K562及其耐药株K562/A02细胞膜蛋白与耐药机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞膜(Cell membrane)是细胞内外环境交流的界面,也是细胞与周围环境以及细胞与细胞之间进行物质交换和信息传递的重要通道。细胞膜表面蛋白是细胞膜的重要组成部分,它们参与了细胞的识别和免疫应答、信号传导和调控、细胞内物质及能量的传递等重要功能,对细胞的生存、生长、分裂和分化都至关重要。
     细胞膜蛋白质组学是研究细胞膜蛋白质组成成分、表达水平以及修饰情况,进而了解细胞信号传导、细胞与细胞间的相互作用、离子及溶液传递规律等,同时也能为疫苗、病理研究等临床应用领域提供新的理论基础。细胞膜蛋白质在临床药物研究和开发中占整个已知药物靶标的70%,而细胞膜的功能基本上都是由占细胞总蛋白质20%-25%的细胞膜蛋白质来执行的。
     膜蛋白具有疏水性强、相对丰度较低等特点,同时多数的膜蛋白存在着各种各样的翻译后修饰,如糖基化、磷酸化、甲基化等,造成其具有不均一性。因此,分离和鉴定膜蛋白一直是膜蛋白质组学研究的难点。本研究利用生物素标记的方法,通过使用一种新型的纳米乳胶颗粒材料Latex作为亲和素的载体,在活细胞状态下,进行标记、分离和提纯。纳米级颗粒的使用,在相同总体积的情况下,较通常使用的微米级或是毫米级颗粒大幅提高了载体的表面积,增加了亲和素的结合量,同时摒弃了长时间超速离心法的费时费力,提高了分离纯化效率。我们运用该材料并进行适当优化后应用于肿瘤细胞、人和小鼠胚胎干细胞以及人类精子的细胞膜蛋白质组学研究上,都充分证明其高效性。以肿瘤细胞K562及其耐药株K562/A02细胞为例,我们运用该方法共检测到1294和1415种蛋白,其中膜及相关蛋白分别为645和726种,是目前已有报道中一次性检测到该细胞膜蛋白最多的方法。与此同时,我们还首次在K562中发现了8种肿瘤标志蛋白以及大量的低丰度、未知的和功能不明确的蛋白,体现了该方法的高灵敏度,且亲水、疏水蛋白均可的广泛适用性,为今后对细胞膜表面蛋白的深入研究提供了良好的技术平台和理论基础。
     慢性髓细胞样白血病(chronic myeloid leukemia, CML),是一种起源于骨髓多能造血干细胞的恶性增殖性疾病,年发病率维持在每10万人中有1-2例。K562细胞株是人类建立的第一株髓系白血病细胞株,是目前公认的最经典的白血病研究模型之一,而K562/A02细胞株是用阿霉素(adriamycin, ADM)逐步筛选K562细胞所建立的一株具有典型多药耐药特征(multidrug resistance, MDR)细胞株。本文通过蛋白质组学相关技术,对K562及其多药耐药株K562/A02细胞质膜进行蛋白质组学层面的分离、鉴定及比较。仅K562细胞的膜蛋白中,我们就发现114个与信号转导有关,119个与代谢相关,95个与通道及运输有关,51个与囊泡运输有关,23个为粘附和连接蛋白,17个是氧化还原酶类,26个为伴侣分子,19个是与细胞骨架相关,17个与修饰作用有关,27个和蛋白降解有关,以及74个未知功能的膜相关蛋白,这是目前已知的对该细胞膜蛋白最完整、最全面的-次分类和总结。我们又经过比较蛋白质组学的研究,发现并验证了K562/A02特异性的跨膜蛋白201种,也是已有报道中一次性发现K562/A02特异性跨膜蛋白最多的。这些研究结果都为寻找新的白血病耐药相关蛋白提供了全新的研究方向。
     在对K562及其耐药株K562/A02细胞膜进行蛋白质组学比较研究的基础上我们就K562/A02特异性的膜表面分子——尼古丁型乙酰胆碱受体alpha3 (nAChRα3)与该细胞耐药性之间的关系进行了深入的研究。我们发现,加入尼古丁后含有alpha3受体的A02细胞耐药性比未加的对照组提高了约1.1倍,两者差异极显著(P<0.01),而不含该受体的K562细胞基本没有变化。进一步研究发现,尼古丁通过alpha3受体后,提高细胞内ERK的表达,即通过ERK途径,提高了细胞的存活能力。这是首次在K562/A02细胞上发现alpha3受体,也是第一次将该受体与细胞的耐药性相联系,并初步探明了其作用途径,这一研究结果为白血病多药耐药发生机制提供了一条新的研究线索。
The cell membrane, also called the plasma membrane or plasmalemma, is one biological membrane separating the interior of a cell from the outside environment. The cell membrane surrounds all cells and it is selectively-permeable, controlling the movement of substances in and out of cells. The cell membrane is also the channel of materials exchange and signal transduction between cell to cell or cell to the outside environment. The cell membrane proteins are one of important parts for cell membrane, they participate in cell recognition and immune response, signal transduction, the inner materials and energy transmission. It is important for cell's existence, proliferation, separation and differentiation.
     The proteome is the entire complement of proteins, and proteornics is the large-scale study of proteins, particularly their structures and functions. Plasma membrane proteomics is one part of the proteomics. The researches of plasma membrane proteomics focus on not only the membrane protein composition, expression, modification and enriching the knowledge of the cell signal transduction, the interactions of cell to cell, and materials transmission, but also providing the theoretical basis for clinical application on vaccine and pathology. The plasma membrane protein researches are particularly important in drug discovery. Currently, they account for nearly 70% of all known pharmaceutical drug targets are membrane proteins. And the functions of membrane are controlled by the membrane proteins which account for 20-25% of total cellular proteins.
