欠驱动自主水下航行器的非线性鲁棒控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自主水下航行器(Autonomous Underwater Vehicle, AUV)在军用和民用领域有着广泛的应用前景,是当前国内外研究的一个热点。随着AUV应用范围的增加,对其自主性的要求也随之增加,而增加AUV自主性的关键之一就是提高其控制系统的性能。然而出于节约成本和减轻重量的考虑,很多AUV仅具有较其运动自由度更少的控制装置,是欠驱动系统,欠驱动AUV控制问题是目前国内外研究的一个难点。AUV的动力学是强非线性的,难以获得其足够精确的水动力系数,易受到海流等海洋环境的干扰,这些不确定性要求控制器有很强的鲁棒性,这使得一般的控制器很难胜任AUV的控制任务。因此对具有模型不确定性欠驱动AUV的非线性鲁棒控制研究是非常重要的。
     本文对具有模型不确定性欠驱动AUV的定深、水平面轨迹跟踪和位置跟踪的非线性鲁棒控制策略作了深入系统的研究。
     建立了欠驱动AUV控制模型。给出了AUV六自由度运动学和动力学方程,根据AUV平移速度对地可测或仅对周围水可测、粘性阻尼系数的标称值是否已知这四种情况,建立了四个考虑参数不确定性和外界干扰的欠驱动AUV水平面运动模型。利用小扰动方法建立了垂直面运动模型。介绍了一些相关的控制理论和方法,并给出了一些相关的基本概念和定理。
     针对具有模型不确定性欠驱动AUV的定深控制问题,设计了一种模糊滑模控制器。为了获得更好的控制性能,模糊控制输入采用了压缩宽度隶属度函数,模糊控制输出采用了扩张宽度隶属度函数。为了更好地削弱抖振现象,在该模糊滑模控制器的基础上,设计了两种控制策略对该模糊滑模控制器进行性能优化,一是设计一定的模糊规则自适应地调整模糊控制器的比例因子,二是基于遗传算法对该模糊滑模控制器的参数进行了性能优化。为了验证所设计的控制器和控制策略的有效性和鲁棒性,对具有控制输入时滞、较大参数不确定性和未建模动态的欠驱动AUV系统进行了相应的数值仿真。
     针对具有参数不确定性和外界干扰的欠驱动AUV的水平面轨迹跟踪问题,根据不同情况,提出了三种控制策略:一是对于小曲率轨迹跟踪问题,根据横向速度远小于纵向速度这一动力学特征,使用Backstepping方法提出了一种控制策略,其中设计了一种自适应控制律来补偿完全未知的粘性阻尼系数,使用滑模控制和模糊滑模控制方法来补偿别的参数不确定性和外界干扰,并基于李雅普诺夫稳定性理论证明了闭环控制系统的稳定性;二是假设期望偏航角速度满足持续激励条件,基于级联方法提出了一种解耦控制策略,首先建立跟踪误差系统并将其解耦成两个独立的子系统,使用反馈线性化方法和滑模变结构控制方法各设计了一种控制律分别稳定两个子系统,最后根据级联系统的稳定性理论证明了闭环控制系统是全局K指数稳定的;三是对于一般情况下的欠驱动AUV轨迹跟踪问题,使用Backstepping方法设计了一种鲁棒轨迹跟踪控制器,其中使用传统滑模和准滑模控制方法补偿参数不确定性和外界干扰,推导出了滑模控制增益与参数不确定性、外界干扰和系统状态的关系,分析了正负质量和附加质量不确定性对控制系统性能和控制成本的不同影响,基于李雅普诺夫稳定性理论证明了闭环控制系统的稳定性。为了验证这三种控制策略的有效性和鲁棒性,分别对具有参数不确定性和外界干扰的欠驱动AUV模型进行了相应的数值仿真。
     针对具有参数不确定性和外界干扰的欠驱动AUV水平面位置跟踪问题,使用Backstepping和级联方法,为前面所建立的四个水平面运动模型各提出了一种控制策略;其中,使用Backstepping方法设计了鲁棒位置跟踪控制器,为了补偿完全未知的粘性阻尼系数,设计了一种自适应控制律,并使用滑模变结构控制方法来补偿其他参数不确定性和外界干扰;AUV平移速度仅对周围水可测情况下,为了估计完全未知的海流速度,设计了两种观测器,这两种海流观测器都能确保海流速度估计误差指数收敛到零;基于李雅普诺夫稳定性理论和一些级联系统稳定性定理证明了四个闭环控制系统的全局稳定性、以及系统状态和控制输入的有界性。仿真结果表明所提出的控制策略能够很好地实现欠驱动AUV的水平面位置跟踪控制,对完全未知的粘性阻尼系数和海流速度有很好的自适应性,对其它参数不确定性和外界干扰具有很强的鲁棒性。
Autonomous underwater vehicles (AUVs) have recently become an intense area of domestic and international research because of their potential military and civil applications. As the application range of AUVs expands, it becomes more and more important to develop AUV autonomy. One of key technologies is to improve its control performance. However, the problem of AUV control continues to pose challenges to system designers since many AUVs are underactuated systems, with fewer control inputs than the degrees of freedom, out of the need to reduce the actuator cost and weight. In addition, the dynamics of AUVs are highly nonlinear, the hydrodynamic coefficients are not precisely known, and the vehicle is often disturbed by the ocean environments. As such the development of nonlinear robust control strategies for underactuated AUVs is of considerable important.
