissue and peripheral blood. Placental tissue and peripheral blood levels of annexin A2: early-onset mild preeclampsia group were 0.77±0.15 and 0.63±0.09, early-onset severe preeclampsia group were 0.76±0.19 and 0.66±0.13, late-onset mild preeclampsia group were 0.74±0.23 and 0.71±0.23, late-onset severe preeclampsia group were 0.81±0.35 and 0.59±0.14, and healthy pregnant group were 1.82±0.18 and 0.50±0.04. Compared with normal pregnancy, annexin A2 in preeclampsia is significantly reduced.
     3 The expression of annexin A2 mRNA by RT-PCR in placental tissue: early-onset mild preeclampsia group 27.94±1.49, early-onset severe preeclampsia group was 27.23±1.26, late-onset mild preeclampsia group was 28.27±0.85, late-onset severe preeclampsia group was 28.54±0.65, and healthy pregnancy group was 32.34±0.71.
     Conclusion: Annexin A2 mainly expresses on the surface of trophoblast cell. Compared with normal pregnancy, annexin A2 in placental of preeclampsia was decreased. It plays an important role in the occurrence and the development of preeclampsia. Part four The purification of annexin A5 and its anticoagulantion in vitro
     Objective: To investigate the anticoagulation of annexin A5 in vivo and in vitro.
     Methods: Placental tissues of healthy pregnancy women were collected for purification. The anticoagulation of annexin A5 was measured in vitro with different concentrations of annexin A5.
     Results:
     1 When the concentration of annexin A5≥30μg/ml, APTT gradually extended. There are significant differences between the groups.
     2 Compared with the normal group, the coagulation of peripheral blood was no significant difference.
     Conclusion: Annexin A5 anticoagulant activity is closely related with its concentration. When the concentration of annexin A5≥30μg/ml, APTT extended with the increasing concentration of annexin A5. However, the APTT in peripheral blood of patients with preeclampsia did not change. Part five Antibody detection in preeclampsia
     Objective: To detect related antibodies in maternal blood of the preeclampsia and analyze the ralationship between of antibody and pathogenesis of preeclampsia.
     Methods: The level of anti-annexin A5, anti-annexin A2, anti-β2GPI and ACL in maternal blood of preeclampsia and normal pregnancy were dectected by ELISA.
     Results:
     1 Compared with normal pregnancy, levels of anti-annexin A5 in the peripheral blood of patients with preeclampsia is increased. But there was no significant difference between them (P=0.83).
     2 Compared with normal pregnancy, levels of anti-annexin A2 in the peripheral blood of patients with preeclampsia are increased, and it has a significant difference between them (P=0.04).
     3 Compared with normal pregnancy, levels of anti-β2GPI in the peripheral blood of patients with preeclampsia are increased, and it has a significant difference between them (P=0.01).
     4 Compared with normal pregnancy, ACL-positive rate in preeclampsia was increased.
     Conclusion:The antibody in peripheral blood, which binding to antigen antibody decreased the level of annexin A5, annexin A2 expression. And they influcene the coagulation and fibrinolysis system, which creats hypercoagulation of PE.
引文
1丰有吉,沈铿.妇产科学.北京人民卫生出版社, 2005:78
    2 Federko E, Genbaeev O, Fisher SJ. Precclampsia is assoeiated with widespread apoptosis of placental cytotrophoblasts with in the uterine wall. Am J Pathol, 1999, 155(1):293-301
    3 Ishihara N, Matsno H, Murakoshi H, et al. Increased apoptosIs in thesyncytiotrophoblast in human term placentas complicated by either prceclampsia or intrauterine growth retardation. Am J Obstet Gynceol, 2002, 186(1):158-166
    4 Roberts JM, Taylor RN, Musci TJ, et al. Preeclampsia: an endothelial cell disorder. Am J obstct Gyneeol, 1989, 161:1200-1204
    5 Jaffe R, Dorgan A, Abramowicz JS. Color Doppler imaging of the uteroplacental circulation in the first trimester: value in predicting pregnancy failure or complication. AJR Am J Roentgeaol, 1995, 164:1255-1258
    6 Jaffe R, Jauniaux E, Hustin J. Maternal circulation in the first-trimester human placenta-myth or reality. Am J Obstet Gynecol, 1997, 176:695-705
    7 Jones CJ, Fox H. An ultrastructural and ultrahistochemical study of the human placenta in maternal essential hypertension. Placenta, 1981, 2:193-204
    8 Kujovich JL. Thrombophilia and pregnancy complications. Am J Obstet Gynecol, 2004, 191:412-424
    9 Tanjung MT, Siddik HD, Hariman H, et al. Coagulation and fibrinoly-sis in preeclampsis and neonate. Clin Appl Thromb Hemost, 2005, 1:467-473
    10 Hu R, Jin H, Zhou S, et al. Proteomic analysis of hypoxia-induced responses in the syncytialization of human placental cell line Be-WO. Placenta, 2007, 28:399-407
    11 Kudo Y, Boyd CA, Sargent IL, et al. Hypoxia alters expressionandfunction of syncytin and its receptor during trophoblast cell fusion of human placental BeWo cells: implications for impaired trophoblast syncytialisation in pre-eclampsia. Biochim Biophys Acta, 2003, 1638(1): 63-71
    12 Hawkins T, Das D, Young B, et al. DT40 cells lacking the Ca2+- binding protein annexin 5 are resistant to Ca2+-dependent apoptosis. Proc Natl Acad Sci, 2002, 99(12):8054-8059
    13 Appelt U, Sheriff A, Gaipl U, et al. Viable, poptotic and necrotic monocytes expose phosphatidylserine: cooperative binding of the ligand AnnexinV to dying but not viable cells and implications for PS dependent clearance. Cell Death Differ, 2005, 12(2):1942-1961
    14 Zhang Y, Hua Z, Zhang K, et al. Therapeutic Effects of Anticoagulant agents on Preeclampsia in a Murine ModelInduced by Phosphatidylserine/Phosphatidylcholine Microvesicles. Placenta, 2009 30(12):1065-1070.