     Although the pure membrane proteins are the basic of membrane protein research, they have been underrepresented in proteomics studies, due to their low abundance and poor solubility of many lipid proteins. The post-translational modification also makes the membrane proteins heterogeneous, like glycosylation, phosphorylation, methylation and so on. All of them make it difficult to purify the membrane proteins. To circumvent these problems, in this study, we employed the biotin-avidin system, using the nano-particles as the carrier, and substantially increased the surface area of the carrier and the binding capacity of streptavidin compared with other general beads or particles. This original technology abandons long time ultracentrifugation and improves the efficiency of separation and purification of membrane proteins. We applied this method on tumor cells, mouse embryonic stem cells, human embryonic stem cells and human sperms cell membrane proteome studies. As an example of suspension tumor cells, we found 1294 and 1415 proteins in K562 and K562/A02 cells including 645 and 726 cell membrane or membrane relative proteins. It is one of the most efficient methods in the recent membrane protein researches. Meanwhile, we also found 8 cancer markers in K562 cells and a series of low abundance, function unknown or lipid proteins at the first time. That reflects the high sensitivity and broad applicability of the method for the future study of cell membrane proteins and also provides a reliable technology platform and theoretical basis.
     Chronic myeloid leukemia (CML) is a hematopoietic disorder characterized by the malignant expansion of bone marrow stem cell with an annual incidence of 1 to 2 cases per 100 000 people. K562 cells were the first human immortalized myelogenous leukemia line to be established. K562/A02 is a multi-drug resistant (MDR) cell line which builted up from K562 cells induced by adriamycin (ADM). This MDR cell line can resistant vincristine, homoharringtonine (HHT) and the other antineoplastic drugs which have the anthracene nucleus. The mechanism of MDR includes metabolism, signal transduction, RNA modification, cell proliferation and viability. In this study, we used the proteomics techniques, comparative analysis of the plasma membrane between K562 and K562/A02. Only in K562 cell's membrane proteins, we discovered 114 signaling transmission,119 metabolism,95 channel or transporter,51 vesicle transport,23 adhesion or junction,17 oxidoreductase,26 chaperone,19 cytoskeleton associated,17 modification,27 protein degradation,62 other membrane relative proteins, and 74 uncharacterized proteins. Further more, we categorized and gathered statistics of all the K562/A02 special membrane protein data, and confirmed them. It gave a new direction to find new drug resistance associated proteins.
     On the base of comparative analysis of membrane protein between K562 and K562/A02, in this study, we used RNAi technique, and found out the relationship between K562/A02 special protein neuronal acetylcholine receptor alpha 3 (nAChRa3) and multi-drug resistance. Utilizing nicotine to stimulate K562/A02, will enhance 1.1 times of the resistant capacity to ADM, compared with the control group(P<0.01). Further studies revealed the nAChRa3 can promote the expression of ERK, and then increase the cell viability. This is the first time to discover the nAChRa3 in K562/A02 cell line and also the first time to relate this receptor to drug resistance. This consequence gave a new clue to clarify the mechanisms of multi-drug resistance in CML.
引文
1. Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium. Electrophoresis 1995;16 (7):1090-4.
    2. Alberts B, Johnson A, Lewis J, et al. Molecular biology of the cell [M]. New York: Garland Science,2002.
    3. Wu CC, Yates JR,3rd. The application of mass spectrometry to membrane proteomics. Nature biotechnology 2003;21(3):262-7.
    4. Wallin E, von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 1998;7(4):1029-38.
    5. Seddon AM, Curnow P, Booth PJ. Membrane proteins, lipids and detergents:not just a soap opera. Biochimica et biophysica acta 2004; 1666(1-2):105-17.
    6. Kannicht C E. Posttranslational modifications of proteins:tools for functional proteomics, methods in molecular biology [M]. Totowa:Humana Press,2002.
    7. Simpson RJ, Connolly LM, Eddes JS, et al. Proteomic analysis of the human colon carcinoma cell line (LIM 1215):development of a membrane protein database. Electrophoresis 2000;21 (9):1707-32.
    8. Sprenger RR, Speijer D, Back JW, et al. Comparative proteomics of human endothelial cell caveolae and rafts using two-dimensional gel electrophoresis and mass spectrometry. Electrophoresis 2004;25(1):156-72.
    9. Chen X, Walker AK, Strahler JR, et al. Organellar proteomics:analysis of pancreatic zymogen granule membranes. Mol Cell Proteomics 2006;5 (2):306-12.
    10. Blonder J, Terunuma A, Conrads TP, et al. A proteomic characterization of the plasma membrane of human epidermis by high-throughput mass spectrometry. The Journal of investigative dermatology 2004; 123(4):691-9.
    11. Marmagne A, Rouet MA, Ferro M, et al. Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome. Mol Cell Proteomics 2004;3(7):675-91.
    12.张丽军,谢锦云,李选文,等.真核细胞纸膜蛋白质组研究进展.生命科学2005;17(5):398-403.
    13. Alexandersson E, Saalbach G, Larsson C, Kjellbom P. Arabidopsis plasma membrane proteomics identifies components of transport, signal transduction and membrane trafficking. Plant & cell physiology 2004;45(11):1543-56.
    14. Morre DJ, Morre DM. Preparation of mammalian plasma membranes by aqueous two-phase partition. BioTechniques 1989;7(9):946-8,50-4,56-8.
    15. Chaney LK, Jacobson BS. Coating cells with colloidal silica for high yield isolation of plasma membrane sheets and identification of transmembrane proteins. The Journal of biological chemistry 1983;258(16):10062-72.
    16. Moritz RL, Skandarajah AR, Ji H, Simpson RJ. Proteomic Analysis of Colorectal Cancer: Prefractionation Strategies Using two-Dimensional Free-Flow Electrophoresis. Comparative and functional genomics 2005;6(4):236-43.
    17. Cuppoletti J. Continuous flow electrophoresis for study of membrane protein compartments. Focus on "More than apical:distribution of SGLT1 in Caco-2 cells". American journal of physiology 2003;285(4):C735-6.
    18. Zhang L, Wang X, Peng X, et al. Immunoaffinity purification of plasma membrane with secondary antibody superparamagnetic beads for proteomic analysis. Journal of proteome research 2007;6(1):34-43.