     In this dissertation, nonlinear robust control strategies are deeply studied for the depth, planar trajectory and position tracking of underactuated AUVs with model uncertainties.
     Control models are built for underactuated AUVs. The six degrees of freedom kinematic and dynamic equations of AUV motion are given. According to that the translational velocities relative to the Earth or surrounding water are measured, and whether the nominal values of the viscous damping coefficients are known or not, four horizontal motion models are built for underacutuated AUVs with parameter uncertainties and external disturbances. A vertical motion model is built using a small disturbance analysis. Some related control theories and methods are introduced, and some related control concepts and theorems are given. To solve the depth control problem of underacutuated AUVs with model uncertainties, a fuzzy sliding mode controller is presented. The design method of the controller offers a systematical means of constructing a set of shrinking-span for fuzzy inputs and dilating-span membership functions for fuzzy output. To avoid chattering better, two control strategies are proposed. One is to design some fuzzy rules to adaptively tune scaling factors of the fuzzy controller. Another is to optimize parameters of the fuzzy controller by genetic algorithm. Numerical simulations are presented for the underactuated AUV systems with control input delay, large parameter uncertainties and unmodeled dynamics to illustrate the effectiveness and robustness of the proposed control strategies.
     To solve the trajectory tracking control problem of underacutuated AUVs with parameter uncertainties and external disturbances in the horizontal plane, three control strategies are proposed according to different cases. The first control strategy is developed using the backstepping approach for the problem of small curvature trajectory tracking where the sway velocity is relatively much smaller than the surge velocity. An adaptive control strategy is proposed for the unknown constant viscous damping coefficients. For compensating other parameter uncertainties and external disturbances, different control laws based on sliding mode and fuzzy sliding mode control methods are presented. Stability proof of the closed-loop control system is given by the Lyapunov stability theory. The second control strategy is developed by using the cascade approach where the reference yaw velocity satisfies the persistence of excitation condition. The tracking error system is formed, and then decoupled into two separate subsystems. A feedback linearization and sliding mode controller are presented respectively to stabilize the two subsystems. The closed-loop control system is proved to be globally K exponentially stable by stability criteria for cascade system. The third control strategy is developed by using the backstepping approach for the general trajectory tracking control problem. For compensating parameter uncertainties and external disturbances, different control laws based on classical and quasi SMC methods are presented. The relation is derived between parameter uncertainties, external disturbances, system states and sliding mode gains. Different effects of positive and negative mass uncertainties on the control systems are analyzed. Stability proof of the closed-loop control system is given by the Lyapunov stability theory. Numerical studies for different cases are presented to demonstrate the effectiveness and robustness of the above proposed three control strategies.
     To solve the position tracking control problem of underacutuated AUV with parameter uncertainties and external disturbances in the horizontal plane, four control strategies are proposed respectively for the above four horizontal models. The robust position tracking controllers are proposed by the backstepping approach. If the translational velocities relative to surrounding water are measured, two observers are proposed to estimate unknown constant ocean current velocities, which can ensure that estimation errors are globally exponentially stable. It is proved that the above proposed four control strategies are globally stable, and system states and control inputs are bounded, by the Lyapunov stability theory and stability criteria for cascade system. Simulation results show that the proposed control strategies are effective, adaptive to unknown ocean current velocities and viscous damping coefficients, and strongly robust against parameter uncertainties and external disturbances.
