柿果实扩张蛋白基因cDNA克隆及原核表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扩张蛋白(expansin,EXP)能使植物细胞壁松驰,在果实成熟软化过程中起重要作用。克隆柿果实扩张蛋白基因,对研究柿果实成熟软化机理,进而有效控制柿果实成熟软化进程,延长保鲜期具有重要意义。
     本研究以中国柿(Diospyros Kaki L.cv Fuping jianshi)为试材,在果实不同发育时期分别提取总RNA,进行RT-PCR结合RACE技术扩增得到五个扩张蛋白基因cDNA全长序列,并构建了原核表达载体。取得的主要结果如下:
     1.柿果实扩张蛋白基因的cDNA克隆以柿果实不同发育时期提取的总RNA为模板,利用RT-PCR结合RACE技术扩增得到五个扩张蛋白基因:成熟期CDK-Exp3(1168bp),转色期CDK-Exp4(1120bp)和CDK-Exp5(1018bp),膨大期CDK-Exp6(1129bp)和CDK-Exp7(1121bp);其中CDK-Exp3是包含完整5’和3’末端的全长cDNA序列,CDK-Exp4、CDK-Exp5、CDK-Exp6和CDK-Exp7是包含完整ORF和3’末端的cDNA序列。
     2.柿果实扩张蛋白基因的生物信息学分析柿果实扩张蛋白基因的编码区ORF为765bp,编码254个氨基酸残基,具有扩张蛋白的保守序列(如HFD基元)和不变残基,即N端有8个半胱氨酸残基,C端有4个色氨酸残基;预测分子量27150.36 D,等电点7.587。CDK-Exp3编码的蛋白前27个氨基酸是典型的信号肽结构。由柿果实CDK-Exp3推导的氨基酸序列与CDK- Exp4、CDK- Exp5、CDK- Exp6、CDK- Exp7的同源性分别为99.2%、99.2%、98.4%、98.8%,与CDK- Exp1、CDK- Exp2的同源性在80%左右;与杏、樱桃、梨、苹果的同源性在80%以上,与桃、李、草莓、黄瓜的同源性在70%以上,与番茄的同源性为65.7%;同在转色期克隆到的CDK- Exp4与CDK- Exp5的氨基酸序列同源性为100%,但二者的核苷酸序列在3’端非编码区相差102bp。
     3.柿果实扩张蛋白基因的原核表达设计带有酶切位点的引物,扩增出去掉信号肽结构的CDK-Exp3的ORF序列,经BamHⅠ和XhoⅠ双酶切,定向克隆到表达载体pET-32(a+)中,获得柿果实扩张蛋白基因原核表达载体pET- CDK-Exp3。将构建的表达载体pET-CDK-Exp3转化大肠杆菌BL21(DE3),诱导表达得到大小约为44kDa的蛋白;诱导表达的最佳条件为:0.1mM IPTG,37℃诱导表达6h。
Expansin can cause plant cell wall loosening, and plays an important role in fruit ripening and softening. Therefore, cloning expansin gene from persimmon fruit is very important for its ripening and softening research, and for further measures to prolong storage period.
     Persimmon (Diospyros kaki L.cv.Fuping Jianshi ) fruit was used as material in this research. The total RNA from different stages of persimmon fruit were extracted, five full length expansin cDNA were obtianed by RT-PCR and RACE, and prokaryotic expression vector pET-CDK-Exp3 was constructed. The results are as follows.
     1. Cloning of expansin cDNA from persimmon fruit
     Using the total RNA from different stages of persimmon fruit as the template, five expansin cDNA: CDK-Exp3(1168bp)from mature stage, CDK-Exp4(1120bp)and CDK-Exp5(1018bp)from colour-changed stage, CDK-Exp6(1129bp)and CDK-Exp7(1121bp)from fruit expanding stage were isolated by RT-PCR and RACE. CDK-Exp3 was the full length cDNA containing 3’and 5’end sequence. The other four contained the complete ORF and 3’end sequence.
     . Bioinformatics analysis of persimmon fruit expansin gene
     The open reading frame of persimmon fruit expansin gene was 765bp and encoded 254 amino acid residues, which had the conserved sequences (such as HFD) and invariant residues (8 cysteine residues in N-terminal and 4 tryptophan residues in C-terminal)of expansin. Its predict molecular weight was 27150.36 Da, and isoelectric point was 7.587. The protein encoded by CDK-Exp3 had the structure of signal peptide composed of the first 27 amino acid residues.