    19. Zhao Y, Zhang W, Kho Y, Zhao Y. Proteomic analysis of integral plasma membrane proteins. Analytical chemistry 2004;76(7):1817-23.
    20. Hurley WL, Finkelstein E, Holst BD. Identification of surface proteins on bovine leukocytes by a biotin-avidin protein blotting technique. Journal of immunological methods 1985;85(1):195-202.
    21. Peirce MJ, Wait R, Begum S, Saklatvala J, Cope AP. Expression profiling of lymphocyte plasma membrane proteins. Mol Cell Proteomics 2004;3(1):56-65.
    22. Ghosh D, Krokhin O, Antonovici M, et al. Lectin affinity as an approach to the proteomic analysis of membrane glycoproteins. Journal of proteome research 2004;3(4):841-50.
    23. O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. The Journal of biological chemistry 1975;250(10):4007-21.
    24. Martins de Souza D, Oliveira BM, Castro-Dias E, et al. The untiring search for the most complete proteome representation:reviewing the methods. Briefings in functional genomics & proteomics 2008;7(4):312-21.
    25. Matt P, Fu Z, Fu Q, Van Eyk JE. Biomarker discovery:proteome fractionation and separation in biological samples. Physiological genomics 2008;33(1):12-7.
    26. Zhang W, Czernik AJ, Yungwirth T, et al.. Matrix-assisted laser desorption mass spectrometric peptide mapping of proteins separated by two-dimensional gel electrophoresis:determination of phosphorylation in synapsin I. Protein Sci 1994;3(4):677-86.
    27. LoPachin RM, Jones RC, Patterson TA, et al. Application of proteomics to the study of molecular mechanisms in neurotoxicology. Neurotoxicology 2003;24(6):761-75.
    28.马文东,李曙光,叶再元.蛋白质组学技术及胃癌蛋白质组学研究进展.现代中西医结合杂志2008;17(15):2397-2400.
    29. Bairoch A, Apweiler R. The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1998. Nucleic acids research 1998;26(1):38-42.
    30. Boguski MS, Mclntosh MW. Biomedical informatics for proteomics. Nature 2003;422(6928):233-7.
    31. Uchida T, Fukawa A, Uchida M, Fujita K, Saito K. Application of a novel protein biochip technology for detection and identification of rheumatoid arthritis biomarkers in synovial fluid. Journal of proteome research 2002;1(6):495-9.
    32. Oh P, Li Y, Yu J, et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 2004;429(6992):629-35.
    33. Overington JP, Al-Lazikani B. Hopkins AL. How many drug targets are there? Nat Rev Drug Discov 2006;5(12):993-6.
    34. Melo JV, Hughes TP, Apperley JF. Chronic myeloid leukemia. Hematology/the Education Program of the American Society of Hematology American Society of Hematology 2003:132-52.
    35. Bennett JH. Case of hypertrophy of the spleen and liver in which death took place from suppuration of the blood. Edinb Med Surg J.1845;64:413-23.
    36. Virchow R. Weisses Blut. Frorieps Notizen.1845;36:151-56.
    37. Druker BJ. Translation of the Philadelphia chromosome into therapy for CML. Blood 2008; 112(13):4808-17.
    38. Calabretta B, Perrotti D. The biology of CML blast crisis. Blood 2004; 103(11):4010-22.
    39.徐佳伟,金润铭.2006年版NCCN慢性髓细胞白血病治疗指南概要.中国小儿血液与肿瘤杂志2006;11(6):332-36.
    40. Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic Leukemia. Science 1960; 132:1497.
    41. Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood 2000;96(10):3343-56.
    42. Collins SJ, Kubonishi I, Miyoshi I, Groudine MT. Altered transcription of the c-abl oncogene in K-562 and other chronic myelogenous leukemia cells. Science (New York, NY 1984;225(4657):72-4.
    43. Gale RP, Canaani E. An 8-kilobase abl RNA transcript in chronic myelogenous leukemia. Proceedings of the National Academy of Sciences of the United States of America 1984;81(18):5648-52.
    44. Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 1985;315(6020):550-4.
    45. Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D. The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science (New York, NY 1986;233(4760):212-4.
    46. Davis RL, Konopka JB, Witte ON. Activation of the c-abl oncogene by viral transduction or chromosomal translocation generates altered c-abl proteins with similar in vitro kinase properties. Molecular and cellular biology 1985;5(1):204-13.
    47. Mes-Masson AM, McLaughlin J, Daley GQ, Paskind M, Witte ON. Overlapping cDNA clones define the complete coding region for the P210c-abl gene product associated with chronic myelogenous leukemia cells containing the Philadelphia chromosome. Proceedings of the National Academy of Sciences of the United States of America 1986;83(24):9768-72.
    48. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science (New York, NY 1990;247(4944):824-30.
    49. Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J. Acute leukaemia in bcr/abl transgenic mice. Nature 1990;344(6263):251-3.
    50. Melo JV, Deininger MW. Biology of chronic myelogenous leukemia--signaling pathways of initiation and transformation. Hematology/oncology clinics of North America 2004;18(3):545-68,vii-viii.
    51.常英军.慢性粒细胞白血病:从分子机制到靶向治疗.国外医学输血及血液学分册2001;24(6):505-08.
    52.董广星,陈旭.靶向药物阿霉素抗肿瘤研究新进展.天津药学2003;15(2):60-3.
    53.郭青龙,丁启龙,朱家璧,等.阿霉素前体脂质体对大鼠心肝毒性及对实验性肿瘤的作用.中国病理生理杂志1999;15(6):537-40.
    54.刘一,边原.阿霉素抗肿瘤作用的研究进展.泸州医学院学报2008;31(1):101-3.
    55.沈海霞,许小平.不同制备条件对阿霉素磁性抗癌毫微粒形貌及粒径大小的影响.海峡药学2004;16(4):18-20.
    56.石可瑜,李朝兴,何炳林,等.磁导向阿霉素-羧甲基葡聚糖磁性毫微粒的研究.生物医学工程学杂志2003;20(2):219-21.