引文
1蒋新松,封锡盛等.水下机器人.辽宁科学技术出版社,2000
    2 E. Bovio, D. Cecchi, F. Baralli. Autonomous Underwater Vehicles for Scientific and Naval Operations. Annual Reviews in Control, 2006, 30(2): 117-130
    3张铭钧.水下机器人.海洋出版社,2000
    4冯正平.国外自治水下机器人发展现状综述.鱼雷技术, 2005, 13(1): 5-9
    5 T.I. Fossen. Guidance and Control of Ocean Vehicles. Chichester, U.K.: Wikey, 1994
    6 M.S. Naik, S.N. Singh. State-dependent Riccati Equation-based Robust Dive Plane Control of AUV with Control Constraints. Ocean Engineering. 2007, 34(11-12): 1711-1723
    7 J. Yuh. Design and Control of Autonomous Underwater Robots: a Survey. Autonomous Robots. 2000, 8(1):7-24
    8 G. Conte, S. M. Zanoli, D. Scaradozzi, et al. Evaluation of Hydrodynamics Parameters of a UUV. A Preliminary Study. Proc. 1st IEEE International Symposium on Control, Communications and Signal Processing, Hammamet, Tunisia, 2004: 545-548
    9 A.P. Aguiar, J. P. Hespanha. Trajectory-Tracking and Path-Following of Underactuated Autonomous Vehicles with Parametric Modeling Uncertainty. IEEE Transactions on Automatic Control. 2007, 52(8):1362-1379
    10 V. Sankaranarayanan, A.D. Mahindrakar, R.N. Banavar. A Switched Controller for an Underactuated Underwater Vehicle. Communications in Nonlinear Science and Numerical Simulation. 2008,13(10): 2266-2278
    11 F. Repoulias, E. Papadopoulos. Planar Trajectory Planning and Tracking Control Design for Underactuated AUVs. Ocean Engineering. 2007, 34: 1650-1667
    12 M. Reyhanoglu, A. van der Schaft, N. H. Mcclamroch, et al. Dynamics and Control of a Class of Underactuated Mechanical Systems. IEEE Transactions on Automatic Control. 1999, 44(9):1663-1671
    13郭晨,汪洋,孙富春,沈智鹏.欠驱动水面船舶运动控制研究综述.控制与决策. 2009, 24(3):321-329
    14袁思鸣,陈强.美国海军水下无人航行器发展综述.中外船舶科技. 2006, 4
    15李波.水下无人航行器发展研究.西北工业大学硕士论文. 2001:45-48
    16 S. K. Lee, K. H. Sohn, S. W. Byun, et al. Modeling and Controller Design of Manta-type Unmanned Underwater Test Vehicle. Journal of Mechanical Science and Technology. 2009, 23(4):987-990
    17钱东.美国未来的大型UUV—MANTA.鱼雷技术. 2003, 11(1):47-50
    18 C. Von Alt, B. Allen, T. Austin, et al. Remote Environmental Measuring Units. IEEE Sympsium on Autonomous Underwater Vehicle Technology, 1994: 13-19
    19 R. Stokey, B. Allen, T. Austin, et al. Enabling Technologies for REMUS Docking an Integral Component of an Autonomous Ocean-sampling Network. IEEE Journal of Oceanic Engineering. 2001,26(4):487-497
    20 R. Stokey, M. Purcell, N. Forrester, et al. A Docking System for REMUS, an Autonomous Underwater Vehicle. OCEAN’97. MTS/IEEE Conference Proceedings, 1997, 1-2:1132-1136
    21 C. R. German, D. R. Yoerger, M. Jakuba, et al. Hydrothermal Exploration by AUV: Progress to-date with ABE in the Pacific, Atlantic & Indian Oceans. IEEE/OES Autonomous Underwater Vehicles Conference, 2008, Woods Hole: 78-81
    22 D. B. Marco, A. J. Healey. Command, Control, and Navigation Experimental Results with the NPS ARIES AUV. IEEE Journal of Oceanic Engineering. 2001, 26(4):466-476
    23 I. Makoto, I. Kazuo. Control of an Underwater Manipulator Mounted for an AUV Considering Dynamic Manipulability. International Congress Series. 2006, 1291:269-272
    24 http://www.imar-navigation.de/download/deep_c_auv.pdf W. Hornfeld. Deepc the German AUV Development Project
    25 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.128.8383&rep=rep1&type=pdf. W. Hornfeld. Deepc, the AUV for Ultra-Deep Water.