    1丰有吉,沈铿.妇产科学.北京人民卫生出版社, 2005:78
    2 Cookson BT, Engelhardt S, Smith C, et al. Organization of the human annexinV (ANX5) gene. Genomics, 1994, 20(3):463-467
    3 Krikun G, Lockwood CJ, Wu XX, et al. The expression of the placental anti-coagulation protein, annexinV, by villous trophoblasts: immunolocalization and in virto regulation. Placenta, 1994, 15:601-602
    4 Kujovich JL. Thrombophilia and pregnancy complications. Am J Obstet Gynecol, 2004, 191:412-424
    5 Tanjung MT, Siddik HD, Hariman H, et al. Coagulation and fibrinolysis in preeclampsia and neonates. Clin Appl Thromb Hemost, 2005, 1:467-473
    6 Hu R, Jin H, Zhou S, et al. Proteomic analysis of hypoxia-induced responses in the syncytialization of human placental cell line Be-WO. Placenta, 2007, 28:399-407
    7 Shu F, Sugimura M, Kanayama N, et al. Immunohistochemical study of AnnexinV expression in placentae of preeclampsia. Gynecol Obstet Invest, 2000, 49(1): 17-23
    1 Radke K, Martin GS. Transformation by Rous sarcoma virus: effects of src gene expression on the synthesis and phosphorylation of cellular polypeptides. Cold Spring Harb Symp Quant Biol, 1980, 44(2):975-982
    2 Cesarman GM, Guevara CA, Hajjar KA. An endothelial cell receptor for plasminogen/tissue plasminogen activator (t-PA) .II. Annexin II-mediated enhancement of t-PA-dependent plasminogen activation. J Biol Chem, 1994, 269(33):21198-21203
    3 Hajjar KA, Jacovina AT, Chacko J. An endothelial cell receptor for plasminogen and tissue plasminogen activator: I, identity with annexinII. J Biol Chem, 1994, 269:21191-21197
    4 Kaczan-Bourgois D, Salles JP, Hullin F, et al. Increased content of annexinII (p36) and p11 in human placenta brush-border membrane vesicles during syncytiotrophoblast maturation and differentiation. Placenta, 1996, 17:669-676
    5丰有吉,沈铿.妇产科学.北京人民卫生出版社, 2005:78
    6 Ling Q, Jacovina AT, Deora A, et al. AnnexinII regulates fibrin homeostasis and neoangiogenesis in vivo. J Clin Invest, 2004, 113:38-48
    7 Menell JS, Cesarman GM, Jacovina AT, et al. AnnexinII and bleeding in acute promyeolocytic leukemia. N Engl J Med, 1999, 340:994-1004
    8 Olwill SA, McGlynn H, Gilmore WS, et al. AnnexinII cell surface and mRNA expression in human acute myeloid cell lines. Thromb Res, 2005, 115:109-114
    9 Sebastiani P, Ramoni MF, Nolan V, et al. Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia. Nature Genetics, 2005, 37: 435-440
    10 Ling Q, Febbraio M, Deora B, et al. AnnexinII is a key regulator of fibrin homeostasis and neoangiogenesis. J Clin Invest, 2004, 113:38-48
    11 Ishii H, Yoshida M, Hiraoka M, et al. Recombinant annexinII modulates impaired fibrinolytic activityin vitro and in rat carotid artery. Circ Res, 2001, 89:1240-1245
    12 Hu R, Jin H, Zhou S, et al. Proteomic analysis of hypoxia-induced responses in the syncytialization of human placental cell line Be-WO. Placenta, 2007, 28:399-407
    1 Sibai BM. Preeclampsia-eclampsia. Curr Probl Obstet Gynecol Fertil, 1990, 11(2): 1-45
    2 Friedman SA. Preeclampsia: a review of the role of prostaglandins. Am J Obstet Gynecol, 1988, 71:122-137
    3俞颖,周红. Annexin家族在抗磷脂综合征血栓形成中的作用.国际病理科学与临床杂志, 2005, 12(25):566-569
    4 Brenner B. Haemostatic changes in pregnancy. Thrombosis Research, 2004, 114:409-414
    5 Rand JH, Wu XX, Lapinski R, et al. Detection of antibody mediated reduction of annexin A5 anticoagulant activity in plasmas of patients with the antiphospholipid syndrome. Blood, 2004, 104(9):2783-2790
    6 Rand JH, Arslan AA, Wu XX, et al. Reduction of circulating annexin A5 levels and resistance to annexin A5 anticoagulant activity in women with recurrent spontaneous pregnancy losses. Am J Obstet Gynecol, 2006, 194(1):182-188
    7 Gibert JS, Ryan MJ, LaMarca BB, et al. Pathophysiology of hypertension during preeclampsia linking placental ischemia with endothelial dysfunction. Am J Physiol Heart Vcirc Physiol, 2008, 294:541-550
    8 McCoy S, Baldwin K. Pharmacotherapeutic options for the treatment of preeclampsia. Am J Health Syst Pharm, 2009, 66:337-344
    9 Burton GJ, Yung HW, Cindrova-Davies T, et al. Placental endoplasmic reticulum tress and oxidative stress in the pathophysiology of unexpl-ained intrauterine growth restriction and early onset preeclampsia. Placenta, 2009, 30:S43-48.
    10姚泰,曹济民,樊小力.生理学.北京人民卫生出版社, 2005:120-121.