    57.李云春,蔡美英,刘晓波,等.单抗导向阿霉素免疫毫微粒抗肝癌作用的机制.中国药理学通报2001;17(4):463-6.
    58.丁红,邢桂琴,谢茵,等.阿霉素明胶微球的制备与特性研究.中国医院药学杂志2000;20(7):387-9.
    59. Cohen MH, Johnson JR, Pazdur R. U.S. Food and Drug Administration Drug Approval Summary:conversion of imatlnib mesylate (STI571; Gleevec) tablets from accelerated approval to full approval. Clin Cancer Res 2005;11(1):12-9.
    60. Savage DG, Antman KH. Imatinib mesylate--a new oral targeted therapy. The New England journal of medicine 2002;346(9):683-93.
    61. Lee F, Fandi A, Voi M. Overcoming kinase resistance in chronic myeloid leukemia. The international journal of biochemistry & cell biology 2008;40(3):334-43.
    62.蒙渡,张梅.慢性粒细胞白血病的治疗新进展.现代肿瘤医学2006;14(7):905-7.
    63. La Rosee P, Johnson K, O'Dwyer ME, Druker BJ. In vitro studies of the combination of imatinib mesylate (Gleevec) and arsenic trioxide (Trisenox) in chronic myelogenous leukemia. Experimental hematology 2002;30(7):729-37.
    64. Baccarani M, Martinelli G, Rosti G, et al. Imatinib and pegylated human recombinant interferon-alpha2b in early chronic-phase chronic myeloid leukemia. Blood 2004;104(13):4245-51.
    65.陈燕.慢性髓细胞白血病治疗的现状和未来.医师进修杂志2003;26(12):9-12.
    66. Kolb HJ, Mittermuller J, Clemm C, et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 1990;76(12):2462-5.
    67. Covelli A. Modulation of multidrug resistance (MDR) in hematological malignancies. Ann Oncol 1999;10 Suppl 6:53-9.
    68. Shman TV, Savitskii VP, Potapnev MP, Aleinikova OV. Study of expression and functional activity of P-GP membrane glycoprotein in children with acute leukemia. Bulletin of experimental biology and medicine 2006; 141 (6):727-30.
    69. Nooter K, Herweijer H. Multidrug resistance (mdr) genes in human cancer. British journal of cancer 1991;63(5):663-9.
    70. Zaman GJ, Versantvoort CH, Smit JJ, et al. Analysis of the expression of MRP, the gene for a new putative transmembrane drug transporter, in human multidrug resistant lung cancer cell lines. Cancer research 1993;53(8):1747-50.
    71.高娜,峁俊卿,张育.白血多药耐药机制研究进展.实用医学杂志2007;23(18):2809-11.
    72. Valera ET, Scrideli CA, Queiroz RG, Mori BM, Tone LG. Multiple drug resistance protein (MDR-1), multidrug resistance-related protein (MRP) and lung resistance protein (LRP) gene expression in childhood acute lymphoblastic leukemia. Sao Paulo medical journal= Revista paulista de medicina 2004;122(4):166-71.
    73. Wilson WH, Teruya-Feldstein J, Fest T, et al. Relationship of p53, bcl-2, and Tumor Proliferation to Clinical Drug Resistance in Non-Hodgkin's Lymphomas.1997. p.601-9.
    74. Zeitlin BD, Zeitlin IJ, Nor JE. Expanding Circle of Inhibition:Small-Molecule Inhibitors of Bcl-2 as Anticancer Cell and Antiangiogenic Agents.2008. p.4180-8.
    75. Mahadevan D, List AF. Targeting the multidrug resistance-1 transporter in AML: molecular regulation and therapeutic strategies.2004. p.1940-51.
    76.沃兴德,俞颖.细胞凋亡抑制与肿瘤多药耐药的研究进展.浙江中医药大学学报 2006;30(15):578-80.
    77.张锦海,陈幸华.血液肿瘤多药耐药的研究进展.中国实验血液学杂志2005;13(6):1151-4.
    78. Mahoney BP, Raghunand N, Baggett B, Gillies RJ. Tumor acidity, ion trapping and chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochemical pharmacology 2003;66(7):1207-18.
    79. Thomas H, Coley HM. Overcoming multidrug resistance in cancer:an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 2003;10(2):159-65.
    80. Henningfield JE, Zeller M. Nicotine psychopharmacology research contributions to United States and global tobacco regulation:a look back and a look forward. Psychopharmacology 2006; 184(3-4):286-91.
    81. Yildiz D. Nicotine, its metabolism and an overview of its biological effects. Toxicon 2004;43(6):619-32.
    82. Benowitz NL, Jacob P, Jones RT, Rosenberg J. Interindividual variability in the metabolism and cardiovascular effects of nicotine in man.1982.221:368-72.
    83. Wullner U, Gundisch D, Herzog H, et al. Smoking upregulates alpha4beta2* nicotinic acetylcholine receptors in the human brain. Neuroscience letters 2008;430(1):34-7.
    84. Walsh H, Govind AP, Mastro R, et al. Up-regulation of nicotinic receptors by nicotine varies with receptor subtype. The Journal of biological chemistry 2008;283(10):6022-32.
    85. Marieb EN and Hoehn K. Human Anatomy & Physiology (7th Ed.) 2007.
    86. Guan ZZ, Yu WF, Nordberg A. Dual effects of nicotine on oxidative stress and neuroprotection in PC 12 cells. Neurochemistry international 2003;43(3):243-9.
    87. Crowley-Weber CL, Dvorakova K, Crowley C, et al. Nicotine increases oxidative stress, activates NF-kappaB and GRP78, induces apoptosis and sensitizes cells to genotoxic/xenobiotic stresses by a multiple stress inducer, deoxycholate:relevance to colon carcinogenesis. Chemico-biological interactions 2003;145(1):53-66.
    88. Zeidler R, Albermann K, Lang S. Nicotine and apoptosis. Apoptosis 2007;12(11):1927-43.
    89. Chen R-J, Ho Y-S, Guo H-R, Wang Y-J. Rapid Activation of Stat3 and ERK1/2 by Nicotine Modulates Cell Proliferation in Human Bladder Cancer Cells.2008. p.283-93.