    26 P. E. Hagen, N. Storkersen, K. Vestgard, et al. The HUGIN 1000 Autonomous Underwater Vehicle for Military Applications. MTS/IEEE Conference on Celebrating the Past-Teaming Toward the Future, 2003, San Diego:1141-1145
    27 P. E. Hagen, N. Storkersen, K. B. E. Marthinsen, et al. Rapid Environmental Assessment with Autonomous Underwater Vehicles - Examples from HUGIN Operations. Journal of Marine Systems. 2008, 69(1-2):137-145
    28 T. Ura. Development of Autonomous Underwater Vehicles in Japan. Advanced Robotics. 2002, 16(1):3-15
    29 J. Ishiwata, S. Tsukioka, T. Hyakudome, et al. Improvement and Sea Test of Autonomous Underwater Vehicle "URASHIMA" for Practical Use. Oceans 2008 Conference, 2008, Quebec:1201-1205
    30李一平,封锡盛.“CR-01”6000m自治水下机器人在太平洋锰结核调查中的应用.高技术通讯. 2001, 11(1):85-87
    31 Z. P. Jiang. Global Tracking Control of Underactuated Ships by Lyapunov's Direct Method. Automatica. 2002, 38(2):301-309
    32 A. Behal, D. M. Dawson, W. E. Dixon, et al. Tracking and Regulation Control of an Underactuated Surface Vessel with Nonintegrable Dynamics. IEEE Transactions on Automatic Control. 2002, 47(3):495-500
    33 K. D. Do, Z. P. Jiang, J. Pan. Underactuated Ship Global Tracking under Relaxed Conditions. IEEE Transactions on Automatic Control. 2002, 47(9): 1529-1536
    34 J. R. Azinheira, A. Moutinho. E. C. de Paiva. A Backstepping Controller for Path-tracking of an Underactuated Autonomous Airship. Internation Journal of Robust and Nonlinear Control. 2009, 19(4):418-441
    35 J. Ghommam, F. Mnif. Coordinated Path-Following Control for a Group of Underactuated Surface Vessels. IEEE Transactions on Industrial Electronics. 2009, 56(10):3951-3963
    36 K. D. Do, J. Pan. Robust Path-following of Underactuated Ships: Theory and Experiments on a Model Ship. Ocean Engineering. 2006, 33(10):1354-1372
    37 V. Sankaranarayanan, A. D. Mahindrakar. Control of a Class of Underactuated Mechanical Systems Using Sliding Modes. IEEE Transactions on Robotics. 2009, 25(2):459-467
    38 D. Schoerling, C. V. Kleeck, F. Fahimi, et al. Experimental Test of a Robust Formation Controller for Marine Unmanned Surface Vessels. Autonomous Robots. 2010,28(2):213-230
    39 R. Martinez, J. Alvarez, Y. Orlov. Hybrid Sliding-Mode-Based Control of Underactuated Systems with Dry Friction. IEEE Transactions on Industrial Electronics. 2008, 55(11):3998-4003
    40 M. I. EI-Hawwary, A. L. Elshafei, H. M. Emara, et al. Adaptive Fuzzy Control of the Inverted Pendulum Problem. IEEE Transactions on Control Systems Technology. 2006, 14(6):1135-1144
    41 C. L. Hwang, H. M. Wu, C. L. Shin. Fuzzy Sliding-Mode Underactuated Control for Autonomous Dynamic Balance of an Electrical Bicycle. IEEE Transactions on Control Systems Technology. 2009, 17(3):658-670
    42 O. Begovich, E. N. Sanchez, M. Maldonado. Takagi-Sugeno Fuzzy Scheme for Real-time Trajectory Tracking of an Underactuated Robot. IEEE Transactions on Control Systems Technology. 2002,10(1):14-20
    43 M. J. Zhang, T. J. Tarn. A Hybrid Switching Control Strategy for Nonlinear andUnderactuated Mechanical Systems. IEEE Transactions on Automatic Control. 2003, 48(10):1777-1782
    44 Ma Baoli. Globalκ-exponential Asymptotic Stabilization of Underactuated Surface Vessels. Systems and Control Letters. 2009,58(3):194-201
    45 T. Dierks, S. Jaganathan. Output Feedback Control of a Quadrotor UAV Using Neural Networks. IEEE Transactions on Neural Networks. 2010,21(1):50-66
    46 A. Saeed, E. M. Attia, A. A. Helmy, et al. Control of Underactuated-ship Maneuvers Using Neural Gain Compensators. Proc. of the ASME Dynamic Systems and Control, 2005, Orlando:849-854
    47 A. A. G. Siqueira, M. H. Terra. Neural Network-based H-infinity Control for Fully actuated and Underactuated Cooperative Manipulators. Control Engineering Practice. 2009, 17(3):418-425