     The homology of deduced amino acid sequence of CDK-Exp3 with CDK-Exp4, CDK-Exp5, CDK-Exp6 and CDK-Exp7 were respectively 99.2%, 99.2%, 98.4%and 98.8%; with CDK-Exp1 and CDK-Exp2 were about 80%; with apricot, cherry, pear and apple were more than 80%; with peach, plum, strawberry and cucumber were above 70%; with tomato was 65.7%. The homology of deduced amino acid sequence of CDK-Exp4 with CDK-Exp5, both cloned from colour-changed stage of persimmon fruit, was 100%; but the nucleotides of them had 102bp difference in 3’noncoding region.
     3. Prokaryotic expression of persimmon fruit expansin gene
     The ORF sequence without signal peptide of CDK-Exp3 was obtained and restricted with XhoⅠand BamHⅠ, and then inserted into pET-32(a+). pET-CDK-Exp3 expression vector was obtained after sequencing. pET-CDK-Exp3 recombinant was transferred to an E.coli strain BL21(DE3). After IPTG induction, a 44kDa fusion protein was expressed. The optimum inducement condition is: 0.1mM IPTG 37℃, 6h.
引文
[1] Daniel J, Cosgrove. Loosening of plant cell walls by expansins[J]. Nature, 2000, 407:321–326.
    [2] Daniel J C, Li L C, Cho H T, Susanne H B, Richard C M and Douglas B. The growing world of expansins[J]. Plant and Cell Physiology, 2002, 43:1436–1444.
    [3] McQueen-Mason S J, Darachko D M, Cosgrove D J. Two endogenous proteins that induce cell wall extension in plant[J]. Plant cell. 1992,4:1425–1433.
    [4] Li Z C, Durachko D M, Cosgrove D J. An oat coleoptile wall protein that induces wall extension in vitro and that is antigenically related to a similar protein from cucumber hypocotyls[J]. Planta. 1993, 191:349–356.
    [5] Rayle D L, Clel R E. The acid growth theory of auxin-induced cell elongation is alive and well[J]. Plant Physiol, 1992, 99:1271–1274.
    [6] Cosgrove, D J. Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls[J]. Planta, 1989, 177:121–130.
    [7] Hager, Menzle H and Krauss A. Experiment and hypothesis concerning the primary action of auxin in elongation growth[J]. Planta. 1971, 100:47–75.
    [8] Rayle D and Cleland R E. Enhancements of wall loosening and elongation by acid solution[J]. Plant Physiol. 1970, 46:250–253.
    [9] Wu Y, Sharp R E, Durachko DM, Cosgrove D J. Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins. Plant Physiol[J]. 1996, 111: 765– 772.
    [10] Cho H T, Kende H. Expression of expansin genes is correlated with growth in deepwater rice[J]. Plant Cell. 1997, 9:1661–1671.
    [11] McQueen-Mason S J, Fry S C, Durachko D M, Cosgrove D J. The relationship between xyloglucan endotransglycosylase and in vitro cell wall extension in cucumber hypocotyls[J]. Planta. 1993, 190: 327–331.
    [12] Keller E , Cosgrove D J. Expansins in growing tomato leaves[J]. Plant J. 1995, 8: 795– 802.
    [13] Cosgrove D J, Li Z C. Role of expansin in developmental and light control of growth and wall extension in oat coleoptiles[J]. Plant Physiol. 1993, 103:1321–1328.
    [14] Cosgrove D J. New genes and new biological roles for expansins[J]. Cur.Opin.Plant Biol. 2000, 3:73–78.
    [15] Brummel D A, Harpster M H, Dunsmuir P. Differential expression of expansin gene family members during growth and ripening of tomato fruit[J]. Plant Mol.Biol., 1999, 39: 161–169.
    [16] McQueen-Mason S J, Cosgrove D J. Expansin mode of action on cell walls: Analysis of wall hydrolysis, stress relaxation, and binding[J]. Plant Physiol. 1995, 107:87–100.
