自主水下机器人操纵运动的非线性控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自主水下机器人(AUV)运动控制系统是一个受外界扰动强,且具有强非线性、耦合性、欠驱动性、不确定性的动态系统。因此,AUV运动控制问题属于典型的非线性系统控制理论的研究范畴。研究AUV运动系统的非线性控制问题具有重要的理论价值和现实意义。为此,本文基于自适应鲁棒非线性控制理论,探讨AUV运动系统的非线性控制问题,旨在提高AUV运动系统的动态品质。本文在系统地分析了AUV控制系统非线性动态模型的基础上,分别研究了单个AUV路径跟踪问题和多AUVs分散式编队协调控制问题,具体研究工作如下:
     第一,对AUV定深运动进行研究,建立了定深运动非完整模型,提出了基于反步法的自适应输出反馈控制器,该控制器在AUV缺少垂直推进器而只配备主推进器和水平舵的情况下,能够满足定深控制精度。由于控制器将反步法与神经网络和自适应律结合起来,能够补偿AUV运动系统中参数不确定性和非线性部分,因而对有界的外部扰动具有较强的鲁棒性。
     第二,针对近水面航行的AUV路径跟踪控制问题进行研究,在载体坐标系下建立AUV路径跟踪误差动力学模型,提出了基于神经网络的自适应输出反馈控制器。该控制方法克服了带波频干扰的系统输出信号进入控制环节所造成的驱动装置的破坏和燃料的浪费,同时还克服了过多测量装置带来的测量误差和测量噪声。该控制方法不需要精确的系统模型,对于系统内部参数变化、不确定性以及外部干扰具有很强的鲁棒性。
     第三,针对AUV路径跟踪控制问题,引入Serret-Frenet坐标系,并在此坐标系下建立路径跟踪误差动力学模型,提出了非线性鲁棒自适应控制器。该控制方法在保证闭环系统稳定性的同时,还充分考虑了AUV动态系统中存在的参数摄动值问题。通过设计鲁棒自适应律,从而有效补偿未知参数摄动值部分,提高了路径跟踪精度。通过采用视线角导航,使AUV根据目标点的变化而改变操舵行为,从而加快了AUV收敛到期望路径的速度。
     第四,在单个AUV路径跟踪的基础上研究了多AUVs编队协调控制问题。基于Lyapunov稳定性理论和图论知识提出了分散式编队协调控制器。该控制方法不仅适用于通讯畅通的多AUVs编队控制,还适用于存在通讯缺失和通讯时滞的多AUVs编队控制。针对存在通讯缺失和通讯时滞的编队协调控制问题,分析了整个系统上通讯缺失和通讯时滞的影响,给出了协调误差动态系统稳定的条件。最后通过理论证明和仿真结果表明所提出的控制方法的有效性。
Autonomous underwater vehicle (AUV)'s dynamic system has strong external disturbances, nonlinearity, coupling feature, underactuated and a large number of uncertainties in water coefficients. Therefore, the control of AUV belongs to a class of typical nonlinear control research category. The research of AUV's nonlinear control problem has important significance both in theory and practice. Therefore, based on the nonlinear adaptive robust control theory, this paper discusses the problem of nonlinear control of AUV to improve dynamic quality of AUV's system. Based on the nonlinear system of AUV, this paper discuss the path following control of single AUV and distributed formation control of muti-AUVs, the research work are as follows:
     Firstly, for the problem of an AUV deep-set motion control, a nonholonomic motion model is set up and an adaptive output feedback controller based on backstepping technique is proposed. The precision of deep-set motion can be satisfied by the controller in lack of vertical thrusters and only with main thruster and level rudders. In addition, backstepping technique combinated with neural network adaptive laws not only can compensate the nonlinear part and the uncertainty parameters of the AUV, but also can make the controller robust to the external disturbance.
     Secondly, the path following control of AUV moving in shallow water area is discussed. In the body coordinate frame, the path following error dynamics of AUV in set up and an adaptive output feedback controller based on neural network is proposed. The significant disturbance due to wave motion will be introduced into the measurable output signals and will influence the actual position and attitude of AUV. If the wave disturbance enter into the control loop, it will cause increase of the output control, reduction of the control accuracy, waste of fuel and wear of actuators in serious situation. According to this problem, the proposed controller can filter out the disturbance from the output signals and make them unable to enter control loop. This control method does not need the accurate model of system. Simulation experiment results show that the proposed controller has good adaptability for viscous damping coefficients and unknown nonlinear structure and strong robustness for uncertain additional quality and changing disturbance.
     Thirdly, for the path following control of AUV, the Serret-Frenet coordinate frame is introduced. In the Serret-Frenet coordinate frame, the path following error dynamics of AUV in set up and a nonlinear robust adaptive controller is proposed. The control method not only can stabilize the closed-loop system, but also fully considered the parameters' time-varying properties which cause the difference between the nominal value and the actual value of the parameters in AUV's dynamic system. The difference is called parameter perturbation value. The control accuracy will be improved by the proposed robust adaptive control law which is used to compensate parameters'perturbation. By introducing the line-of-sight (LOS) angle, the movement behavior of AUV can be changed according to the target. The AUV can move to the path fast by the LOS navigation.
     Finally, based on the path following control of a single AUV, the formation coordinated control of muti-AUVs is studied in this paper. The proposed control method based on the Lyapunov stability theory and graph theory. The control method is not only applicable to communication unimpeded, but also applicable to communication failures and delays on the performance of the overall AUV formation. The impact of communication failures and delays on the overall system performance is analyzed. Conditions are derived under which the cooperation errors dynamics is stable. Finally, the theoretic proof and simulation results show that the proposed control method is effective on formation coordinated control of muti-AUVs.