    48 E. Lefeber. Tracking Control of Nonlinear Mechanical Systems. Doctoral dissertation, 2000, Universiteit Twente.
    49 N. P. I. Aneke, H. Nijmeijer, A. G. de Jager. Tracking Control of second-order chained form systems by cascaded backstepping. Internatonal Journal of Robust and Nonlinear Control. 2003, 13(2):95-115
    50 Wang Wei, Yi Jianqiang, Zhao Dongbin, et al. Cascade Fuzzy Sliding Mode Control for a Class of Uncertain Underactuated Systems. Control Theory & Applications. 2006, 23(1):53-59
    51 R. Olfati-Saber. Normal Forms for Underactuated Mechanical Systems with Symmetry. IEEE Transactions on Automatic Control. 2002, 47(2):305-308
    52 K. Pathak, J. Franch, S. K. Agrawal. Velocity and Position Control of a Wheeled Inverted Pendulum by Partial Feedback Linearization. IEEE Transactions on Robotics. 2005, 21(3):505-513
    53 A. De Luca, R. Mattone, G. Oriolo. Stabilization of an Underactuated Planar
    2R Manipulator. International Journal of Robust and Nonlinear Control. 2000, 10(4):181-198
    54韩冰.欠驱动船舶非线性控制研究.哈尔滨工程大学博士论文. 2004
    55卜仁祥.欠驱动水面船舶非线性反馈控制研究.大连海事大学博士论文. 2007
    56程金.水面船舶的非线性控制研究.中国科学院自动化研究所博士论文. 2007
    57王晓飞.基于解析模型预测控制的欠驱动船舶路径跟踪控制研究.上海交通大学博士论文. 2009
    58高丙团.一类欠驱动机械系统的非线性控制研究.哈尔滨工业大学博士论文. 2007
    59刘庆波.水平运动的欠驱动机器人运动规划与控制研究.北京工业大学博士论文. 2009
    60李晔.微小型水下机器人运动控制技术研究.哈尔滨工程大学博士论文. 2007
    61曹永辉.复杂环境下自主式水下航行器动力定位技术研究.西北工业大学博士论文. 2008
    62徐建安.水下机器人动力学模型辨识与广义预测控制技术研究.哈尔滨工程大学博士论文. 2007
    63侯巍.具有着陆坐底功能的水下自航行器系统控制与试验研究.天津大学博士论文. 2007
    64甘永.水下机器人运动控制系统体系结构的研究.哈尔滨工程大学博士论文. 2007
    65常文君.基于神经网络的多水下机器人协调控制方法研究.哈尔滨工程大学博士论文. 2005
    66 S. D. Zhao. Advanced Control of Autonomous Underwater Vehicles. University of Hawaii, Ph.D. 2004
    67 G. A. Demetriou. A hybrid control architecture for an autonomous underwater vehicle (AUV). University of Southwestern Louisiana. Ph.D. 1998
    68 F. Repoulias, E. Papadopoulos. Trajectory planning and tracking control of underactuated AUVs. Proc. of the 2005 IEEE International Conference on Robotics and Automation, Barcelona: 1610-1615
    69 F. Repoulias, E. Papadopoulos. On spatial trajectory planning & open-loop control for underactuated AUVs. Proc. 8th IFAC Symposium on Robot Control, 2006, Bologna
    70 M. Santhakumar, T. Asokan. Planar Tracking Control of an Underactuated Autonomous Underwater Vehicle. International Journal of Mechanical, Industrial and Aerospace Engineering. 2010, 4(1):32-37
    71 Li J.W., Song B.W., Shao C. Tracking Control of Autonomous Underwater Vehicles with Internal Moving Mass. Acta Automatica Sinica, 2008, 34(10): 1319-1323
    72 A.P. Aguiar, J. P. Hespanha. Logic-based Switching Control for Trajectory -tracking and Path-following of Underactuated Autonomous Vehicles With Parametric Modeling Uncertainty. Proc. of the American Control Conference, 2004, Boston:3004-3010
    73李家旺,宋保维,李家宽,邵成.带有内部转子的自主水下航行器的跟踪控制.计算机仿真. 2009, 26(9):124-127
    74付江峰,严卫生,赵涛.欠驱动AUV的直线航迹跟踪控制.计算机仿真. 2009, 26(10):145-147
    75 A.P. Aguiar, A.M. Pascoal. Dynamic Positioning and Way-point Tracking of Underactuated AUVs in the Presence of Ocean Currents. International Journal of Control. 2007, 80(7): 1092-1108