    [17] Cosgrove D J, Durachko D M. Autolysis and extension of isolated walls from growing cucumber hypocotyls[J]. J.Exp.Bot. 1994, 45:1711–1719.
    [18] Cho H T, Cosgrove D J. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana[J]. Proc.Natl.Acad.Sci. 2000, 97:9783–9788.
    [19] Wu Y J, Thorne E T, Sharp R E. Modification of expansin transcript levels in the maize primary root at low water potentials[J]. PlantPhysiol, 2001, 126(4): 1471–1479.
    [20]李连朝,王学臣,荆家海.大豆幼苗下胚轴扩张蛋白的存在及其特性[J].植物学报, 1998, 40(7): 627–634.
    [21] Hutchison K W, Singer P B, Diaz-Sala C, Greenwood M S. Expansins are conserved in conifers and expressed in response to exogenous auxin[J]. Plant Physiol. 1999, 120:827– 832.
    [22] Vriezen W H, De Graaf B, Mariani C,Vosenek L A C J. Submergence induces expansin gene expressin in flooding tolerant Rumex palustris and not in flooding intolerant R.acetosa[J]. Planta, 2000, 210:956–963.
    [23]孙旭东,杨洪强,魏绍冲,徐慧妮,张鑫荣,段凯旋.平邑甜茶新根扩展蛋白基因MhEXP1的cDNA全序列克隆及表达[J].中国农业科学, 2008, 41(5):1548–1553.
    [24] Feng Chen, Kent J B. Expression of an Expansin is Associated with Endosperm Weakening during Tomato Seed Germination[J]. Plant Physionlogy, 2000, 124:1265–1274.
    [25] Gao Qiang, Zhao MeiRong, Li Feng, et al. Expansins and coleoptile elongation in wheat[J]. Protoplasma, 2008, 233:73–81.
    [26] Fleming A J, McQueen-Mason S, Mandel T, et al. Induction of leaf primordial by the cell wall protein expansin[J]. Science, 1997, 276(5317): 1415–1418.
    [27] Cho H T, Cosgrove D J. Altered expression of expansin modulates leaf growth and pedicel abscissionin Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2000, 97(17): 9783–9788.
    [28] Stephane Pien, et al. Local expression of expansin induces the entire process of leaf development and modifies leaf shape[J]. Proc. Natl.Acad.Sci.U.S.A., 2001, 98: 11812–11817.
    [29] Choi D, et al. Regulation of Expansin Gene Expression Affects Growth and Development in Transgenic Rice Plants[J]. The Plant Cell, 2003, 15: 1386–1398.
    [30] Pezzotti M, Feron R, Mariani C. Pollination modulates expression of the PPAL gene, apistil-specificβ- expansin[J]. Plant Mol Biol, 2002, 49(2): 187–197.
    [31] Shcherban T Y, Shi J, Durachko D M. Molecular cloning and sequence analysis of expansins—a highly conserved, multigene family of proteins that mediate cell wall extension in plants[J]. Proc Natl Acad Sci USA, 1995, 92(20): 9245–9249.
    [32]金慧清,陈英豪,金勇丰. Expansin(细胞壁松弛蛋白)的发展[J].生命科学, 2006, (2): 168–174.
    [33]赵萍,陈苏,王学臣.拟南芥扩张蛋白AtEXP1参与气孔运动的调控[J].作物学报, 2006, 32(4):562–567.
    [34] Rose J K C,Bennett A B. Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening[J]. Trends Plant Sci., 1999, 4:176–183.
    [35] Rose J K C, Lee H H, Bennett A B. Expression of a divergent gene is fruit-specific and ripening-regulated[J]. Proc.Natl.Acad.Sci.USA, 1997, 94:5955–5960.
    [36] Brummell D A, et al. Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening[J]. Plant Cell, 1999, 11: 2203–2216.
    [37] Rose J K C, Hadifield K A, Labavitch J, et al. Temporal sequence of cell wall disassembly in ripening melon fruit[J]. Plant Physiol, 1998, 117:345–361.
    [38] Rose J K C, Cosgrove D J, Albersheim P, Darvill A G, Bennett A B. Detection of expansin proteins and activity during tomato fruit ontogeny[J]. Plant Physiol. 2000, 123: 1583–1592.