    11 sser G, Ravanat C, Fressinet JM, et al. Sub-domain structure of lipid-bound annexin-V resolved by electron image analysis. Mol Biol, 1991, 217:241-245
    12 oges D, Berendes R, Burger A, et al. Three-dimensional structure ofmembrane-bound annexinV. A correlative electron microscopy-X-ray crystallography study. Mol Biol, 1994, 238:199-231
    13 Entz BR. Exposure of platelet membrane phosphatidylserine regulates blood coaguation. Prog Lipid Res, 2003, 42: 423-438
    14 Eerden PV, Wu XX, Rand JH. The role of annexins in pregnancy. Annexins, 2004, 1:90-98
    15 Fang S, Sugimura M, Kanayama N, et al. Immunohistochemical study of AnnexinV expression in Placentae of Preeclampsia. Gynecol Obstet Invest, 2000, 49(1):17-23
    16王鸿利.实验诊断学.北京人民卫生出版社, 2005:146
    1 Reutelingsperger CPM. Annexins: key regulators of haemostas is thrombosis, and apoptosis. Throm b H aem ost, 2001, 86:413-419
    2 Rand JH, W uXX, AndreeHA, et al. Pregnancy loss in the antiphospholipid antibody syndrom e:a possible thromobogenic mechanism. N Engl J M Ed, 1997, 337:154-160
    3 Wang X, C ampos B, Kaetzel MA, et al. Annex in V is critical in the maintenane of murine placental integrity. Am J ObstetGynecol, 1999, 180:1008-1016
    4 Van Heerde WL, Lap P, Schoormans S, et al. Localization of annexin A5 in human tissue. Annexins, 2004, 1:37-43
    5 Van Eerden P, Wu X, Chazotte C, et al. The role of annexins in pregnancy. Annexins, 2004, 1:90-98
    6 Rand JH, Wu XX, Guller S, et al. Reduction of annexin-V (placental anticoagulant protein-I) on placental villi of women with antiphospholipid antibodies and recurrent spontaneous abortion. Am J Obstet Gynecol, 1994, 171:1566-1572
    7 Rand JH, Wu XX, Guller S, et al. Antiphospholipid immunoglobulin G antibodies reduce annexin-V levels on syncytiotrophoblast apical membranes and in culture media of placental villi. Am J Obstet Gynecol, 1997, 177:918-923
    8 Nojima J, Kuratsune H, Suehisa E, et al. Association between the prevalence of antibodies to beta(2)-glycoprotein I, prothrombin, protein C, protein S, and annexin V in patients with systemic lupus erythematosus and thrombotic and thrombocytopenic complications. Clin Chem, 2001, 47:1008-1015
    9 Arnold J, Holmes Z, Pickering W, et al. Anti-β2 glycoprotein 1 and anti-annexinV antibodies in women with recurrent miscarriage. Br J Haematol, 2001, 113:911-914
    10 Gris JC, Quere I, Sanmarco M, et al. Antiphospholipid and antiproteinsyndromes in non-thrombotic, nonautoimmune women with unexplained recurrent primary early foetal loss. The Nimes Obstetricians and Haematologists Study-NOHA. Thromb Haemost, 2000, 84:228-236
    11 Siaka C, Lambert M, Caron C, et al. Low prevalence of anti-annexinV antibodies in antiphospholipid syndrome with fetal loss. Rev Med Interne, 1999, 20:762-765
    12 DiSimone N, Castellani R, Caliandro D, et al. Monoclonal anti-annexin V antibody inhib its trophoblast gonadotrop in secretion and induces syncytiotrophoblast apoptosis. Biol Reprod, 2001, 65:1766-1770
    13 de Laat B, Derksen RH, Mackie IJ, et al. Annexin A5 polymorphism (-1C-T) and the presence of anti-annexin A5 antibodies in the antiphospholipid syndrome. Ann Rheum Dis, 2006, 65:1468-1472
    14 Ling Q, Jacovina AT, Deora A, et al. AnnexinII regulates fibrin homeostasis and neoangiogenesis in vivo. J Clin Invest, 2004, 113:38-48
    15 Menell JS, Cesarman GM, Jacovina AT, et al. AnnexinII and bleeding in acute promyeolocytic leukemia. N Engl J Med, 1999, 340:994-1004
    16 Olwill SA, McGlynn H, Gilmore WS, et al. AnnexinII cell surface and mRNA expression in human acute myeloid cell lines. Thromb Res, 2005, 115:109-114
    17 Sebastiani P, Ramoni MF, Nolan V, et al. Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia. Nature Genetics, 2005, 37: 435-440
    18 Cesarman-Maus G, Ríos-Luna NP, Deora AB, et al. Autoantibodies against the fibrinolytic receptor, anneixn 2, in antiphodpholipid syndrome. Blood, 2006, 107(11):4375-4382
    19 Milliez J, Lelong F, Bayani N, et al. The prevalence of autoantibodies during third-trimester pregnancy complicated by hypertension or idiopathic fetal growth retardation. Am J Obstet Gynecol 1991; 165:51-56.