引文
[1]蒋新松,封锡盛,王棣棠.水下机器人.辽宁科学技术出版社,2002:1-303.
    [2]曹永辉.复杂环境下自主式水下航行器动力定位技术研究.西北工业大学博士学位论文.2006,5:4-5.
    [3]曹江丽.水下机器人路径规划问题的关键技术研究.哈尔滨工程大学博士学位论文.2009,6:2-3.
    [4]谭民,王硕,曹志强.多机器人系统.清华大学出版社,2005:1-140.
    [5]A. Alvarez, A. Caffaz, A. Caiti, G. Casalino, L. Gualdesi, A. Turetta, R. Viviani. Folaga:A low-cost autonomous underwater vehicle combining glider and AUV capabilities. Ocean Engineering,2009,36:24-38.
    [6]Qiang Chen, Tao Chen, Yang Zhang. Research of GA-based PID for AUV motion control. Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation,2009,36:24-38.
    [7]Guoqing Xia, Li Tang, Fengshui Guo, Qiang Chen, Jing Leng. Design of a hybrid controller for heading control of an autonomous underwater vehicle. IEEE International Conference on Industrial Technology,2009:1-5.
    [8]Yujia Wang, Mingjun Zhang. Research on test-platform and condition monitoring method for AUV. Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation,2006:1673-1678.
    [9]S.Miyamoto, T.Aoki, T.Maeda, K.Hirokawa, T.Ichikawa, T.Saitou, H.Kobayashi, E.Kobayashi, S.Iwasaki. Maneuvering control system design for autonomous underwater vehicle. MTS/IEEE Conference and Exhibition,2001,1:482-489.
    [10]G. Evers, J.H.A.M. Vervoort, R.C. Engelaar, H. Nijmeijer, A.G. de Jager, X.Q. Chen, W.H. Wang. Modeling and simulated control of an under actuated autonomous underwater vehicle. IEEE International Conference on Control and Automation Christchurch,2009:343-348.
    [11]Kangsoo KIM, Taku SUTOH, Tamaki URA, Takashi OBARA. Route keeping control of AUV under current by using dynamics model via CFD analysis. OCEANS,2001,1: 417-422.
    [12]Jonghoon Park, Wankyun Chung, Junku Yuh. Nonlinear H∞ optimal PID control of autonomous underwater vehicles. Underwater Technology,2000,1:193-198.
    [13]Bjorn Jalving, Nils Storkersen. The control system of an autonomous underwater vehicle. Control Application,1994,2:851-856.
    [14]Bjorn Jalving. The NDRE-AUV flight control system. IEEE journal of oceanic engineering,1994,19 (4):497-501.
    [15]Tian Yu, Zhang Aiqun, Li Wei.3D path-following of underactuated autonomous underwater vehicles. Proceedings of the 30th Chinese Control Conference,2011:3456-3461.
    [16]熊华胜,边信黔,施小成.鲁棒H∞滤波器在AUV航向控制中的应用仿真.机器人,2005,27(6):526-534.
    [17]熊华胜,边信黔,施小成.自治水下机器人深度的鲁棒H∞.控制仿真.计算机仿真,2007,24(3):156-159.
    [18]Xinqian Bian, Jiajia Zhou, Zheping Yan, Heming Jia, Shuping Peng. Simulation research of H∞ filter for the pitch control of AUV. Proceedings of 2010 Chinese Control and Decision Conference,2010:1788-1792.
    [19]Mugdha S. Naik, Sahjendra N. Singh, Rajat Mittal. Biologically-inspired adaptive pectoral-like fin control system for CFD parameterized AUV. Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies,2007: 371-377.
    [20]Xia Guo-qing, Tang Li. AUV heading adaptive control based on the dynamic neural network. Ship engineering,2009,31 (2):46-49.
    [21]Xiaocheng Shi, Jiang Chen, Zheping Yan, Tao Li. Design of AUV height control based on adaptive neuro-fuzzy inference system. Proceedings of the 2010 IEEE International Conference on Information and Automation,2010:1646-1651.
    [22]Alexander Lebedev. The multi-dimensional adaptive control system with reference model for the AUV. Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation,2010:1837-1841.
    [23]Alexander V. Lebedev, Vladimir F. Filaretov. The synthesis of multi-channel adaptive variable structure system for the control of AUV. International Conference on Intelligent Robots and Systems,2008:2834-2839.
    [24]Liu Sheng, Ren Dong, Li Bing, Chang Xucheng. Research on variable direction rotatable axis variable vector propeller of AUV in vertical motion.2010 International Forum on Information Technology and Applications,2010:267-270.
    [25]Ji Hong Li, Pan Mook Lee, Bong Hum Jun. Application of a robust adaptive controller to autonomous diving control of an AUV. The 30th Annual Conference of the IEEE Industrial Electronics Society,2004:419-424.
    [26]Ji-Hong Lis, Pan-Mook Leea, Bong-Huan Jun. An adaptive nonlinear controller for diving motion of an AUV. OCEANS,2004,1:282-287.
    [27]Yu Tian, Aiqun Zhang. Development of a guidance and control system for an underwater plume exploring AUV. Proceedings of the 8th World Congress on Intelligent Control and Automation,2010:6666-6670.
    [28]Teruo Fujii, Tamaki Ura. Development of motion control system for AUV using neural nets. Autonomous Underwater Vehicle Technology,1990:81-86.