    76 L. Lapierre, D. Soetanto. Nonlinear Path-following Control of an AUV. Ocean Engineering. 2007, 34(11-12):1734-1744
    77 L. Lapierre, B. Jouvencel. Robust Nonlinear Path-Following Control of an AUV. IEEE Journal of Oceanic Engineering. 2009, 33(2):89-102
    78 K. D. Do, Pan J., Jiang Z. P. Robust and Adaptive Path Following For Underactuated Autonomous Underwater Vehicles. Ocean Engineering. 2004, 31(16):1967-1997
    79 Y. S. Kim, J. Lee, S. K. Park, et al. Path Tracking Control for Underactuated AUVs Based on Resolved Motion Acceleration Control. Proc. the Fourth International Conference on Autonomous Robots and Agents, 2009, Wellington: 511-515
    80 J. H. Li, P. M. Lee. Asymptotic Diving Control Method for Torpedo-type Underactuated AUVs. Ocean 2008, Quebec, Canada
    81马岭,崔维成.基于模糊混合控制的自治水下机器人路径跟踪控制.控制理论与应用. 2006, 23(3):341-346
    82 K. D. Do, Z. P. Jiang, J. Pan, et al. A Global Output-feedback Controller for Stabilization and Tracking of Underactuated ODIN: A Spherical Underwater Vehicle. Automatica. 2004, 40:117-124
    83 A. P. Aguiar, A. M. Pascoal. Regulation of a Nonholonomic Autonomous Underwater Vehicle with Parametric Modeling Uncertainty Using Lyapunov Functions. Proc. of the IEEE Conference on Decision and Control, 2001, Orlando:4178-4183
    84 A. P. Aguiar, A. M. Pascoal. Global Stabilization of an Underactuated Autonomous Underwater Vehicle via Logic-based Switching. Proc. of the IEEE Conference on Decision and Control, 2002, Las Vegas:3267-3272
    85 A. P. Aguiar, J. P. Hespanha, A. M. Pascoal. Switched Seesaw Control for the Stabilization of Underactuated Vehicles. Automatica. 2007, 43:1997-2008
    86 K. Y. Pettersen, O. Egeland. Time-varying Exponential Stabilization of the Position and Attitude of an Underactuated Autonomous Underwater Vehicle. IEEE Transactions on Automatic Control. 1999,44(1):112-115
    87 K. Y. Pettersen, O. Egeland. Position and Attitude Control of an UnderactuatedAutonomous Underwater Vehicle. Proc. of the 35th IEEE Conference on Decision and Control, 1996, Kobe:987-991
    88 K. Y. Pettersen, O. Egeland. Robust Attitude Stabilization of an Underactuated AUV. European Control Conference, 1997, Brussels
    89 N. E. Leonard. Control Synthesis and Adaptation for an Underactuated Autonomous Underwater Vehicle. IEEE Journal of Oceanic Engineering. 1995, 20(3):211-220
    90 E. Brhaug, K. Y. Pettersen, A. Pavlov. An Optimal Guidance Scheme for Cross-track Control of Underactuated Underwater Vehicles. 14th Mediterranean Conference on Control and Automation, 2006, Ancona
    91 C. A. Woolsey. Directional Control of a Slender, Underactuated AUV Using Potential Shaping. Proc. of the 45th IEEE Conference on Decision and Control, 2006, San Diego:6826-6831
    92 C. A. Woolsey, L. Techy. Cross-track Control of a Slender, Underactuated AUV Using Potential Shaping. Ocean Engineering. 2009, 36(1):82-91
    93 J. E. Refsnes, K. Y. Pettersen, A. J. Srensen. Control of Slender Body Underactuated AUVs with Current Estimation. Proc. of the 45th IEEE Conference on Decision and Control, 2006, San Diego:43-50