    20 Branch DW, Andres KB, Digre K, et al. The association of antiphospholipid antibodies with severe preeclampsia. Obstet Gynecol1989; 73:541-545
    21 Scott RAH. Anticardiolipin antibodies and preeclampsia. Br J Obstet Gynaecol 1987; 94:604-605
    22 Dekker G, de Vries JI, Doelitzch PM, et al. Underlying disorders associated with severe early onset preeclampsia. Am J Obstet Gynecol 1995; 173:1042-1048
    23 Yamamoto T, Takahashi Y, Geshi Y, et al. Anti-phospholipid antibodies in preeclampsia and their binding ability for placental villous lipid fractions. J Obstet Gynaecol Res 1996; 22:275-283
    24 Allen JY, Tapia-Santiago C, Kutteh WH. Antiphospholipid antibodies in patients with preeclampsia. Am J Reprod Immunol 1996; 36:81-85
    25 Milliez J, Lelong F, Bayani N, et al. The prevalence of autoantibodies during third-trimester pregnancy complicated by hypertension or idiopathic fetal growth retardation. Am J Obstet Gynecol 1991; 165:51-56
    26 Alli M, Comfurius P, Maassen C, et al. Anticardiolipin antibodies (ACA) are directed not to cardiolipin but to a plasma protein cofactor. Lancet, 1990, 335:1544-1547
    27 McNeil HP, Simpson RJ, Chesterman CN, et al. Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation:β2-glycoprotein I (apolipopro-tein H). Proc Natl Acad Sci USA, 1990, 87:4120-4124
    28 Matsuura E, Igarashi Y, Fujimoto M, et al. Anticardiolipin cofactor(s) and differential diagnosis of autoimmune disease. Lancet, 1990, 336:177-178
    29 Ma K, Simantov R, Zhang JC, et al .High affinity binding ofβ2-glycoprotein I to human endothelial cells ismed iated by annexin II. J Biol Chem, 2000, 275:15541-15548
    1 Gerke V, Moss SE. Annexin: from structure to function. Physio Rev, 2002, 82(2):33l-371
    2 Munoz LE, Franz S, Pausch F, et al. The influence on the immunomodulatory effects of dying and dead cells of AnnexinV. JLeukoc Biol, 2007, 81(1):6-14
    3 Buckland AG, Wilton DC. Inhibition of secreted phospholipases A2 by annexinV. Competition for anionic phospholipid interfaces allows all assessment of the relative interfacial affinities of secreted phospholipases A2. Biochim Biophys Acta, 1998, 1391(3):367-376
    4 Funakoshi T, Hendrickson L, McMullen BA, et al. Primary structure of human placental anticoagulant protein. Biochemistry, 1987, 26(25):8087-8092
    5 Rey E, Kahn SR, David M, et al. Thrombophilic disorders and fetal loss: a meta-analysis. Lancet, 2003, 361:901-908
    6 Dudding TE, Attia J. The association between adverse pregnancy outcomes and maternal factor V Leiden genotype: a meta-analysis. Thromb Haemost, 2004, 91:700-711
    7 Ravassa S, Bennaghmouch A, Kenis H, et al. Annexin A5 down-regulates surface expression of tissue factor: a novel mechanism of regulating the membrane receptor repertoir. J Biol Chem, 2005, 280:6028-6035
    8 Capila I, Hernait MJ, Mo YD, et al. AnnexinV– heparin oligosaccharide complex suggests heparan sulfate-mediated assembly on cell surfaces. Structure (Camb), 2001, 9(1):57-64
    9 Gude NM, Roberts CT, Kalionis B, et al. Growth and function of the normal human placenta. Thromb Res, 2004, 114(5-6):397-407
    10 Meroni PL, Di Simone N, Testoni C. Antiphospholipid antibodies as cause of pregnancy loss. Lupus, 2004, 13(9):649-652
    11 Rand JH, Arslan AA, Wu XX, et al. Reduction of circulating Annexin A5 levels and resistance to Annexin A5 anticoagulant activity in women with recurrent spontaneous pregnancy losses. Am J Obstet Gynecol, 2006, 194:182-188.
    12 Van Tilborg GA, Mulder WJ, Deckers N, et al. Annexin A5-functionalized bimodal lipid-based contrast agents for the detection of apoptosis. Bioconjug Chem, 2006, 17(3):741-749
    13 Boersma HH, Kietselaer BL, Stolk LM, et al. Past, present, and future ofannexin A5: from protein discovery to clinical applications. Nucl Med, 2005, 46:2035-2050
    14 Sim D, Flaumenhaft R, Furie B, et al. Interactions of platelets, blood-borne tissue factor, and fibrin during arteriolar thrombus formation in vivo. Microcirculation, 2005, 12(3):301-311
    15 Monroe DM, Hoffman M, Roberts HR. Platelets and thrombingeneration. Arterioscler Thromb Vasc Biol, 2002, 22(9):1381-1389
    16 Rand JH, Wu XX, Andree HA, et al. Pregnancy loss in the antiphospholipid-antibody syndrome-a possible thrombogenic mechanism. N Engl J Med, 1997, 337:154-160
    17 Vora S, Shetty S, Salvi V, et al. Comprehensive screening analysis of antiphospholipid antibodies in Indian women with fetal loss. European Journal of Obstetrics & Gynecology and Reproductive Biology, 2008, 137:136-140
    18 Rand JH, Wu XX, Guller S, et al. Reduction of annexin-V (placental anticoagulant protein-I) on placental villi of women with antiphospholipid antibodies and recurrent spontaneous abortion. Am J Obstet Gynecol, 1994, 171:1566-1572
    19 Rand JH, Wu XX, Quinn AS, et al. Human monoclonal antiphospholipid antibodies disrupt the annexin A5 anticoagulant crystal shield on phospholipid bilayers: evidence from atomic force microscopy and functional assay. Am J Pathol, 2003, 163(3):1193-1200
    20 Bogdanova N, Horst J, Chlystun M, et al. A common haplotype of the annexin A5 (ANXA5) gene promoter is associated with recurrent pregnancy loss. Hum Mol Genet, 2007, 16:573-578