    [29]Lionel Lapierre, Bruno Jouvencel. Robust nonlinear path-following control of an AUV. IEEE journal of oceanic engineering,2008,33 (2):99-102.
    [30]Edward Fiorelli, Naomi Ehrich Leonard, Pradeep Bhatta, Derek Paley. Multi-AUV control and adaptive sampling in monterey bay. Autonomous Underwater Vehicles, 2004:134-147.
    [31]Xinqian Bian, Jiajia Zhou. Adaptive neural network control system of bottom following for an underactuated AUV. OCEANS,2010:1-6.
    [32]R. Camilli, Whoi B. Bingham, Whoi M. Jakuba, Whoi H. Singh, Whoi J. Whelan, Whoi. Integrating in-situ chemical sampling with AUV control systems. OCEANS, 2004,1:101-109.
    [33]Shuhei Nishida, Kazuo Ishii, Tetsuo Furukawa. Self-organizing decision-making system for AUV. Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies,2007:506-511.
    [34]Jan Albiez, Sylvain Joyeux, Marc Hildebrandt. Adaptive AUV mission management in under-informed situations. OCEANS,2010:1-10.
    [35]Lionel Lapierre. Robust diving control of an AUV. Ocean Engineering,2009,36:92-104.
    [36]Ji-Hong Li, Pan-Mook Lee, Sang-Jeong Lee. Motion control of an AUV using a neural network adaptive controller. Underwater Technology,2002:217-221.
    [37]Mike Eichhorn. A new concept for an obstacle avoidance system for the AUV "SLOCUM Glider" operation under ice. OCEANS,2009:1-8.
    [38]Xu Demin, Yan Weisheng, Shi Yang. Nonlinear variable structure double mode control of AUV. Proceedings of the 2000 International Symposium on Underwater Technology, 2000:425-430.
    [39]Wang Hong-jianl, Bian Xinqian, Zhao Jie, Ding Fu-guang, Xia Guo-qing. A GA path planner based on domain knowledge for AUV. MTTS/IEEE Techno-ocean,2004,3: 1570-1573.
    [40]Yan Zheping, Wu Di, Zhou Jiajia, Zhang Xun. Application of extension integral variable structure control method on simulation of AUV heading control system. Proceedings of the 30th Chinese Control Conference,2011:2617-2621.
    [41]T. Salgado-Jimbnez, J-M. Spiewak, P. Fraisse, B. Jouvencel. A robust control algorithm for AUV based on a high order sliding mode. MTTS/IEEE Techno-ocean, 2004,1:276-281.
    [42]Frank Dougherty, Tom Sherman, Gary Woolweaver, Gib Lovell. An autonomous underwater vehicle (AUV) flight control system using sliding mode control. OCEANS, 1988,4:1265-1270.
    [43]Kihun Kim, Hang S. Choi. Navigation and control for a test bed AUV-SNUUV I. International Symposium on Underwater Technology,2004:89-94.
    [44]Jian-sen Shen, Xu-chang Zhou, Hong-gang Zhang. Research on sliding mode control for near-surface AUV depth regulation in waves circumstance. International Conference on Electrical and Control Engineering,2010:1760-1764.
    [45]Giamgiero Campa, Mario Innocenti. Robust control of underwater vehicles:sliding mode control Vs. Mu synthesis. OCEANS '98 Conference Proceedings,1998,3:1640-1644.
    [46]Y. G. Le Page, K. W. Holappa. Simulation and control of an autonomous underwater vehicle equipped with a vectored thruster. MTS/IEEE Conference and Exhibition,2000, 3:2129-2134.
    [47]Zhaodong Tang, Jiajia Zhou, Xinqian Bian, Heming Jia. Simulation of optimal integral sliding mode controller for the depth control of AUV. Proceedings of the 2010 IEEE International Conference on Information and Automation,2010:2379-2383.
    [48]Luis Rodrigues, Paulo Tavares, Miguel Prado. Sliding mode control of an AUV in the diving and steering planes. Conference Proceedings of Prospects for the 21st Century, 1996,2:576-583.
    [49]Pan-Mook Lee, Chong-Moo Lee, Bong-Hwan Jeon, Seok-Won Hong, Yong-Kon Lim, Jong-Won Park, Jong-Sik Lee. System design and quasi-sliding mode control of an AUV for ocean research and monitoring. Proceedings of the 1998 International Symposium on Underwater Technology,1998,1:179-184.
    [50]Li Ye, Tang Xu-dong, Pang Yong-jie. S plane control of underwater vehicle and its hybrid training algorithm. Chinese Control and Decision Conference,2009:1310-1315.
    [51]Li Ye, Pang Yong-jie, Wan Lei, Tang Xu-dong. A fuzzy motion control of AUV based on apery intelligence. Chinese Control and Decision Conference,2009:1316-1321.
    [52]Xiaocheng Shi, Huashen Xiong, Chunguo Wang, Zonghu Chang. A new model of fuzzy CMAC network with application to the motion control of AUV. Proceedings of the IEEE International Conference on Mechatronics and Automation,2005,4:2173-2178.
    [53]Yuanyuan Yang, Daqi Zhu. Research on dynamic path planning of AUV based on forward looking sonar and fuzzy control. Chinese Control and Decision Conference, 2011:2425-2430.
    [54]Lei Zhang, Yongjie Pang, Lei Wan, Ye Li. Fuzzy neural network control of AUV based on IPSO. Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics,2008:1561-1566.
    [55]Lv Chong, Pang Yong-Jie, Li Ye. Fuzzy neural network controller for AUV based on RAN. Chinese Control and Decision Conference,2009:5726-5729.