    94 J. E. Refsnes, A. J. Srensen, K. Y. Pettersen. Model-Based Output Feedback Control of Slender-Body Underactuated AUVs: Theory and Experiments. IEEE Transactions on Control Systems Technoloy. 2008, 16(5):930-946
    95 P. Batista, C. Silvestre, P. Oliveira. A Sensor-Based Controller for Homing of Underactuated AUVs. IEEE Transactions on Robotics. 2009, 25(3):701-716
    96 P. Batista, C. Silvestre, P. Oliveira. A Quaternion Sensor Based Controller for Homing of Underactuated AUVs. Proc. of the 45th IEEE Conference on Decision and Control, 2006, San Diego:51-56
    97 E. Brhaug, A. Pavlov, K. Y. Pettersen. Straight Line Path Following for Formations of Underactuated Underwater Vehicles. Proc. of the 46th IEEE Conference on Decision and Control, 2007, New Orleans
    98 Yan Weisheng, Cui Rongxin, Xu Demin. Formation Control of Underactuated Autonomous Underwater Vehicles in Horizontal Plane. Proc. of the IEEE International Conference on Automation and Logistics, 2008, Qingdao
    99 T. Salgado-Jimenez, B. Jouvencel. Using a High Order Sliding Modes for Diving Control a Torpedo Autonomous Underwater Vehicle. MTS/IEEE Conference on Celebration the Past-Teaming Toward the Future, 2003, San Diego:934-939
    100张宇文.鱼雷弹道与弹道设计.西北工业大学出版社.1999
    101严卫生.鱼雷航行力学.西安:西北工业大学出版社.2004
    102严卫生,徐德民,李俊等.远程自主水下航行器建模研究.西北工业大学学报. 2004, 22(4):500-504
    103李殿璞.船舶运动与建模.国防工业出版社. 2007
    104 K. Kim, T. Ura. Optimal and Quasi-optimal Navigations of an AUV in Current Disturbances. IEEE/RSJ International Conference on Robots and Intelligent systems, 2008, Nice:3661-3667
    105 K. Kim, T. Ura. Optimal Guidance for Autonomous Underwater Vehicle Navigation within Undersea Areas of Current Disturbances. Advanced Robotics. 2009,23(5):601-628
    106 G. Antonelli, F. Caccavale, S. Chiaverini, et al. A Novel Adaptive Control Law for Underwater Vehicles. IEEE Transactions on Control Systems Technology. 2003, 11(2), 221-232
    107 G. Antonelli. On the Use of Adaptive/integral Actions for Six-degrees-of -freedom Control of Autonomous Underwater Vehicles. IEEE Journal of Oceanic Engineering. 2007, 32(2):300-312
    108 J.P.V.S. Dacunha, R.R. Costa, L. Hsu. Design of a High-performance Variable Structure Position Control of ROVs. IEEE Journal of Oceanic Engineering. 1995, 20(1):42-55
    109 D. Modarress, P. Svitek, K. Modarress, et al. Micro-optical Sensors for Underwater Velocity Measurement. Proc. of 5th International Symposium on Underwater Technology/5th Workshop on Scientific Use of Submarine Cables and Related Technologies, 2007, Tokyo: 235-239
    110 G. N. Roberts, R. Sutton. Advances in Unmanned Marine Vehicles. Institution of Engineering, 2005
    111 H.K. Khalil著,Nonlinear Systems.朱义胜,董辉,李作洲等译.非线性系统.第三版.电子工业出版社. 2005
    112 A. Loria, T. I. Fossen, E. Planteley. A Separation Principle for Dynamic Positioning of Ships Theoretical and Experimental Results. IEEE Transactions on Control Systems Technology. 2000, 8(2):332-343
    113 T. Prestero. Verification of a Six-degree of Freedom Simulation Model for the REMUS Autonomous Underwater Vehicles. MIT, Masters Thesis. 2001.