    21 Subrt I, Ulcova-Gallova Z, Bibkova K, et al. Recurrent pregnancy loss and frequency of eight antiphospholipid antibodies and genetic thrombophilic factors in Czech women. Am J Reprod Immunol, 2008, 59:193-200
    22 Cookson BT, Engelhardt S, Smith C, et al. Organization of the human annexinV (ANX5) gene. Genomics, 1994, 20(3):463-467
    23 Tiscia G, Colaizzo D, Chinni E, et al. Haplotype M2 in the annexin A5 (ANXA5) gene and the occurrence of obstetric complications. Thromb Haemost, 2009, 102:309-313
    24 Di Simune N,Castllani R, Caliandro D', et a1. Monoclonal anti-annexinV antibody inhibits trophoblast gonadotropin secretion and induces syncytiotzophoblast apoptosis. Biology of reproduction, 2001, 65(6):1766-1770
    25 Zammiti W, Mtiraoui N, Hidar S, et al. Antibodies to beta2-giycoprotein I and annexinV in women with early and late idiopathic recurrent spontaneous abortions. Arch Gynecol Obsteet, 2006, 274(5):261-265
    26 Zammiti W, Mtiraoui N, Kallel C, et al. A case-control study on the association of idiopathic recurrent pregnancy loss with autoantibodies against b2-glycoprotein and annexinV. Reproduction, 2006, 131:817-822
    27 Wang X, Campos B, Kaetzel MA, et al. Annexin V is critical in the maintenance of murine placental integrity. Am J Obstet Gynecol, 1999, 180:1008-1016
    28 Halbmaycr WM, Feichtinger W, Kindermann C, et al. Recurrent miscarriage or failed in-vitro fertilization: antibodies against annexinV, cardiolipin, beta-2-glycoprotein-1 and APC-resistance. Hamostaseologie, 2005, 25(4):391-393
    29 Kawaminami M, Etoh S, Miyaoka H, et al. Annexin 5 messenger ribonucleic acid expression in pituitary gonadotropes is induced by gonadotropin-releasing hormone (GnRH) and modulates GnRH stimulation of gonadotropin release. Neuroendocrinology, 2002, 75(1):2-11
    30 Feng YL, Zhou CJ, Xue M. Expression of annexin V in decidua tissues of preeclampsia patients. China Fourth Mil Med Univ, 2009, 29(7):1438-1441
    31 Wu XX, Arslan AA, Wein R, et al. Analysis of circulating annexin A5 parameters during pregnancy: Absence of differences between women with recurrent spontaneous pregnancy losses and controls. AmericanJournal of Obstetrics and Gynecology, 2006, 195:971-978
    32 Ulander VM, Stefanovic V, Masuda J, et al. Plasma levels of annexins IV and V in relation to antiphospholipid antibody status in women with a history of recurrent miscarriage. Thrombosis Research, 2007, 120:865-870
    33 Gharavi AE, Pierangeli SS, Levy RA, et al. Mechanisms of pregnancy loss in antiphospholipid syndrome. Clin Obstet Gynecol, 2001, 44(1):11-19
    34 Koy C, Heitner JC, Woisch R, et al. Cryodetectormass spectrometry profiling of plasma samples for HELLP diagnosis: An exploratory study. Proteomics, 2005, 5(12):3079-3087
    35 Morrison ER, Miedzybrodzka ZH, Campbell DM, et al. Prothrombotic genotypes are not associated with pre-eclampsia and gestational hypertension: results from a large population-based study and systematic review. Thromb Haemost, 2002, 87:779-785
    36 Mutter WP, Karumanchi SA. Molecular mechanisms of pre-eclampsia. Microvasc Res, 2008, 75(1):1-8
    37 Shu F, Sugimura M, Kanayama N, et al. Immunohistochemical study of AnnexinV expression in Placentae of Preeclampsia. Gynecol Obstet Invest, 2000, 49(1):17-23
    38 Coolman M, De Maat M, Van Heerde WL, et al. Matrix Metalloproteinase-9 Gene-1562C/T Polymorphism Mitigates Preeclampsia. Placenta, 2007, 28:709-713
    39 Tait JF, Cerqueira MD, Dewhurst TA, et al. Evaluation of AnnexinVas a platelet-directed thrombus targeting agent. Thromb Res, 1994, 75:491-501
    40 Rand JH, Wu XX, Lapinski R, et al. Detection of antibody-mediated reduction of annexin A5 anticoagulant activity in plasmas of patients with the antiphospholipid syndrome. Blood, 2004, 104:2783-2790
    41 Dundar O, Yoruk P, Tutuncu L, et al. Second trimester amniotic fluid annexin A5 levels and subsequent development of intrauterine growthrestriction[. Prenat Diagn, 2008, 28:887-891
    42 Sugimura M, Kobayashi T, Shu F, et al. AnnexinV inhibits phosphatidlserine-induced intrauterine growth restriction in mice. Placenta, 1999, 20(7):555-560
    43 Chinni E, Tiscia GL, Colaizzo D, et al. Annexin V expression in human placenta is influenced by the carriership of the common haplotype M2. Fertil Steril, 2009, 91:940-942
    44 Roberts D, Schwartz RS. Clotting and hemorrhage in the placenta: a delicate balance. N Engl J Med, 2002, 347:57-59
    45 Van Heerde WL, Lap P, Schoormans S, et al. Localization of annexin A5 in human tissues.Annexins, 2004, 1:56-62
    46 Sun LZ, Yang NN, De W, et al. Proteomic analysis of proteins differentially expressed in preeclamp tictrophoblasts. Gynecol Obstet Invest, 2007, 64(1):17-23
    47 Van Eerden P, Wu XX, Chazotte C, et al. Annexin A5 levels in midtrimester amniotic fluid: association with intrauterine growth restriction. Am J Obstet Gynecol, 2006, 194:1371-1376
    48 Willem JK, Nand GJ, Jakoba JK, et al. Thrombophiilias and adverse pregnancy outcome-a confounded problem. Thromb Haemost, 2008, 99:77-85
    49 Stepan H, Geipel A, Schwarz F, et al. Circulatory soluble endoglin and its predictive value for preeclampsia in second-trimester pregnancies with abnormal uterine perfusion. Am J Obstet Gynecol, 2008, 198(2):175.e1-6