    [56]Nicolas Seube. Neural network learning rules for control:application to AUV tracking oontrol. IEEE Conference on Neural Networks for Ocean Engineering,1991:185-196.
    [57]Liang Peng, Yongjie Pang, Yuru Xu. Estimating the sea current and finding the optimal heading of an AUV through neural network motion control. Proceedings of the 1998 International Symposium on Underwater Technology,1998:239-243.
    [58]Hassan Sayyaadi, Tamaki Ura. Multi input-multi output system identification of AUV systems by neural network. OCEANS,1999,1:201-208.
    [59]Igor Astrov, Andrus Pedai. Enhanced situational awareness for AUV's stochastic model by multirate neural control. The 4th Annual IEEE Systems Conference,2010: 66-70.
    [60]Xinqian Bian, Jiajia Zhou. Adaptive neural network control system of bottom following for an underactuated AUV. OCEANS,2010:1-6.
    [61]M. Carreras, J. Batlle, P. Ridao. Hybrid coordination of reinforcement learning-based behaviors for AUV control. Proceedings of the 2001 International Conference on Intelligent Robots and Systems,2001,3:1410-1415.
    [62]M. Carreras, J. Yuh,J. Batlle. An hybrid methodology for RL-based behavior coordination in a target following mission with an AUV. MTS/IEEE Conference and Exhibition,2001,4:2666-2672.
    [63]D. Loebis, R. Sutton, J. Chudley, W. Naeem. Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system. Control Engineering Practice, 2004,12:1531-1539.
    [64]C. Silvestre, A. Pascoal. Control of the INFANTE AUV using gain scheduled static output feedback. Control Engineering Practice,2004,12:1501-1509.
    [65]C. Silvestre, A. Pascoal. Depth control of the INFANTE AUV using gain-scheduled reduced order output feedback. Control Engineering Practice,2007,15:883-895.
    [66]J. Guo, F.-C. Chiu, C.-C. Huang. Design of a sliding mode fuzzy controller for the guidance and control of an autonomous underwater vehicle. Ocean Engineering,2007, 30:2137-2155.
    [67]Ji-Hong Li, Pan-Mook Lee. Design of an adaptive nonlinear controller for depth control of an autonomous underwater vehicle. Ocean Engineering,2005,32:2165-2181.
    [68]Mugdha S. Naik, Sahjendra N. Singh. State-dependent riccati equation-based robust dive plane control of AUV with control constraints. Ocean Engineering,2007,34: 1711-1723.
    [69]Li Jia-Wang, Song Bao-Wei, Shao Cheng. Tracking control of autonomous underwater vehicles with internal moving mass. Acta Automatica Sinica,2008,34 (10):1319-1323.
    [70]A Trebi-Ollennu, B A Stacey, B A White. A multivariable decoupling design of an ROV depth control system. Proceeding of the American Control Conference,1995: 3244-3248.
    [71]Roberto Cristi, Fotis A. Papoulias, Anthony J. Healey. Adaptive sliding mode control of autonomous underwater vehicles in the dive plane. IEEE journal of oceanic engineering,1990,15 (3):152-160.
    [72]Jay Farrell, Bill Goldenthal, Krishna Govindarajan. Connectionist learning control system:submarine depth control. Proceedings of the 29th Conference on Decision and Control,1990:2362-2367.
    [73]G. Chen, S-H. Chung. Depth control of a submersible vehicle under a seaway using a noise estimator. Sixth International Conference on Electronic Engineering in Oceanography,1994:30-34.
    [74]R Sutton, C Johnson, G N Roberts. Depth control of an unmanned underwater vehicle using neural networks. Proceedings of Oceans Engineering for Today's Technology and Tomorrow's Preservation,1994,3:121-125.
    [75]A. J. Healey, F. A. Papoulias, R. Cristi. Design and experimental verification of a model based compensator for rapid AUV depth control. Proceedings of the 6th International Symposium on Unmanned Untethered Submersible Technology,1989: 458-474.
    [76]Hyun-Sik Kim, Yong-Ku Shin. Design of adaptive fuzzy sliding mode controller using FBFE for UFV depth control. SICE-ICASE International Joint Conference,2006: 3100-3103.
    [77]Edward S. Ammeen, Guy O. Beale. Fuzzy depth control for a submersible vehicle. Proceedings of the IEEE International Symposium on Industrial Electronics,1997,3: 1185-1190.
    [78]Chunshien Li, Yu-Chieh Chen. Fuzzy depth control of an unmanned free-swimming submersible vehicle. The IEEE 5th International Conference on Intelligent Transportation Systems,2002:194-199.
    [79]Paul A. De Bitetto. Fuzzy logic for depth control of unmanned undersea vehicles. IEEE journal of oceanic engineering,1995,20 (3):242-248.
    [80]A.Ph.Scherbatiuk, Y.V.Vaulin. Integrated positioning system for underwater autonomous vehicle MT-88. Oceans Engineering for Today's Technology and Tomorrow's Preservation,1994,3:384-388.
    [81]Hyong-Sig Youn, Jae-whoan Lim, Jae-seung Choi, Sang-hui Park. Performance enhancement of depth control system for underwater vehicle using a new master-slave filter-bank. Sixth International Conference on Electronic Engineering in Oceanography, 1994:40-43.
    [82]Lionel Lapierre, Bruno Jouvencel. Robust nonlinear path-following control of an AUV. IEEE journal of oceanic engineering,2008,33 (2):89-102.