    90. Sun B, Sterling CR, Tank AW. Chronic nicotine treatment leads to sustained stimulation of tyrosine hydroxylase gene transcription rate in rat adrenal medulla. The journal of pharmacology and experimental therapeutics.2003;304(2):575-88.
    91. Pickworth WB, Fant RV. Endocrine effects of nicotine administration, tobacco and other drug withdrawal in humans. Psychoneuroendocrinology 1998;23(2):131-41.
    92. Kornetsky C and Esposito RU. Euphorigenic drugs:effects on the reward pathways of the brain. Fed Proc 1979;38:2473-6.
    93. Nolley EP, Kelley BM. Adolescent reward system perseveration due to nicotine:studies with methylphenidate. Neurotoxicology and teratology 2007;29(1):47-56.
    94. Baron JA. Beneficial effects of nicotine and cigarette smoking:the real, the possible and the spurious.1996. p.58-73.
    95. Wolf R, Orion E, Matz H, Maitra S, Rowland-Payne C. Smoking can be good for you. 2004. p.107-11.
    96. Cohen DJ, Doucet M, Cutlip DE, Ho KK, Popma JJ, Kuntz RE. Impact of smoking on clinical and angiographic restenosis after percutaneous coronary intervention:another smoker's paradox? Circulation 2001;104(7):773-8.
    97. Hjern A, Hedberg A, Haglund B, Ros M. Does tobacco smoke prevent atopic disorders? A study of two generations of Swedish residents.2001. p.908-14.
    98. Joshi M, Tyndale RF. Induction and recovery time course of rat brain CYP2E1 after nicotine treatment.2006. p.647-52.
    99. Picciotto MR, Zoli M. Neuroprotection via nAChRs:the role of nAChRs in neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Front Biosci 2008; 13:492-504.
    100. Zhao B. Natural antioxidants protect neurons in Alzheimer's disease and Parkinson's disease. Neurochemical research 2009;34(4):630-8.
    101.李健,巨修炼.烟碱乙酰胆碱受体及其激动剂的研究进展.世界农药2007;29(5):1-5.
    102. Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW. Mammalian Nicotinic Acetylcholine Receptors:From Structure to Function. Physiological reviews 2009;89:73-120.
    103. Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annual review of pharmacology and toxicology 2007;47:699-729.
    104. Eglen RM. Muscarinic receptor subtype pharmacology and physiology. Progress in medicinal chemistry 2005;43:105-36.
    105. Gotti C, Clementi F. Neuronal nicotinic receptors:from structure to pathology. Progress in neurobiology 2004;74(6):363-96.
    106. Hasselmo ME. The role of acetylcholine in learning and memory. Current opinion in neurobiology 2006;16(6):710-5.
    107. Wuest M, Weiss A, Waelbroeck M, et al. Propiverine and metabolites:differences in binding to muscarinic receptors and in functional models of detrusor contraction. Naunyn-Schmiedeberg's archives of pharmacology 2006;374(2):87-97.
    108. Coulson FR, Fryer AD. Muscarinic acetylcholine receptors and airway diseases. Pharmacology & therapeutics 2003;98(1):59-69.
    109. Enriquez-de-Salamanca A, Calonge M. Muscarinic receptors in the ocular surface. Current opinion in allergy and clinical immunology 2006;6(5):379-82.
    110. Holman BL, Gibson RE, Hill TC, Eckelman WC, Albert M, Reba RC. Muscarinic acetylcholine receptors in Alzheimer's disease. In vivo imaging with iodine 123-labeled 3-quinuclidinyl-4-iodobenzilate and emission tomography. Jama 1985;254(21):3063-6.
    111. Abrams P, Andersson KE, Buccafusco JJ, et al. Muscarinic receptors:their distribution and function in body systems, and the implications for treating overactive bladder. British journal of pharmacology 2006;148(5):565-78.
    112. Matsui M, Yamada S, Oki T, Manabe T, Taketo MM, Ehlert FJ. Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life sciences 2004;75(25):2971-81.
    113. Wang N, Orr-Urtreger A, Korczyn AD. The role of neuronal nicotinic acetylcholine receptor subunits in autonomic ganglia:lessons from knockout mice. Progress in neurobiology 2002;68(5):341-60.
    114. Le Novere N, Corringer PJ, Changeux JP. The diversity of subunit composition in nAChRs:evolutionary origins, physiologic and pharmacologic consequences. Journal of neurobiology 2002;53(4):447-56.
    115. Buckingham SD, Jones AK, Brown LA, Sattelle DB. Nicotinic Acetylcholine Receptor Signalling:Roles in Alzheimer's Disease and Amyloid Neuroprotection.2009;61:39-61.
    116. Cordero-Erausquin M, Marubio LM, Klink R, Changeux JP. Nicotinic receptor function: new perspectives from knockout mice.2000;21:211-7.
    117. Tzartos SJ, Barkas T, Cung MT, et al. Anatomy of the antigenic structure of a large membrane autoantigen, the muscle-type nicotinic acetylcholine receptor. Immunological reviews 1998; 163:89-120.
    118.郭晨云,李卓玉,袁静明.乙酰胆碱受体结构与功能的研究进展.中国生物工程杂志2002;22(4):40-43.
    119. Miyazawa A, Fujiyoshi Y, Unwin N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 2003;423(6943):949-55.
    120. Unwin N, Miyazawa A, Li J, Fujiyoshi Y. Activation of the nicotinic acetylcholine receptor involves a switch in conformation of the alpha subunits. Journal of molecular biology 2002;319(5):1165-76.
    121. Lundin LG. Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 1993; 16(1):1-19.
    122.王秋雨,金莉莉,LI Ziwei烟碱型乙酰胆碱受体及其亚单位的结构功能.细胞生物学杂志2004;26(3):221-6.
    123. Young JM, Trask BJ. The sense of smell:genomics of vertebrate odorant receptors. Human molecular genetics 2002; 11 (10):1153-60.