    [39] Civello P M, Powell A L T, Sabehat A, Bennett A B. An expansin gene expressed in ripening strawberry fruit[J]. Plant Physiol. 1999, 121:1273–1279.
    [40] Hayama H, Shimada T, et al. Molecular cloning of a ripening-related expansin cDNA in peach evidence for no relationship between accumulation and change in fruit firmness during storage[J]. Plant Physiol, 2000, 157:567–573.
    [41] Hayama H, Shimada T, Ito A. Changes in the levels of mRNA for putative cell wall–related genes during peach fruit development[J]. Scientia Horticulturae, 2001, 91: 239–250.
    [42] Yoo S D, Gao Z F, Wayne L, et al. Expression of several expansins is coordinately regulated with that of other cell wall softening enzymes and is associated with pectin-related changes in the cell wall during ripening of cherry(Prunus cerasus) fruit[J]. Hortscience (abstract), 2001, 36:602.
    [43]童斌,饶景萍,任小林,李嘉瑞.中国柿果实扩展蛋白基因的cDNA克隆与序列分析[J].西北植物学报, 2005, 25(11):2168–2171.
    [44] Wakasa Y, Hatsuyama Y, Takahashi A, Sato T, Niizeki M, Harada T. Divergent expression of six expansin genes during apple fruit ontogeny[J]. Eur. J. Hort. Sci., 2003, 68: 253–259.
    [45]陆旺金.香蕉果实expansin cDNA克隆及序列分析[J].华南农业大学学报(自然科学版), 2003, 24(3):40–42.
    [46] Asha, Sane VA, Sane AP, et al. Multiple forms of alpha-expansin genes are expressed during banana fruit ripening and development[J]. Postharvest Biology and Technology, 2007, 45 (2): 184–192.
    [47]孙涌栋,张兴国,杜小兵,苏承刚,毕喜红.黄瓜扩张蛋白基因CsEXP10的克隆与表达[J].植物生理与分子生物学学报, 2006, 32(3):375–380.
    [48] Ishimaru M, Smith D L, Gross K C, et al. Expression of three expansin genes during development and maturation of Kyoho grape berries[J]. Journal of Plant Physiology, 2007, 164(12):1675–1682.
    [49]牛艳梅,沈文涛,卢雅薇,周鹏.番木瓜果实膨胀素基因部分序列的克隆及分析[J].热带作物学报, 2007, 28(4):47–49.
    [50] Shaolan Yang, Changjie Xu, Bo Zhang, et al. Involvement of both subgroups A and B of expansin genes in kiwifruit ripening[J]. HortScience, 2007, 42(2):315–319.
    [51]宋长年,乔玉山,章镇,胡钟东,渠慎春,熊爱生,姚泉洪.砂梨扩展蛋白基因cDNA克隆及全序列分析[J].果树学报, 2008, (2):166–171.
    [52] Yang S L, Sun C D, Wang P, et al. Expression of expansin genes during postharvest lignification and softening of 'Luoyangqing' and 'Baisha' loquat fruit under different storage conditions[J]. Postharvest Biology and Technology, 2008, 49(1): 46–53.
    [53] Harrison E P, McQueen-Mason S J, Manning K. Expression of six expansin genes in relation to extention activity in developing strawberry fruit[J]. Exp.Bot., 2001, 52:1437–1446.
    [54] Fenwick K M, Apperley D C, Cosgrove D J, Jarvis M C. Polymer mobility in cell walls of cucumber hypocotyls[J]. Phytochem., 1999, 51:17–22.
    [55] Grobe K, Becker W M, Petersen A. Grass group I allergens(b-expansins) are novel, papainrelated proteinases[J]. Eur.J.Biochem., 1999, 263:33–40.
    [56] McQueen-Mason S J, Cosgrove D J. Disruption of hydrogen bonding between wall polymers byproteins that induce plant wall extension[J]. Proc.Natl Acad.Sci.USA. 1994, 91:6574–6578.
    [57] Jervis E J, Haynes C A, Kilburn D G. Surface diffusion of cellulases and their isolated bindingdomains on cellulose[J]. J.Biol.Chem. 1997, 272:24016–24023.
    [58] Cosgrove D J. Biophysical control of plant cell growth[J]. Annu.Rev.Plant Physiol. 1986, 37: 377–405.