    [83]E. Liceaga-Castro, J. Liceaga-Castro. Submarine depth control by individual channel design. Proceedings of the 37th IEEE Conference on Decision and Control,1998,3: 3183-3188.
    [84]Eduardo Liceaga-Castro, Gerrit M. vander Molen. Submarine H∞ depth control under wave disturbances. IEEE transactions on control systems technology,1995,3 (3):338-346.
    [85]Chujen Lin, Roger Xu,Chiman Kwan, Leonard Haynes. Submarine pitch and depth control using FCMAC neural networks. Proceedings of the 1998 American Control Conference,1998,1:379-383.
    [86]Ming-Chung Fang, Pei-En Chang, Jhih-Hong Luo. Wave effects on ascending and descending motions of the autonomous underwater vehicle. Ocean Engineering,2006, 33:1972-1999.
    [87]T.W. Kim, J. Yuh. Development of a real-time control architecture for a semi-autonomous underwater vehicle for intervention missions. Control Engineering Practice,2004,12:1521-1530.
    [88]Jason Evans, Meyer Nahon. Dynamics modeling and performance evaluation of an autonomous underwater vehicle. Ocean Engineering,2004,31:1835-1858.
    [89]A. Tianoa, R. Suttonb, A. Lozowicki, W. Naeem. Observer kalman filter identification of an autonomous underwater vehicle. Control Engineering Practice,2007,15:727-739.
    [90]Z.Feng, R.Allen. Reduced order H∞ control of an autonomous underwater vehicle. Control Engineering Practice,2004,12:1511-1520.
    [91]Shuyong Liu, Danwei Wang, Eng Kee Poh. A nonlinear observer for AUVs in shallow water environment. Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems,2004:1130-1135.
    [92]Shuyong Liu, Danwei Wang, Eng Kee Poh, Yigang Wang. Dynamic positioning of AUVs in shallow water environment:observer and controller design. Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2005:705-710.
    [93]Shuyong Liu, Danwei Wang, Eng Kee Poh, Chin Swee Chia. Nonlinear output feedback controller design for tracking control of ODIN in wave disturbance condition. Proceedings of MTS/IEEE OCEANS,2005,2:1803-1810.
    [94]Gianluca Antonelli, Stefano Chiaverini, Nilanjan Sarkar, Michael West. Adaptive control of an autonomous underwater vehicle:experimental results on ODIN. IEEE transactions on control system technology,2001,9 (5):756-765.
    [95]Kazuo Ishii, Teruo Fujii, Tamaki Ura. An on-line adaptation method in a neural network based control system for AUV's.IEEE journal of oceanic engineering,1995, 20(3):221-228.
    [96]Jeen-Shing Wang, C. S. George Lee, Junku Yuh. An on-line self-organizing neurao-fuzzy control for autonomous underwater vehicles. Rocdings of the 1999 IEEE International Conference on Robotics and Automation,1999:2416-2421.
    [97]Bharath Kalyan, Arjuna Balasuriya, Hayato Kondo, Hayato Kondo, Toshihiro Maki, Tamaki Ura. Motion estimation and mapping by autonomou underwater vehicles in sea environments. Oceans,2005,1:436-441.
    [98]Jon Refsnes, Asgeir J. Sorensen, Kristin Y. Pettersen. Output feedback control of an AUV with experimental results. Mediterranean Conference on Control and Automation, 2007:1-8.
    [99]Attilio Brighenti. Parametric analysis of the configuration of autonomous underwater vehicles. IEEE journal of oceanic engineering,1990,15 (3):179-188.
    [100]Ola-Erik Fjellstad, Thor I. Fossen. Position and attitude tracking of AUV's:a quaternion feedback approach. IEEE journal of oceanic engineering,1994,19 (4):512-518.
    [101]Jeen-Shing Wang, C. S. George Lee, Junku Yuh. Self-adaptive neuro-fuzzy control with fuzzy basis function network for autonomous underwater vehicles. Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems,1999, 1:130-135.
    [102]P. Encarnasiio, A. Pascoal.3D path following for autonomous underwater vehicle. Proceedings of the 39th IEEE Conference on Decision and Control,2000,3:2977-9982.
    [103]Mugdha S. Naik, Sahjendra N. Singh. State-dependent Riccati equation-based robust dive plane control of AUV with control constraints.Ocean Engineering,2007,34: 1711-1723.
    [104]王正国,许汉珍.潜艇垂直而运动的解耦控制.华中理工大学学报,2000,28(10):49-51.
    [105]Ji Hong Li, Pan Mook Lee. A neural network adaptive controller design for free-pitch-angle diving behavior of an autonomous underwater vehicle. Robotics and Autonomous Systems,2005,52 (2-3):132-147.
    [106]Pradeep R. Nambisan, Sahjendra N. Singh. Multi-variable adaptive back-stepping control of submersibles using SDU decomposition. Ocean Engineering,2009,36:158-167.
    [107]程相勤.基于反馈线性化的AUV近水面航向鲁棒控制研究.哈尔滨:工程大学硕士学位论文,2008.
    [108]朱计华.水下机器人近水而运动的变结构控制技术研究.哈尔滨工程大学硕士学位论文,2007.
    [109]朱计华,苏玉民,李哗,田宇.AUV近水而运动的积分变结构控制及仿真.系统真学报,2007,19(22):5321-5324.
    [110]葛晖,高剑,敬忠良,徐德民.AUV近水面运动非线性观测器设计.测控技术,2011,30(4):74-79.
    [111]Alain H. Carof. Acoustic merential delay and doppler tracking system for long range AUV positioning and guidance. Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology,1994:370-375.