    50 Gadeau AP, Chaulet H, Daret D, et al. Time course of osteopontin, osteocalcin, and osteonectin accumulation and calcification after acute vessel wall injury. J Histochem Cytochem, 2001, 49:79-86
    51 Myren M, Mose T, Mathiesen L, et al.The human placental-Analternative for studying foetal exposure. Toxicol in Vitro, 2007, 21(7):1332-1340
    52 Syme MR,Paxton JW,Keelan JA. Drug transfer and metabolism by the human placenta. Clin Pharmacokinet, 2004, 43(8):487-514
    53 De Meyer S, Gong ZJ, Hertogs K, et al. Influence of the administrationof human annexinV on in vitro binding of small hepatitis B surface antigen to human and to rat hepatocytes and on in vitro hepatitis B virus infection. J Viral Hepatol, 2000, 7(2):104-114
    54 Gong ZJ, De Meyer S, Hertogs K, et al. Transfection of a rat hepatoma cell line with a construct expressing human liver annexinV confers susceptibility to hepatitis B virusinfection. Hepatology, 1999, 29(2):576-584
    55 Hertogs K, Leenders WP, Depla E, et al. Endonexin II, present on human liver plasma membranes, is a specific binding protein of small hepatitis B viu DZ, Yan YP, Choi BC, et al. Risk factors and mechanism of transplacental transmission of hepatitis B virus: a case - control study. J Med Virol, 2002, 67(1):20-26
    56 Xu DZ, Yan YP, Choi BC, et al. Risk factors and mechanism of transplacental transmission of hepatitis B virus: a case - control study[J]. J Med Virol, 2002, 67(1):20-26
    57 wang J, Sun L. Study on the cellular molecular mechanism of intrauterine transmission of Hepatitis B virus. Journal of Nanjing Medical University, 2003, 17(5):243-248
    1 Gerke V, Moss S. Annexins: from structure to function. Physiol Rev, 2002, 82(2):331-371
    2 Markoff A, Gerke V. Expression and functions of annexins in the kidney. Am J Physiol Renal Physiol, 2005, 289(5):949-956
    3 Zhang Y, Wang KH, Guo YJ, et al. Annexin B1 from Taenia solium metacestodes is a newly characterized member of the annexin family. Biol Chem, 2007, 388(6):601-610
    4 Wallner BP, Matraliano RJ, Hession C, et al. Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity. Nature, 1986, 320(6057):77-81
    5 Dreier R,Schmid KW, Gerke V, et al. Differential expression of annexinsI, II and IV in human tissues: animmunohistochemical study. Histochem Cell Biol, 1998, 110(2):137-147
    6 Paweletz CP, Ornstein DK, Roth MJ, et al. Loss of annexin-1 correlates with early onset of tumorigenesis in esophageal and prostate carcinoma. Cancer Res, 2000, 60(22):6293-6297
    7 Oh P, Li Y, Yu J, et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue specific therapy. Nature, 2004, 429(6992):629-635
    8 Pencil SD, Toth M. Elevated levels of annexinⅠprotein in vitro and in vivo in rat and human mammary adenocarcinoma. Clin Exp Metastasis, 1998, 16(2):113-121
    9 Masaki T, Tokuda M, Ohnishi M, et al. Enhanced expression of the protein kinase substrate annexin in human hepatocellular carcinoma. Hepatology, 1996, 24(1):72-81
    10 Kang JS, Calvo BF, Maygarden SJ, et al. Dysregulation of annexinⅠprotein expression in high-grade prostatic intraepithelial neoplasia and prostate cancer. Clin Cancer Res, 2002, 8(1):117-123
    11 Luo A, Kong J, Hu G, et al. Discovery of Ca2+ relevant and differentiation associated genes downregulated in esophageal squamous cell carcinoma using cDNA microarray. Oncogene, 2004, 23(6):1291-1299
    12 Liu Y, Wang HX, Lu N, et al. Translocation of annexinI from cellular membrane to the nuclear membrane in human esophageal squamous cell carcinoma. World J Gastroenterol, 2003, 9(4):645-649
    13 Zhi H, Zhang J, Hu G, et al. The deregulation of arachidonic acid metabolism-related genes in hunman esophageal squamous cell carcinoma. Int J Cancer, 2003, 106(3):327-333
    14 Cicek M, Samant RS, Kinter M, et al. Idengtification of metastasis-associated proteins through protein analysis of metastatic MDA-MB-435 and metastasis-supp ressed BRMS1 transfected -MDA-MB-435 cells. Clin Exp Metastasis, 2004, 21(2):149-157
    15 Sheng KH, Yao YC, Chuang SS, et al. Search for the tumor-related proteins of transition cell carcinoma in Taiwan by proteomic analysis. Proteomics, 2006, 6(3):1058-1065
    16 Zimmermann U, Woenckhaus C, Teller S, et al. Expression of annexinA1 in conventional renal cell carcinoma (CRCC) correlates with tumour stage, Fuhrman grade, amount of eosinophilic cells and clinical outcome. Histol Histopathol, 2007, 22(5):527-534
    17 Petrella A, Festa M, Ercolino SF, et al. Annexin-1 downregulation in thyroid cancer correlates to the degree of tumor differentiation. Cancer Biol Ther, 2006, 5(6):643-647
    18 Bai XF, Ni XG, Zhao P, et al. Overexp ression of annexin1 in pancreatic cancer and its clinical significance. World J Gastroenterol, 2004,10(10):1466-1470
    19 de Coupade C, Gillet R, Bennoun M, et al. Annexin1 expression and phosphorylation are up regulated during liver regeneration and transformation in antithrombin III SV40 T large antigen transgenic mice. Hepatology, 2000, 31(2):371-380
    20 Kang JS, Calvo BF, Maygarden SJ, et al. Dysregulation of annexinI protein expression in high-grade prostatic intraepithelial neoplasia and prostate cancer. Clin Cancer Res, 2002, 8(1):117-123
    21 Kristina MM, Angela CK, Gregory MC, et al. Apoptosis in human uterine leiomyomas. Semin Reprod Med, 2004, 22(2):91-103