    [59] Whitney S E C, Gidley M J, McQueen-Mason S. Probing expansin action using cellulose/ hemicellulose composites[J]. Plant J. 2000, 22:327–334.
    [60] Cosgrove D J, Durachko D M, Li L C. Expansins may have cryptic endoglucanase activity and can synergize the breakdown of cellulose by fungal cellulases[J]. Annu. Meeting Am.Soc.Plant Physiol.Abstr. 1998, 171.
    [61] De Marino, S.et al. An immunoglobulin-like fold in a major plant allergen:the solution structure of Phl p 2 from timothy grass pollen[J]. Struct.Fold Des. 1999, 7:943–952.
    [62] Fishman M L, Levy B, Gillespie D. Changes in the Physiol-chemical prosperties of peach fruit pectin during on the ripening and storage[J]. J.Amer.Hort.Sci., 1993, 118(3):343–349.
    [63] Toone E J. Structure and energetics of protein-carbohydrate complexes[J]. Curr. Opin. Struct. Biol. 1994, 4:719–728.
    [64] Mattinen M L, Linder M, Drakenberg T, Annila A. Solution structure of the cellulose-binding domain of endoglucanase I from Trichoderma reesei and its interaction with cello- oligosaccharides[J]. Eur.J.Biochem. 1998, 256:279–286.
    [65] Henrissat B, Teeri T T, Warren R A J. A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants[J]. FEBS Lett., 1998, 425:352–354.
    [66] Davies G J, et al. Structure and function of endoglucanase V[J]. Nature, 1993, 365:362–364.
    [67] Cosgrove D J. Relaxation in a high-stress environment:The molecular bases of extensible cell walls and cell enlargement[J]. Plant Cell, 1997, 9:1031–1041.
    [68] Fry S C. Polysaccharide-modifying enzymes in the plant cell wall[J]. Annu.Rev.Plant Physiol.Plant Mol.Biol., 1995, 46:497–520.
    [69] Cosgrove et al., Cosgrove D J, Bedinger P, Durachko DM. Group Iallergens of grass pollen as cell wall-loosening agents[J]. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 6559–6564.
    [70] Luis F, Goulao, Daniel J. Cosgrove, Cristina M. Oliveira. Cloning, characterisation and expression analyses of cDNA clones encoding cellwall-modifying enzymes isolated from ripe apples[J]. Postharvest Biology and Technology. 2008, 48: 37–51.
    [71]徐伟丽,赵国华.基因工程在改良植物性食物采后贮藏品质中的应用[J].四川食品与发酵,2003, 1:41–43.
    [72]金勇丰,张上隆,陈昆松.果实成熟的分子生物学[J].植物生理学通讯, 1996, 32(5):390–396.
    [73]宋艳茹,马庆虎.植物基因工程中反义DNA的应用[J].植物学通讯, 1990, 7(4):13–17.
    [74] Sheehy R E, Kramer M, Hiatt W R. Reduction of polygalacturonase activity in tomato fruit by antisense RNA[J]. Proc Natl Acad Sci USA, 1988, 85:8805.
    [75] Smith C J S, et al. Antisence RNA inhibition of polygalacturonase gene expression in transgenic tomatoes[J]. Nature.,1988, 334:724–726.
    [76]叶志彪,李汉霞,周国林.番茄多聚半乳糖醛酸酶反义cDNA克隆的遗传转化与转基因植株再生[J].园艺学报, 1994, 21:305–306.
    [77]黄永红,梅眉,曾继吾,周碧容,吴元立,易干军.甜瓜多聚半乳糖醛酸酶反义基因植物表达载体的构建及其转化烟草的研究[J].果树学报, 2007, 24( 4):492–495.
    [78]唐霞,周志平,赵丛枝,马俊莲,张子德.富有柿果ACC合成酶基因RNA干扰植物表达载体的构建[J].华北农学报, 2007, 22(1):73–77.
    [79]吴静,李瑞珍,徐碧玉,金志强.香蕉ACC合成酶反义基因转化香蕉的研究[J].分子植物育种, 2007, 5(4):497–501.
    [80]何勇,尹俊,李连国.甜瓜多聚半乳糖醛酸酶(PG)基因反义表达载体的构建[J].内蒙古农业大学学报(自然科学版), 2004, 25(2):81–85.