    [112]Joe Cuschieri, Shahriar Negahdaripour. Use of forward scan sonar images for positioning and navigation by an AUV. OCEANS,1998,2:752-756.
    [113]Stefan B. Williams, Oscar Pizarro, Jody Webster, Robin Beaman, Tom Bridge. AUV-assisted surveying of relic reef sites. OCEANS,2008:1-7.
    [114]高剑,徐德民,严卫生.基于自适应反演滑模控制的AUV水平面动力定位方法.机械科学与技术,2007,26(6):738-740.
    [115]王婷,宋保维.水下航行器多推进器动力定位控制.兵工学报,2006,27(5):845-850.
    [116]Renxiang Bu, Zhengjiang Liu, Qinghua He. Path following of underactuated surface ships with uncertain forward speed. Chinese Control and Decision Conference,2008: 4053-4058.
    [117]向先波.二阶非完整性水下机器人的路径跟踪与协调控制研究.华中科技大学博士学位论文,2010:1-138.
    [118]A.Mieaelli, C.Samson. Trajectory tracking for unicycle-type and two-steering-wheels mobile robots. Technical Report No.2097, INRIA, Sophia-Antipolis, France, Juee, 1993.
    [119]Lionel Lapierre, Didik Soetanto. Nonlinear path-following control of an AUV. Ocean Engineering,2007,34:1734-1744.
    [120]L.Lapierre, D.Soetanto, A.Paseoal. Noulinear path following with application to the control of autonomous underwater vehicle. Proc. IEEE Conf. Dec. Control,Maui, Hawaii, USA, Dec.2003:1256-1261.
    [121]Lapierre L., Soetanto D., Pascoal A. Nonlinear path-following control of an AUV. Proceedings of the GCUV'03 Conference, Newport, South Wales, UK, April 2003:1-6.
    [122]葛晖,敬忠良,高剑.基于轨迹线性化控制方法的全驱动自主式水下航行器轨迹跟踪控制.上海交通大学学报,2011,45(2):184-189.
    [123]高剑,徐德民,严卫生,刘明雍,张福斌.欠驱动自主水下航行器轨迹跟踪控制.西北工业大学学报,2010,28(3):404-408.
    [124]曹永辉,石秀华.水下航行器轨迹跟踪控制与仿真.计算机仿真,2006,23(7):19-21.
    [125]Balch T, Arkin R C. Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Automat.,1998,14 (6):926-939..
    [126]Chaimowicz L, Sugar T, Kumar V, et al. An architecture for tightly coupled multi-robot cooperation. In Proc. IEEE Int. Conf. Robot. Automat.. Seoul:2001:2992-2997.
    [127]Brett J Young, Pandal W Beard, Jed M Kelsey. A control scheme for improving multi-vehicle formation maneuvers. American Control Conference,2001:704-709.
    [128]Reza Ghabcheloo, Antonio Pascoal, Carlos Silvestre. Nonlinear coordinated path following control of multiple wheeled robots with communication constraints. The 12th International Conference on Advanced Robotics,2005:657-664.
    [129]Randal W Beard, Jonathan Lawton, Fred Y Hadaegh. A coordination architecture for spacecraft formation control. IEEE Transactions on Control System Techonology, 2001,9 (6):777-790.
    [130]Lewis M A, Tan K H. High precision formation control of mobile robots using virtual structures. Autonomous robots,1997,4 (4):387-403.
    [131]Hassan K. Khalil. Nonlinear Systems. Publishing House of Electronics Industry, 2007:3-66.
    [132]刘小河.非线性系统分析与控制引论.清华大学出版社,2008:95-104.
    [133]廖晓昕.稳定性的理论,方法和应用.武汉:华中理工大学出版社,2002.
    [134]Khalik H K. Nonlinear Systems. Prentice Hall,1996.
    [135]Krstic M, etc. Nonlinear and adaptive control design. New York:John Wiley Sons, 1995.
    [136]方勇纯,卢桂章.非线性系统理论.清华大学出版社,2009:31-44.
    [137]胡跃明,非线性控制系统理论与应用.国防工业出版社,2005:36-53.
    [138]贺昱曜,闫茂德.非线性控制理论及应用.西安电子科技大学出版社,2007:42-100.
    [139]焦晓红,关新平.非线性系统分析与设计.电子工业出版社,2008:48-92.
    [140]孙增圻.智能控制理论与技术.清华大学出版社,1997:125-239.
    [141]徐湘元.自适应控制理论与应用.电子工业出版社,2007:1-5.
    [142]Naira Hovakimyan, Flavio Nardi, Anthony Calise, Nakwan Kim. Adaptive output feedback control of uncertain nonlinear systems using single-hidden-layer neural networks. IEEE Transactions on Neural Networks:2002,13(6):1420-1431.
    [143]Arnold, V.I., Mathematical Methods of Classical Mechanics (second ed.), Springer, University,2007.
    [144]Kuttler, Kenneth. An introduction to linear algebra, Lectuer Notes. Brigham Young University,2007.
    [145]龚勋.图论与网络最优化算法.重庆大学出版社.2009:1-75.
    [146]R.Ghabcheloo, A.P.Aguiar, A.Pascoal, C.Silvestre, I.Kaminer, J. Hespanha. Coordinated path-following in the presence of communication losses and time delays. SIAM J. CONTROL OPTIM.2009,48 (1):234-265.
    [147]Z. Lin. Coupled dynamic systems:from structure towards stability and stabilizability. Ph.D. thesis, University of Toronto, Toronto, ON, Canada,2006.