    124. Shelukhina IV, Kryukova EV, Lips KS, Tsetlin VI, Kummer W. Presence of alpha7 nicotinic acetylcholine receptors on dorsal root ganglion neurons proved using knockout mice and selective alpha-neurotoxins in histochemistry. Journal of neurochemistry 2009;109:1087-95.
    125. Davis JA, Gould TJ. Hippocampal nAChRs mediate nicotine withdrawal-related learning deficits. European Neuropsychopharmacology 2009;19:551-61.
    [1]Muller DJ, Wu N, Palczewski K. Vertebrate membrane proteins:structure, function, and insights from biophysical approaches. Pharmacological reviews 2008;60(1):43-78.
    [2]Alberts B, Johnson A, Lewis J, et al. Molecular biology of the cell [M]. New York: Garland Science,2002.
    [3]Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium. Electrophoresis 1995;16 (7):1090-4.
    [4]Wu CC, Yates JR,3rd. The application of mass spectrometry to membrane proteomics. Nature biotechnology 2003;21(3):262-7.
    [5]Wallin E, von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 1998;7(4):1029-38.
    [6]Seddon AM, Curnow P, Booth PJ. Membrane proteins, lipids and detergents:not just a soap opera. Biochimica et biophysica acta 2004; 1666(1-2):105-17.
    [7]Kannicht C E. Posttranslational modifications of proteins:tools for functional proteomics, methods in molecular biology [M]. Totowa:Humana Press,2002.
    [8]Simpson RJ, Connolly LM, Eddes JS, et al. Proteomic analysis of the human colon carcinoma cell line (LIM 1215):development of a membrane protein database. Electrophoresis 2000;21 (9):1707-32.
    [9]Blonder J, Terunuma A, Conrads TP, et al. A proteomic characterization of the plasma membrane of human epidermis by high-throughput mass spectrometry. The Journal of investigative dermatology 2004; 123(4):691-9.
    [10]Martins de Souza D, Oliveira BM, Castro-Dias E, et al. The untiring search for the most complete proteome representation:reviewing the methods. Briefings in functional genomics & proteomics 2008;7(4):312-21.
    [11]LoPachin RM, Jones RC, Patterson TA, et al. Application of proteomics to the study of molecular mechanisms in neurotoxicology. Neurotoxicology 2003;24(6):761-75.
    [12]Boguski MS, Mclntosh MW. Biomedical informatics for proteomics. Nature 2003;422(6928):233-7.
    [13]Bairoch A, Apweiler R. The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1998. Nucleic acids research 1998;26(1):38-42.
    [14]Cowan CA, Klimanskaya I, McMahon J, et al. Derivation of embryonic stem-cell lines from human blastocysts. The New England journal of medicine 2004;350(13):1353-6.
    [15]黄华荣.单层贴壁法诱导人胚胎干细胞向平滑肌细胞分化及其机制初探.浙江大学,2006.
    [16]薛庆善,肖渝平,林娟.体外培养的原理与技术.科学出版社2001.
    [17]Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science (New York, NY 1998;282(5391):1145-7.
    [18]Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts:somatic differentiation in vitro. Nature biotechnology 2000;18(4):399-404.
    [19]Mirjalili A, Parmoor E, Moradi Bidhendi S, Sarkari B. Microbial contamination of cell cultures:a 2 years study. Biologicals 2005;33(2):81-5.
    [20]Sprenger RR, Speijer D, Back JW, et al. Comparative proteomics of human endothelial cell caveolae and rafts using two-dimensional gel electrophoresis and mass spectrometry. Electrophoresis 2004;25(1):156-72.
    [21]Chen X, Walker AK, Strahler JR, et al. Organellar proteomics:analysis of pancreatic zymogen granule membranes. Mol Cell Proteomics 2006;5 (2):306-12.
    [22]Zhao Y, Zhang W, Kho Y, Zhao Y. Proteomic analysis of integral plasma membrane proteins. Analytical chemistry 2004;76(7):1817-23.
    [23]Nunomura K, Nagano K, Itagaki C, et al. Cell surface labeling and mass spectrometry reveal diversity of cell surface markers and signaling molecules expressed in undifferentiated mouse embryonic stem cells. Mol Cell Proteomics 2005;4(12):1968-76.
    [24]Hurley WL, Finkelstein E, Hoist BD. Identification of surface proteins on bovine leukocytes by a biotin-avidin protein blotting technique. Journal of immunological methods 1985;85(1):195-202.
    [25]Peirce MJ, Wait R, Begum S, Saklatvala J, Cope AP. Expression profiling of lymphocyte plasma membrane proteins. Mol Cell Proteomics 2004;3(1):56-65.
    [1]Gregory SG, Barlow KF, McLay KE, et al. The DNA sequence and biological annotation of human chromosome[thinsp]1. Nature 2006;441 (7091):315-21.
    [2]Cristea IM, Gaskell SJ, Whetton AD. Proteomics techniques and their application to hematology. Blood 2004;103(10):3624-34.
    [3]Katz-Jaffe MG, McReynolds S, Gardner DK, Schoolcraft WB. The role of proteomics in defining the human embryonic secretome. Molecular human reproduction 2009;15(5):271-7.
    [4]Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium. Electrophoresis 1995;16 (7):1090-4.
    [5]Muller DJ, Wu N, Palczewski K. Vertebrate membrane proteins:structure, function, and insights from biophysical approaches. Pharmacological reviews 2008;60(1):43-78.
    [6]Alberts B, Johnson A, Lewis J, et al. Molecular biology of the cell [M]. New York: Garland Science,2002.
    [7]Wallin E, von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 1998;7(4):1029-38.
    [8]Wu CC, Yates JR,3rd. The application of mass spectrometry to membrane proteomics. Nature biotechnology 2003;21(3):262-7.
    [9]Melo JV, Hughes TP, Apperley JF. Chronic myeloid leukemia. Hematology/the Education Program of the American Society of Hematology American Society of Hematology 2003:132-52.
    [10]Druker BJ. Translation of the Philadelphia chromosome into therapy for CML. Blood 2008;112(13):4808-17.