    [81]寇晓虹,罗云波,田慧琴,石英.多聚半乳糖醛酸酶(PG )反义基因转化加工番茄[J].食品科学, 2007, 28(3):187–190.
    [82] Oller P W, Min-Wong L, Taylor L P, et al. Reversible inhibition of tomato during senescence by antisense RNA[J]. Science, 1991, 254:437–439.
    [83]刘传银,田颖川,沈全光等.番茄ACC合成酶cDNA克隆及其对果实成熟的反义抑制[J].生物工程学报, 1998, 14(2):139–146.
    [84]何业华,熊兴华,林顺权,吴会桃,林良斌,何钢,陈建华.根癌农杆菌介导反义ACC合成酶基因对枣树的转化[J].湖南农业大学学报(自然科学版), 2004, 30(1):33–36.
    [85] Hamilton A J, Lycett G W, Grierson D. Antisense gene that inhibits synthesis of the hormone ethylene in transgemic plants[J]. Nature, 1990, 346: 284.
    [86]叶志彪,李汉霞.两个反义基因在番茄工程植株中的生理抑制效应分析[J].植物生理学报,1996, 22(2):157–160.
    [87]金勇丰,张耀洲.桃ACC氧化酶基因的克隆和植物表达载体的构建[J].园艺学报, 1998, 25 (1):37–43.
    [88]黄永红,陶兴林,陆璐,赵长增.甜瓜ACC氧化酶反义基因植物表达载体的构建及转化烟草的研究[J].西北植物学报, 2005, 25(2):262–268.
    [89]吴延军,张上隆,谢鸣,陈俊伟,蒋桂华,秦永华,秦巧平.桃ACO基因反义转化桃幼胚子叶的研究[J].遗传, 2006, 28 (1 ):65–70.
    [90]刘艺,马俊莲,张子德,唐霞,宋春丽.上西早生柿ACC氧化酶的转基因研究[J].河北农业大学学报, 2009, 32(2):66–70.
    [91]陈银华,欧阳波,李汉霞,叶志彪.番茄ACO基因的克隆及其RNAi对乙烯释放的抑制(英文)[J].农业生物技术学报, 2007, 15(3):464–468.
    [92]何琳,朱本忠,罗云波.转反义LeEIL2基因番茄果实采后部分生理特性[J].中国农业大学学报. 2006, 11(1):57–60.
    [93]张庆华,茅矛,陈竺.基因组研究中全长cDNA克隆的策略[J].生物工程进展, 2000, 20(4):3–5.
    [94]李鑫,章涛.新基因的克隆策略和方法[J].海峡药学, 2004, 16(3):16–20.
    [95]邬捃超,蒋滢. cDNA末端快速扩增技术的研究进展[J].氨基酸和生物资源, 2003, 25(1): 25–31.
    [96]张洁,陆海峰,李有志.电子PCR[J].分子植物育种, 2004, 2(1):139–145.
    [97]黄骥,张红生,曹雅君.水稻功能基因的电子克隆策略[J].中国水稻科学, 2002, 16(4):295–298.
    [98]王华春,陈清轩.充分利用EST数据库资源[J].生物化学与生物物理进展, 2000, 27(4): 442–444.
    [99]邵筱,吴忠道,刘翰腾.应用EST和电子克隆策略研究血吸虫表达基因谱[J].基础医学与临床, 2005, 25(7):602–606.
    [100]唐克轩,开国银,张磊等. RACE的研究及其在植物基因克隆上的应用[J].复旦学报(自然科学版), 2002, 41(6):704–708.
    [101] Frohman M A,Dush M K,Martin G R.Rapid production of full length cDNAs from rare transcripts: Amplification using a single gene-specific oligonucleotide primer[J]. Proc Natl Acad Sci USA, 1988, 85:8998–9002.
    [102] Ohara O, Dorit R L, Gilbert W. One-sided polymerase chain reaction:the amplification of cDNA[J]. Proc Natl.Acad.Sci USA, 1989, 86:5673–567.
    [103] Loh E Y, Elliott J F, Cwirla S, et al. Polymerase chain reaction with single-sided specificity: analysis of T cell receptor delta chain[J]. Science, 1989, 243:217–220.
    [104]陶爱林,林兴华,张端品.获取全长cDNA若干方法的比较[J].武汉植物学研究, 2003, 21(2):179-186.