    [148]Z. Lin, B. Francis, M. Maggiore. State agreement for continuous-time coupled nonlinear systems, SIAM J. Control Optim.,2007,46:288-307.
    [149]L. Moreau. Stability of continuous-time distributed consensus algorithm, in Proceedings of the 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas,2004:3998-4003.
    [150]金鸿章,姚绪梁.船舶控制原理.哈尔滨工程大学出版社,2001:155-164.
    [151]M.B. Wallace, S.D. Max, K. Edwin. Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller. Robust and Autonomous Systems:2008,56:670-677.
    [152]Shi Yang, Qian Weiqi, Yan Weisheng, Li Jun. Adaptive depth control for autonomous underwater vehicles based on feedforward neural networks. Int. J. Com. Sci.& Appl.:2007,4(3):107-118.
    [153]毕凤阳.欠驱动自主水下航行器的非线性鲁棒控制策略研究.哈尔滨工业大学博士学位论文,2010.
    [154]Naik Mugdha S., Singh Sahjendra N.. State-dependent riccati equation-based robust dive plane control of AUV with control constraints. Ocean Engineering,2007,34: 1711-1723.
    [155]Nambisan Pradeep R., Singh Sahjendra N.. Multi-variable adaptive back-stepping control of submersibles using SDU decomposition. Ocean Engineering,2009,36:158-167.
    [156]边信黔,程相勤,贾鹤鸣,严浙平,张利军.基于迭代滑模增量反馈的欠驱动AUV地形跟踪控制.控制与决策,2011,26(2):289-296.
    [157]D1 Andre-Novel B. Campion G., Bastin G.. Control of nonholonomic wheeled mobile robots by state feedback linearization. The International Journal of Robotics Research, 1995,14 (6):543-559.
    [158]Lee P.M., Hong S.W., Lim Y.K., et al. Discrete-time quasi-sliding mode control of an autonomous underwater vehicle. IEEE Journal of Oceanic Engineering,1999,24(3): 388-395.
    [159]肖金鹏.潜水器姿态与定深控制关键技术研究.大连海事大学硕士学位论文,2009.
    [160]王敏.非线性系统的自适应神经网络控制新方法研究.青岛大学博士学位论文,2009.
    [161]魏熙乐.非线性系统自适应复合控制的研究.天津大学博士学位论文,2007.
    [162]李靖.几类非线性系统的自适应Backstepping申经网络控制.西安电子科技大学博士位位论文,2009.
    [163]陈为胜.非线性系统智能Backstepping控制与分析.西安电子科技大学博士学位论文,2007.
    [164]林永屹.基于Backstepping的船舶航向非线性控制方法的研究.大连海事大学硕士学位论文,2007.
    [165]Rajan Kumar, Ranjan Ganguli, S.N. Omkar. Rotorcraft parameter estimation using radial basis function neural network. Applied Mathematics and Computation,2010, 216:584-597.
    [166]尹建川.径向基函数神经网络及其在船舶运动控制中的应用研究.大连海事大学博士学位论文,2007.
    [167]Loria A., Fossen T.I., Panteley E.. A separation principle for dynamic positioning of ships:theoretical and experimental results. IEEE Transactions on Control Systems Technology.2000,8 (2):332-343.
    [168]田宇.水下机器人智能运动控制技术研究.哈尔滨工程大学硕士学位论文,2007.
    [169]俞建成,张艾群,王哓辉,苏立娟.基于模糊神经网络水下机器人直接自适应控制.自动化学报,2007,33(8):840-846.
    [170]Jihong Li, Pan-Mook Lee, Sang-Jeong-Lee. Neural net based nonlinear adaptive control for autonomous underwater vehicle. Proceedings of the IEEE International Conferenceon Robotics and Automation, Washington DC, USA,2002:1075-1080.
    [171]Hovakimyan N., Nardi F., Nakwan Kim. Adaptive output feedback control of uncertain nonlinear systems using single-hidden-layer neural networks. IEEE Transactions on neural networks,2002,13 (6):1420-1431.
    [172]Calise A.J., Hovakimyan N., Idan M.. Adaptive output feedback control of nonlinear systems using neural networks. Automatica,2001,37 (8):1201-1211.
    [173]Kim Y.H., Lewis F.L.. Neural network output feedback control of robot manipulators. IEEE Transactions on Robotics and Automation,1999,15 (2):301-309.
    [174]高健树,邢志伟,张宏波.基于观测器的水下机器人神经网络自适应控制.机器人,2004,26(6):515-518.
    [175]Paulsen M.J., Egeland O., Fossen T.I.. An output feedback controller with wave filter for marine vehicles. Proceedings of the American Control Conference,1994:2202-2206.
    [176]Aguiar A.P., Dacic D.B., Hespanha J.P., Kokotovic P. Path following or reference tracking? An answer relaxing the limits to performance. Proceeding of the 5th IFAC/EURON Symp. Intell. Auton Veh., Lisbon, Portugal, July 2004.
    [177]王银涛,郑美云,严卫生.一种新的AUV路径跟踪控制方法.西北工业大学学报.2009,27(4):517-521.
    [178]Micaelli, A., Samson, C0.3D path-following and time-varying feedback stabilization of a wheeled robot. Proceedings of the International Conference ICARCV 1992, RO-13.1, Singapore.
    [179]Micaelli, A., Samson, C.. Trajectory tracking for unicycle-type and two-steering wheels mobile robots. Technical Report No.2097, INRIA, Sophia-Antipolis, France, 1993.
    [180]王晓飞.基于解析模型预测控制的欠驱动船舶路径跟踪控制研究.上海交通大学博士学位论文,2009:1-140.