    [11]Calabretta B, Perrotti D. The biology of CML blast crisis. Blood 2004;103(1l):4010-22.
    [12]Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood 2000;96(10):3343-56.
    [13]Lozzio CB, Lozzio BB. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 1975;45:321-34.
    [14]Klein E, Ben-Bassat H, Neumann H, et al. Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. International journal of cancer 1976; 18(4):421-31.
    [15]Andersson LC, Nilsson K, Gahmberg CG. K562--a human erythroleukemic cell line. International journal of cancer 1979;23(2):143-7.
    [16]Andersson LC, Jokinen M, Gahmberg CG. Induction of erythroid differentiation in the human leukaemia cell line K562. Nature 1979;278(5702):364-5.
    [17]奕凤君,杨纯正,马建国,等.一株人红白血病多药耐药细胞系(K562/A02)的建立及其耐药特性的研究.中华肿瘤杂志1993,15(2):101-103.
    [18]Shin BK, Wang H, Yim AM, et al. Global profiling of the cell surface proteome. of cancer cells uncovers an abundance of proteins with chaperone function. The Journal of biological chemistry 2003;278(9):7607-16.
    [19]Shetty J, Diekman AB, Jayes FC, et al. Differential extraction and enrichment of human sperm surface proteins in a proteome:identification of immunocontraceptive candidates. Electrophoresis 2001;22(14):3053-66.
    [20]Sabarth N, Lamer S, Zimny-Arndt U, et al.. Identification of surface proteins of Helicobacter pylori by selective biotinylation, affinity purification, and two-dimensional gel electrophoresis. The Journal of biological chemistry 2002;277(31):27896-902.
    [21]Shen SH, Gu LJ, Liu PQ, et al. Comparative proteomic analysis of differentially expressed proteins between K562 and K562/ADM cells. Chinese medical journal 2008;121(5):463-8.
    [22]Kottgen A, Pattaro C, Boger CA, et al. New loci associated with kidney function and chronic kidney disease. Nature genetics.2010 April 11, published on line.
    [23]Trombino S, Cesario A, Margaritora S, et al. Alpha7-nicotinic acetylcholine receptors affect growth regulation of human mesothelioma cells:role of mitogen-activated protein kinase pathway. Cancer research 2004;64(1):135-45.
    [24]Thomsen MS, Christensen DZ, Hansen HH, Redrobe JP, Mikkelsen JD. alpha(7) Nicotinic acetylcholine receptor activation prevents behavioral and molecular changes induced by repeated phencyclidine treatment. Neuropharmacology 2009;56(6-7):1001-9.
    [25]Marrero MB, Lucas R, Salet C, et al. An alpha7 nicotinic acetylcholine receptor-selective agonist reduces weight gain and metabolic changes in a mouse model of diabetes. The Journal of pharmacology and experimental therapeutics;332(1):173-80.
    [1]Covelli A. Modulation of multidrug resistance (MDR) in hematological malignancies. Ann Oncol 1999; 10 Suppl 6:53-9.
    [2]Ye X, Liu T, Gong Y, Zheng B, Meng W, Leng Y. Lentivirus-mediated RNA interference reversing the drug-resistance in MDR1 single-factor resistant cell line K562/MDR1. Leukemia research 2009;33(8):1114-9.
    [3]Nooter K, Herweijer H. Multidrug resistance (mdr) genes in human cancer. British journal of cancer 1991;63(5):663-9.
    [4]Zaman GJ, Versantvoort CH, Smit JJ, et al. Analysis of the expression of MRP, the gene for a new putative transmembrane drug transporter, in human multidrug resistant lung cancer cell lines. Cancer research 1993;53(8):1747-50.
    [5]Valera ET, Scrideli CA, Queiroz RG, Mori BM, Tone LG. Multiple drug resistance protein (MDR-1), multidrug resistance-related protein (MRP) and lung resistance protein (LRP) gene expression in childhood acute lymphoblastic leukemia. Sao Paulo medical journal= Revista paulista de medicina 2004; 122(4):166-71.
    [6]Wilson WH, Teruya-Feldstein J, Fest T, et al. Relationship of p53, bcl-2, and Tumor Proliferation to Clinical Drug Resistance in Non-Hodgkin's Lymphomas.1997. p.601-9.
    [7]Zeitlin BD, Zeitlin IJ, Nor JE. Expanding Circle of Inhibition:Small-Molecule Inhibitors of Bcl-2 as Anticancer Cell and Antiangiogenic Agents.2008. p.4180-8.
    [8]Mahadevan D, List AF. Targeting the multidrug resistance-1 transporter in AML: molecular regulation and therapeutic strategies.2004. p.1940-51.
    [9]Kornetsky C and Esposito RU. Euphorigenic drugs:effects on the reward pathways of the brain. Fed Proc 1979;38:2473-6.
    [10]Guan ZZ, Yu WF, Nordberg A. Dual effects of nicotine on oxidative stress and neuroprotection in PC 12 cells. Neurochemistry international 2003;43(3):243-9.
    [11]Crowley-Weber CL, Dvorakova K, Crowley C, et al. Nicotine increases oxidative stress, activates NF-kappaB and GRP78, induces apoptosis and sensitizes cells to genotoxic/xenobiotic stresses by a multiple stress inducer, deoxycholate:relevance to colon carcinogenesis. Chemico-biological interactions 2003;145(1):53-66.
    [12]Zeidler R, Albermann K, Lang S. Nicotine and apoptosis. Apoptosis 2007; 12(11):1927-43.
    [13]Chen R-J, Ho Y-S, Guo H-R, Wang Y-J. Rapid Activation of Stat3 and ERK1/2 by Nicotine Modulates Cell Proliferation in Human Bladder Cancer Cells.2008. p.283-93.
    [14]Sun B, Sterling CR, Tank AW. Chronic nicotine treatment leads to sustained stimulation of tyrosine hydroxylase gene transcription rate in rat adrenal medulla. The journal of pharmacology and experimental therapeutics.2003;304(2):575-88.