    [105]杨锡明,高磊,栾静.获取基因全长cDNA的方法及其进展[J].现代检验医学杂志, 2005, 20(3):80–83.
    [106]明洪,黄秉. RACE: cDNA末端快速扩增技术进展[J] .生物工程进展, 1997, 17(5):7–13.
    [107]韩婧. RACE技术及其研究进展[J].沧州师范专科学校学报, 2005, 2(21):91–99.
    [108] Edwards J B, Delort J, Mallet J. Oligodeoxyribonucleotide ligation to single-stranded cDNAs:a new tool for cloning 5’ends of mRNA and for constructing cDNA libraries by invitro amplification[J]. Nucleic Acids Res., 1991, 19:5227–5232.
    [109] Troutt A B, McHeyzer M G, Pulendran B, et al. Ligation-anchored PCR: A simple amplification technique with single-sided specificity[J]. Proc.Natl.Acad.Sci. USA, 1992, 89: 9823–9825.
    [110] Liu X, Gorovsky M A, Mappingthe 5’and 3’ends of Tetrahymena thermophila mRNAs using RNA ligase mediated amplification of cDNA ends(RLM-RACE)[J]. Nucleic Acids Res, 1993, 21:4954– 4960.
    [111] MaruyamaI N, Rakow T, Marayama H I. cRACE:a simple method for identification of the 5’end of mRNAs[J]. Nucleic Acids Res, 1995, 23:3796–3797.
    [112]王爱勤,杨丽涛,王自章.甘蔗ACC氧化酶全长cDNA的克隆及序列分析[J].广西植物, 2006, 26(2):194–199.
    [113]周琳,董丽.牡丹ACC氧化酶基因cDNA克隆及全序列分析[J].园艺学报, 2008, 35 (6): 891–894.
    [114] Belyavavsky A, Vimogradova T, Rajewsky K. PCR-based cDNA library construction: general cDNA libraries at the level of a few cells[J]. Nucleic Acids Res, 1989, 17: 2919–2932.
    [115] Fritz J D, Greaser M L, Wolff J A. A novel 3’extension technique using random primers inRNA-PCR[J]. Nucleic Acids Res., 1991, 19:3747–3749.
    [116] Struck F, Collins J. Simple and rapid 5’and 3’extension techniques in RT-PCR[J]. Nucleic AcidsRes, 1994, 22:1923–1924.
    [117] Zhang X H, Chiang V L. Single-stranded DNA ligation by T4 RNA ligase for PCR cloning of 5’-noncoding fragments and coding sequence of a specific gene[J]. Nucleic Acids Res., 1996, 24: 990–991.
    [118] Carney J P. et al, Random rapid amplification of cDNA ends(RRACE)allows for cloning of multiful novel human cDNA fragment containing(CAG)n repeats[J]. Gene, 1995, 155:289–292.
    [119] Whitcomb J M, Rashtchian A, Hughes S H. Polymerase chain reaction with single-sided specificity: analysis of T cell receptor delta chain[J]. Nucleic Acids Res, 1993, 21(4):143–414.
    [120] Balavoine G, Rosa R, Adoutte A. Identification of members of several homeobox genes inaplanarian using a ligation-mediated polymerase chain reaction technique[J]. Nucleic Acids Res. 1996, 24:1547–1553.
    [121] LI H, Wang M W, Shao Y, et al. A rapid method for cloning candidated homologenes by combinating RACE technology with bioinformatics[J]. letters in Biotechnology, 2001, 12 (4): 257– 259.
    [122]吴丹,仇华吉,童光志.几种表达系统的比较[J].生物技术通报, 2002,(2):30–34.
    [123]廖关德,谢秋玲,林剑等.外源基因在大肠杆菌中德高效表达[J].生命科学, 2002, 14(5): 283–287.
    [124]戎晶晶,刁振宇,周国华.大肠杆菌表达系统的研究进展[J].药物生物技术, 2005, 12(6): 416–420.
    [125]崔晓峰,李云琴,李桂新等.烟草曲茎病毒复制蛋白基因的原核表达和免疫定位[J].微生物学报, 2004, 44(6):745–748.