    22 Lin Y, Lv JQ, Wu JL, et al. Expression and significance of AnnexinⅠin uterine leiomyomas. The Journal of Practical Medicine, 2008, 24(17):2942-2944
    23 Bae SM, Min HJ, Ding GH, et al. Protein Expression Profile using Two-Dimensional Gel Analysis in Squamous Cervical Cancer Patients. Cancer Res Treat, 2006, 38(2):99-107
    24 Hawkins T, Das D, Young B, et al. DT40 cells lacking the Ca2+-binding protein annexin5 are resistant to Ca2+-dependent apoptosis. Proc Natl Acad Sci, 2002, 99(12):8054-8059
    25 Appelt U, Sheriff A, Gaipl U, et al. Viable, poptotic and necrotic monocytes expose phosphatidylserine: cooperative binding of the ligand AnnexinV to dying but not viable cells and implications for PS-dependent clearance. Cell Death Differ, 2005, 12(2):194-196
    26 Monceau V, Belikova Y, Kratassiouk G, et al. Externalization of endogenous annexin A5 participates in apoptosis of rat cardiomyocytes. Cardiovasc Res, 2004, 64(3):496-506
    27 Tait JF, Smith C, Wood BL. Measurement of phosphatidyl-serine exposure in leukocytes and platelets by wholeblood flowcytometry with annexinV. Blood Cells Mol Dis, 1999, 25:271-278
    28 Gidon JC, Solito E, Hofmann A, et al. AnnexinV counteracts apoptosis while inducing Ca2+ influx in human lymphocytic T cells. BiochemBiophys Res Commun, 1999, 265(3):709-715
    29 Gidon JC, Hugel B, Holl V, et al. AnnexinV delays apoptosis while exerting an external constraint preventing the release of CD41 and PrPc1 membrane particles in a human T lymphocyte model. J Immunol, 1999, 162(10):5712-5718
    30 Dooley TP, Reddy SP, Wilborn TW, et al. Biomarkers of human cutaneous squamous cell carcinoma from tissues and cell lines identified by DNA microarrays and qRT-PCR. BiochemBiophys Res Commun, 2003, 306(4):1026-1036
    31 Munoz LE, Frey B, Pausch F, et al. The role of annexin A5 in the modulation of the immune response against dying and dead cells. Curr Med Chem, 2007, 14(3):271-277
    32 Li X, Gao FL, Wang F, et al. The relationship between annexin A5 and the carcinogenesis of ulterine cervical cells. Chinese Journal of Anatomy, 2006, 29(4):433-435
    33 Li X, Gao FL, et al. Expression of Annexin A5 in human uterine cervical squamous cell carcinomas. Chinese Journal of Anatomy, 2008, 39(6):923-926
    34 Wang LD, Yang YH, Liu Y, et al. Decreased expression of annexin A1 during the progression of cervical neoplasia. J Int Med Res, 2008, 36(4):665-672
    35 Huang JJ, Yan HL, Gao YJ, et al. Translocation of annexinB1 in response to the stimulation of PMA and ionomycin in cervical cancer cells. Cell Biol Int, 2008, 32(1):121-127
    36 Rita D, Kurt WS, Volker G, et al. Differential expression of annexinsⅠ, ⅡandⅣin human tissues: an immunohistochemical study. Histochem Cell Biol, 1998, 110:137-148
    37 Rosalia GM, Christine SM. Immunolocalization of annexinsⅣ,Ⅴand Ⅵin the failing and non-failing human hearing. Cardiovasc Res, 2000, 45(4):961-970
    38 Zimmermann U, Balabanov S, Giebel J, et al. Increased expression andaltered location of annexinⅣin renal clear cell carcinoma: a possible role in tumour dissemination. Cancer Lett, 2004, 209(1):111-118
    39 Yu GR, Kim SH, Park SH, et al. Identification of molecular markers for the oncogenic differentiation of hepatocellular carcinoma. Exp MolMed, 2007, 39(5):641-652
    40 YU WJ, Li J, Tan Z,et al. Study on the changes of annexinⅣexpression in human endometrial during men strual cycles. Reproductive Medical Center, Obstetrics and Gynecology department, 2008, 24(12):913-915
    41 Li CY, Lang JH, Liu HY, et al. Expression of Annexin-1 in patients with endometriosis. Chin Med J (Engl), 2008, 121(10):927-931
    42 Lim LH, Pervaiz S. Annexin1: the new face of an old molecule. Faseb J, 2007, 21:968-975
    43 Sakamoto T, Repasky WT, Uchida K, et al. Modulation of cell death pathways to apoptosis and necrosis of H2O2-treated rat thymocytes by lipocortin I. Biochem Biophys Res Commun, 1996, 220:643-647
    44 Radke S, Austermann J, Russo-Marie F, et al. Specific association of annexin1 with plasma membrane-resident and internalized EGF receptors mediated through the protein core domain. Febs Lett, 2004; 578: 95-98
    45 Skouteris GG, Schr?der CH. The hepatocyte growth factor receptor kinase-mediated phosphorylation of lipocortin-1 transduces the proliferating signal of the hepatocyte growth factor. J Biol Chem, 1996, 271:27266-27273
    46 Yona S, Heinsbroek SE, Peiser L, et al. Impaired phagocytic mechanism in annexin1 null macrophages. Br J Pharmacol, 2006, 148:469-477
    47 D'Acquisto F, Paschalidis N, Sampaio AL, et al. Impaired T cell activation and increased Th2 lineage commitment in Annexin-1-deficient T cells. Eur J Immunol, 2007, 37:3131-3142
    48 Dmowski WP. Immunological aspects of endometriosis. Int J Gynaecol Obstet, 1995, 50(1):3-10
    49 Kamal AM, Flower RJ, Perretti M. An overview of the effects of annexin1 on cells involved in the inflammatory process. Mem InstOswaldo Cruz, 2005, 100(1):39-47
    50 Kamal AM, Smith SF, De Silva WM. An annexin1 (ANXA1)-derived peptide inhibits prototype antigen-driven human T cell Th1 and Th2 responses in vitro. Clin Exp Allergy, 2001, 31:1116-1125
    51 Senturk LM, Arici A. Immunology of endometriosis. J Reprod Immunol, 1999, 43:67-83
    52 Ho HN, Wu MY, Yang YS. Peritoneal cellular immunity and endometriosis. Am J Reprod Immunol, 1997, 38:400-412