    [15]Pickworth WB, Fant RV. Endocrine effects of nicotine administration, tobacco and other drug withdrawal in humans. Psychoneuroendocrinology 1998;23(2):131-41.
    [16]Joshi M, Tyndale RF. Induction and recovery time course of rat brain CYP2E1 after nicotine treatment.2006. p.647-52.
    [17]Picciotto MR, Zoli M. Neuroprotection via nAChRs:the role of nAChRs in neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Front Biosci 2008; 13:492-504.
    [18]Zhao B. Natural antioxidants protect neurons in Alzheimer's disease and Parkinson's disease. Neurochemical research 2009;34(4):630-8.
    [19]Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW. Mammalian Nicotinic Acetylcholine Receptors:From Structure to Function. Physiological reviews 2009;89:73-120.
    [20]Wang N, Orr-Urtreger A, Korczyn AD. The role of neuronal nicotinic acetylcholine receptor subunits in autonomic ganglia:lessons from knockout mice. Progress in neurobiology 2002;68(5):341-60.
    [21]Cordero-Erausquin M, Marubio LM, Klink R, Changeux JP. Nicotinic receptor function: new perspectives from knockout mice.2000;21:211-7.
    [22]Buckingham SD, Jones AK, Brown LA, Sattelle DB. Nicotinic Acetylcholine Receptor Signalling:Roles in Alzheimer's Disease and Amyloid Neuroprotection.2009;61:39-61.
    [23]Downward J. RNA interference. BMJ (Clinical research ed) 2004;328(7450):1245-8.
    [24]Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000;101(1):25-33.
    [25]Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411(6836):494-8.
    [26]Filipowicz W. RNAi:the nuts and bolts of the RISC machine. Cell 2005;122(1):17-20.
    [27]Sui G, Soohoo C, Affar el B, et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America 2002;99(8):5515-20.
    [28]Stewart SA, Dykxhoorn DM, Palliser D, et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA (New York, NY 2003;9(4):493-501.
    [29]Lois C, Refaeli Y, Qin XF, Van Parijs L. Retroviruses as tools to study the immune system. Current opinion in immunology 2001;13(4):496-504.
    [30]Kordower JH, Emborg ME, Bloch J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science (New York, NY 2000;290(5492):767-73.
    [31]Martin-Rendon E, Azzouz M, Mazarakis ND. Lentiviral vectors for the treatment of neurodegenerative diseases. Current opinion in molecular therapeutics 2001;3(5):476-81.
    [32]Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW. Mammalian Nicotinic Acetylcholine Receptors:From Structure to Function. Physiological reviews 2009;89:73-120.
    [33]Miyazawa A, Fujiyoshi Y, Unwin N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 2003;423(6943):949-55.
    [34]Unwin N, Miyazawa A, Li J, Fujiyoshi Y. Activation of the nicotinic acetylcholine receptor involves a switch in conformation of the alpha subunits. Journal of molecular biology 2002;319(5):1165-76.
    [35]Sergeev IN, Li S, Colby J, Ho CT, Dushenkov S. Polymethoxylated flavones induce Ca(2+)-mediated apoptosis in breast cancer cells. Life sciences 2006;80(3):245-53.
    [36]Miglietta A, Bozzo F, Bocca C, et al. Conjugated linoleic acid induces apoptosis in MDA-MB-231 breast cancer cells through ERK/MAPK signalling and mitochondrial pathway. Cancer Letters 2006;234(2):149-57.
    [37]Ramljak D, Coticchia CM, Nishanian TG, et al. Epidermal growth factor inhibition of c-Myc-mediated apoptosis through Akt and Erk involves Bcl-xL upregulation in mammary epithelial cells. Experimental cell research 2003;287(2):397-410.
    [38]Berg RW, Werner M, Ferguson PJ, et al. Tumor growth inhibition in vivo and G2/M cell cycle arrest induced by antisense oligodeoxynucleotide targeting thymidylate synthase. The Journal of pharmacology and experimental therapeutics 2001;298(2):477-84.
    [39]徐佳伟,金润铭.2006年版NCCN慢性髓细胞白血病治疗指南概要.中国小儿血液与肿瘤杂志2006;11(6):332-36.
    [40]Lee E, Lim SJ. The association of increased lung resistance protein expression with acquired etoposide resistance in human H460 lung cancer cell lines. Archives of pharmacal research 2006;29(11):1018-23.
    [41]van den Heuvel-Eibrink MM, van der Holt B, Burnett AK, et al. CD34-related coexpression of MDR1 and BCRP indicates a clinically resistant phenotype in patients with acute myeloid leukemia (AML) of older age. Annals of hematology 2007;86(5):329-37.
    [42]Gotti C, Moretti M, Zanardi A, et al. Heterogeneity and Selective Targeting of Neuronal Nicotinic Acetylcholine Receptor (nAChR) Subtypes Expressed on Retinal Afferents of the Superior Colliculus and Lateral Geniculate Nucleus:Identification of a New Native nAChR Subtype alpha3beta2(alpha5 or beta3) Enriched in Retinocollicular Afferents. 2005;68:1162-71.
    [43]Trombino S, Cesario A, Margaritora S, et al. Alpha7-nicotinic acetylcholine receptors affect growth regulation of human mesothelioma cells:role of mitogen-activated protein kinase pathway. Cancer research 2004;64(1):135-45.
    [44]Jull BA, Plummer HK,3rd, Schuller HM. Nicotinic receptor-mediated activation by the tobacco-specific nitrosamine NNK of a Raf-I/MAP kinase pathway, resulting in phosphorylation of c-myc in human small cell lung carcinoma cells and pulmonary neuroendocrine cells. Journal of cancer research and clinical oncology 2001;127(12):707-17.
    [45]Zheng Y, Ritzenthaler JD, Roman J, Han S. Nicotine stimulates human lung cancer cell growth by inducing fibronectin expression. American journal of respiratory cell and molecular biology 2007;37(6):681-90.
    [46]Shen SH, Gu LJ, Liu PQ, et al. Comparative proteomic analysis of differentially expressed proteins between K562 and K562/ADM cells. Chinese medical journal 2008;121(5):463-8.