    [126]江讪,冯振卿,江千里等. prk基因非融合表达载体的构建及其在大肠杆菌中的表达[J].南京医科大学学报, 2003, 23(4):341–343.
    [127]丁鸣,余建华,丁仁端.融合表达载体的研究进展[J].生物技术, 1998, 8(4):5–8.
    [128] Deuerling E, Schulze-Speching A, Tomoyasu T. Trigger factor and Dna K cooperate in folding of newly synthesized proteins[J]. Nature, 1999, 400:693–697.
    [129]曹廷兵,叶治家,巩燕等.人PPAR-LBD cDNA的克隆及其在大肠杆菌中的表达纯化[J].生命科学研究, 2004, 8(1):36–40.
    [130] Chrunyk B A, Evans J, Lillquist J. Inclusion body formation and protein stability in sequence variants ofinterleukin-1 beta[J]. J.Biol.Chem. 1993, 268(24):18053–18061.
    [131] Tsai A Y, Itoh M, Streuli M. Isolation and characterization of temperature- sensitive and thermostable mutants of the human receptor-like protein tyrosine phosphatase LAR[J]. J. Biol. Chem., 1991, 266(16):10534–10543.
    [132] Roberto J, Alessandra L, Paola T. Loop Mutations can cause a substantial conformational change in the carboxy terminus of the ferritin protein[J]. J Mol Biol, 1992, 227:532–543.
    [133] Anna M, Jonathan K. Amino acid substitutions influencing intracellular protein folding pathways [J]. FEBS Lett, 1992, 307(1):20–25.
    [134] Goloubinoff P, Gatenby Antyony A, Lorimer George H. GroE Heat-Shock Proteins Promote Assembly of Foreign Prokaryotic Ribulose bisphoshate carboxylase oligomers in Escherichia coli[J]. Nature, 1989, 337:44–47.
    [135] Lee S C, Olins P O. Effect of overproduction of heat shock chaperones GroESL and DnaK on human procollagenase production in Escherichia coli[J]. J.Biol.Chem., 1992, 267 (5):2849–2852.
    [136] Wu X, Oppermann U. High-level expression and rapid purification of rare-codon genes from hyperthermophilic archaea by the GST gene fusion system[J]. J Chromatogr B Analyt Technol Bioed Life Sci, 2003, 786(1-2):177–185.
    [137] De Carlos A, Montenegro D, Alonso-Rodriguez A. Purification of human alpha-L-fucosidase precursor expressed in Escherichia coli as a glutathione S-transferase fusion protein[J]. J Chromatogr B Analyt Technol Bioed Life Sci, 2003, 786(1-2):7–15.
    [138] Price D, Park I, Avraham H. Methods for the study of protein-protein interactions in cancer cell biology[J]. Methods Mol Biol., 2003, 218(40):255–267.
    [139] Peng H, He H, Hay J. Interaction between the varicella zpster virus IE62 major transactivator and cellular transcription factor Sp1[J]. J Biol Chem, 2003, 278(39):38068–38075.
    [140] Sheng Z, Chang S B, Chirico W J. Expression and purification of a biologically active basic fibroblast growth factor fusion protein[J]. Protein Expr Purif, 2003, 27(2):267–271.
    [141] Schein C H, Boix E, Haugg M, etc. Secretion of Mammalian Ribonucleases from Escherichia- coli Using the Signal Sequence of Murine Spleen Ribonuclease[J]. Biochem. J., 1992, 283:137–144.
    [142] Derman A I, Prinz W A, Belin D, etc. Mutations that Allow Disulfide Bond Formation in the Cytoplasm of Escherichia-coli[J]. Science, 1993, 262:1744–1747.
    [143] Ignatova Z, Mahsunah A, Georgieva M, etc. Improvement of Posttranslational Bottlenecks in the Production of Penicillin Amidase in Recombinant Escherichia coli Strains[J]. Appl. Environ. Microbiol., 2003, 69(2):1237–1245.
    [144] Li Y, Darley C P, Ongaro V, Fleming A, Schipper O, Baldauf S L, McQueen-Mason S J. Plant expansins are a complex ultigenefamily with an ancient evolutionary origin[J]. Plant Physiol, 2002, 128(3):854–864.
    [145] Brummell D A, Harpster M H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants[J]. Plant Mol. Biol., 2001, 47:311–340.