    53 Song J, Shih IeM, Chan DW, et al. Suppression of annexin A11 in ovarian cancer: implications in chemoresistance. Neoplasia, 2009, 11(6):605-614
    54 Song J, Shih IeM, Salani R, et al. Annexin XI is associated with cisplatin resistance and related to tumor recurrence in ovarian cancer patients. Clin Cancer Res, 2007, 13(22):6842-6849
    55 Kim A, Enomoto T, Serada S, et al. Enhanced expression of Annexin A4 in clear cellcarcinoma of the ovary and its association with chemoresistance to carboplatin. Int J Cancer, 2009, 125(10):2316-2322
    56 Stewart JJ, White JT, Yan X, et al. Proteins associated with cisplatin resistance in ovarian cancer cells identified by quantitative proteomic technology and integrated with mRNA expression levels. Mol Cell Proteomics, 2006, 5:433-443
    57 Hofmann S, Franke A, Fischer A, et al. Genome-wide association study identifies ANXA11 as a new susceptibility locus for sarcoidosis. Nat Genet, 2008, 40:1103-1106
    58 Mamiya N, Iino S, Mizutani A, et al. Development-related and cell-type specific nuclear localization of annexinXI: immunolocalization analysis in rat tissues. Biochem Biophys Res Commun, 1994, 202:403-409
    59 Farnaes L, Ditzel HJ. Dissecting the cellular functions of annexinXI using recombinant human annexinXI -specific autoantibodies cloned by phage display. J Biol Chem, 2003, 278:33120-33126
    60 International Collaborative Ovarian Neoplasm Group. Paclitaxel pluscarboplatin versus standard chemotherapy with either single-agent carboplatin or cyclophosphamide, doxorubicin, and cisplatin in women with ovarian cancer: the ICON3 randomised trial. Lancet, 2002, 360(9332):505-515
    61 Tammela J, Geisler JP, Eskew PN, et al. Clear cell carcinoma of the ovary: poor prognosis compared to serous carcinoma. Eur J Gynaecol Oncol, 1998, 19:438-440
    62 Itamochi H, Kigawa J, Terakawa N. Mechanisms of chemoresistance and poor prognosis in ovarian clear cell carcinoma. Cancer Sci, 2008, 99:653-658
    63 O’Brien ME, Schofield JB, Tan S, et al. Clear cell epithelial ovarian cancer (mesonephroid): bad prognosis only in early stages. Gynecol Oncol, 1993, 49:250-254
    64 Teijeiro JM, Ignotz GG, Marini PE. Annexin A2 is involved in pig (Susscrofa) sperm-oviduct interaction. Mol Reprod Dev, 2009, 76(4):334-341
    65 Ignotz GG, Cho MY, Suarez SS. Annexins are candidate oviductal receptors for bovine sperm surface proteins and thus may serve to hold bovine sperm in the oviductal reservoir. Biol Reprod, 2007, 77(6):906-913
    66 Dalli J, Norling LV, Renshaw D, et al. Annexin1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles. Blood, 2008, 112(6):2512-2519
    67 Scannell M, Maderna P. Lipoxins and annexin-1: resolution of inflammation and regulation of phagocytosis of apoptotic cells. Scientific World Journal, 2006, 6:1555-1573
    68 Perretti M, D’Acquisto F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol, 2009, 9(1):62-70
    69 Solito E, Nuti S, Parente L. Dexamethasone-induced translocation of lipocortin (annexin)Ⅰto the cell-membrane of U2937 cells. Br J Pharmacol, 1994, 112(2):347-348
    70 decaterina R, Sicari R, Giannessi D, et al. Macrophage-specific eicosanoid synthesis inhibition and lipocortin-1 induction by glu-cocorticoids. J Appl Physiol, 1993, 75(6):2368-2375
    71 Podgorski MR, Goulding NJ, Hall ND, et al. Autoantibodies to lipocortin 1 are associated with impaired glucocorticoid responsiveness in rheumatoid arthritis. J Rheumatol, 1992,19(11):1668-1671
    72 Davidson FF, Dennis EA, Powell M, et al. Inhibition of phospholipase A2 by‘lipocortins’and calpactins. An effect of binding to substrate phospholipids. J Biol Chem, 1987, 262:1698-1705
    73 Kim SW, Rhee HJ, Ko J, et al. Inhibition of cytotoxic phospholipase A2 by annexinI: Specific interaction model and mapping of the interaction site. J Biol Chem, 2001, 276(19):1512-1519
    74 Gerke V, Moss SE. Annexin: from structure to function. Physio Rev, 2002, 82(2):331-371
    75 Croxtall JD, choudhury Q, Flower RJ. Inhibitory effect of peptidesderived from the N2 terminus of lipocortin 1 on arachidonic acid release and proliferation in the A 549 cell line: identification of E-Q-E-Y-V as a crucial component. Br J Pharmacol, 1998, 123(5):975-983
    76 Wu CC, Croxtall JD, Perretti M, et al. Lipocortin 1 mediates the inhibition by dexamethasone of the induction by endotoxin of nitric oxide synthase in the rat. Proc Natl Acad Sci USA, 1995, 92:3473-3477
    77 Newman SP, Flower RJ, Croxtall JD. Dexamethasone suppression of IL-1-induced cyclooxygenase 2 expression is not mediated by lipocortin 1. Biochem Biophys Res Commun, 1994, 202:931-939
    78 Sampey AV, Hutchinson P, Morand EF. AnnexinI and dexamethasone effects on phospholipase and cyclooxygenase activity in human synoviocytes. Med Inflamm, 2000, 9:125-132
    79 Parente L, Solito E. Annexin1: more than an anti-phospholipase protein. Inflamm Res, 2004, 53(4):125-132
    80 Kamal AM, Flower RJ, Perretti M. An overview of the effects ofannexin1 on cells involved in the inflammatory process. Mem Inst Oswaldo Cruz, 2005, 100(l):39-47
    81 Perretti M, Dalli J. Exploiting the Annexin A1 pathway for the development of novel anti-inflammatory therapeutics. Br J Pharmacol, 2009, 158(4):936-946