    [181]甘永,万磊,陆雯雯,庞永杰.无舵翼水下机器人路径跟踪控制研究.海洋工程,2007,25(1):70-75.
    [182]Yintao Wang, Weisheng Yan, Bo Gao, Rongxin Cui. Backstepping-based path following control of an underactuated autonomous underwater vehicle. Proceedings of the 2009 IEEE International Conference on Information and Automation,2009:466-471.
    [183]Chen Yimei. Global path following for 6-degrees underactuated vehicle. International Colloquium on Computing, Communication, Control, and Management. 2009:51-54.
    [184]F.Y. Bi, Y.J. Wei, J.Z. Zhang, W. Cao. Position-tracking control of underactuated autonomous underwater vehicles in the presence of unknown ocean currents. IET Control Theory and Applications,2009,10:2369-2380.
    [185]P. Jantapremjit, P. A. Wilson. Guidance control based path following for homing and docking using an autonomous underwater vehicle. Oceans,2008,10:1-6.
    [186]马岭,崔维成.NTSM控制的AUV路径跟踪控制研究.中国造船,2006,47(4):76-82.
    [187]宋军,许晓鸣.水下机器人的垂直平面导航控制器设计.上海交通大学学报,1997,31(3):24-27.
    [188]马岭,崔维成.基于模糊混合控制的自治水下机器人路径跟踪控制.控制理论与应用,2006,23(3):341-346.
    [189]Encarnacao, P., Pascoal, A., Arcak, M.,2000. Path-following for marine vehicles in the presence of unknown currents. Proceedings of the Sixth IFAC Symposium on Robot Control, SYROCO 2000. Vienna, Austria.
    [190]Encarnacao, P., Pascoal, A.,2000.3D path-following for autonomous underwater vehicles. Proceedings of the 39th IEEE Conference on Decision and Control,2000,3: 2977-2982.
    [191]K.D. Do, J. Pan, Z.P. Jiang. Robust and adaptive path following for underactuated autonomous underwater vehicles. Ocean Engineering,2004,31:1967-1997.
    [192]A. Healey, D. Lienard. Multivariable sliding-mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE Journal of Oceanic Engineering, 1993,18 (3):327-339.
    [193]K. Y. Pettersen, E. Lefeber. Way-point tracking control of ships. in Proc. of 40th IEEE Conference on Decision and Control,2001:940-945.
    [194]T. I. Fossen, M. Breivik, R. Skjetne. Line-of-sight path following of underactuated marine craft. in Proc.6th IFAC Manoeuvring and Control of Marine Craft,2003:244-249.
    [195]M. Breivik, T. I. Fossen. Path following for marine surface vessels. in Proc. MTS/ IEEE OCEANS,2004:2282-2289.
    [196]E. Fredriksen, K. Y. Pettersen. Global k-exponential way-point maneuvering of ships:theory and experiments. Automatica,2006,42 (4):677-687.
    [197]Even Borhaug, A. Pavlov, Kristin Y. Pettersen. Integral LOS control for path following of underactuated marine surface vessels in the presence of constant ocean currents. Proceedings of the 47th IEEE Conference on Decision and Control,2008: 4984-4991.
    [198]Skjetne, R., The maneuvering problem, PH.D. These, Department of Engineering Cybernerics. Norwegian University of Science and Technology. No.7491, Trondheim, Norway,2005.
    [199]Fossen T.I., Breivik M., Skjetne R. Line-of-Sight path following of underactuated marine craft. Proceeding of the 6th IFAC Conference on Maneuvering and Control of Marine Craft,2003:244-249.
    [200]Breivik M., Fossen T.I. Path following for marine surface vessels. Proceeding of the Ocean,2004:2282-2289.
    [201]A. Olshevsky, J. N. Tsitsiklis. On the nonexistence of quadratic Lyapunov functions for consensus algorithms, IEEE Trans. Automat. Control,2008,53:2642-2645.
    [202]D. D. Siljak. Dynamic graphs. Nonlinear Anal. Hybrid Systems,2008,2:544-567.
    [203]Y. Kim, M. Mesbahi. On maximizing the second smallest eigenvalue of state-dependent graph Laplacian. IEEE Trans. Automat. Control,2006,51:116-120.
    [204]刘海涛.多智能体机器人系统中的若干通信技术研究.哈尔滨工业大学博士学位论文,2007:1-134.
    [205]刘淑华.复杂动态环境下多机器人的运动协调研究.吉林大学博士学位论文,2005:1-139.
    [206]段清娟.基于任务划分的多机器人协调与跟踪控制研究.西北工业大学博士学位论文,2006:1-125.
    [207]J. M. Hespanha, O. A. Yakimenko, I. I. Kaminer, A. M. Pascoal. Linear parametrically varying systems with brief instabilities:an application to vision/inertial navigation, IEEE Trans. Aerospace Electron. Systems,2004,40:889-900.
    [208]R. Ghabcheloo, A. Aguiar, A. Pascoal, C. Silvestre. Synchronization in multi-agent systems with switching topologies and non-homogeneous communication delays. In Proceedings of the 46th IEEE Conference on Decision and Control,2007:2327-2332.
    [209]A. Jadbabaie, J. Lin, A. S. Morse. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Automat. Control,2003,48:988-1001.
    [210]J. N. Tsitsiklis, M. Athans. Convergence and asymptotic agreement in distributed decision problems. IEEE Trans. Automat. Control,1984,29:42-50.
    [211]W. J. Rugh. Linear System Theory. Prentice-Hall, Englewood Cliffs, NJ,1993:87-88.