    114 J. J. E. Slotine, Li W P著,Applied Nonlinear Control.程代展等译.应用非线性控制.机械工业出版社,2006
    115梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用.清华大学出版社. 2003
    116杨俊华,吴捷,胡跃明.反步方法原理及在非线性鲁棒控制中的应用.控制与决策. 2002,12(增刊):641-647
    117 I. Kanellakopoulos, P. V. Kokotovic, A. S. Morse. Systematic Design of Adaptive Controllers for Feedback Linearizable Systems. IEEE Transactions on Automatic Control. 1991, 36(11):1241-1253
    118 I. Kanellakopoulos, P. V. Kokotovic, A. S. Morse. Adaptive Output-feedback Control of a Class of Nonlinear Systems. Proc. the 30th Conference on Decision and Control, 1991:1082-1087
    119 M. Krstic, I. Kanellakopoulos, P. V. Kokotovic. Nonlinear and Adaptive Control Design. New York: John Wiley & Sons, 1995
    120胡跃明.非线性控制系统理论与应用.国防工业出版社,2001
    121 P. V. Kokotovic. The Joy of Feedback: Nonlinear and Adaptive. IEEE Control System Magazine. 1992, 12(3):7-17
    122张海鹏.鲁棒滑模反步控制法及其在减摇鳍中的应用.哈尔滨工程大学博士论文. 2004
    123 M. Sharma, A. J. Calise. Adaptive Backstepping Control for a Class of Nonlinear Systems via Multilayered Neural Networks. Proc. of the American Control Conference. 2002:2683-2688
    124 A. Bateman, J. Hull, Zongli Lin. A Backstepping-based Low-and-high Gain Design for Marine Vehicles. International Journal of Robust and Nonlinear Control. 2009, 19(4): 480-493
    125 Z. P. Jiang. H. Nijmeijer. Tracking Control of Mobile Robots: A Case Study in Backstepping. Automatica. 1997, 33(7):1393-1399
    126 F. J. Lin, C. K. Chang, P. K. Huang. FPGA-based Adaptive Backstepping Sliding-mode Control for Linear Induction Motor Drive. IEEE Transactions on Power Electronics. 2007, 22(4):1222-1231
    127 Liu Z. Jia X. H. Novel Backstepping Design for Blended Aero and Reaction-jet Missile Autopilot. Journal of Systems Engineering and Electronics. 2008, 19(1):148-153
    128 K. Y. Pettersen, F. Mazenc. H. Nijmeijer. Global Uniform Asymptotic Stabilization of an Underactuated Surface Vessel: Experimental Results. IEEE Transactions on Control Systems Technology. 2004, 12(6):891-903
    129 Z. Li, J. Sun, S. Oh. Design, Analysis and Experimental Validation of a Robust Nonlinear Path Following Controller for Marine Surface Vessels. Automatica. 2009, 45(7):1649-1658
    130 K. D. Do, J. Pan. Underactuated Ships Follow Smooth Paths with Integral Actions and without Velocity Measurements for Feedback: Theory and Experiments. IEEE Transactions on Control Systems Technology. 2006,14(2):308-322
    131 K. D. Do, J. Pan. Global Robust Adaptive Path Following of Underactuated Ships. Automatica. 2006, 42(10):1713-1722
    132 K. Y. Pettersen, H. Nijmeijer. Underactuated Ship Tracking Control: Theory and Experiments. International Journal of Control. 2001, 74(14):1435-1446
    133 J. Ghommam, F. Mnif, A. Benali, et al. 2006. Asymptotic Backstepping Stabilization of an Underactuated Surface Vessel. IEEE Transactions on Control Systems Technology. 2006, 14(6):1150-1157
    134 E. Fredriksen, K. Y. Pettersen. Globalκ-exponential Way-point Maneuvering of Ships: Theory and Experiments. Automatica. 2006, 42(4):677-687
    135 E. Lefeber, K.Y. Pettersen, H. Nijmeijer. Tracking Control of an Underactuated Ship. IEEE Transactions on Control Systems Technology. 2003, 11(1):52-61.
    136 T. C. Lee, Z. P. Jiang. New Cascade Approach for Globalκ-exponential Tracking of Underactuated Ships. IEEE Transactions on Automatic Control. 2004, 49(12):2297-2303
    137 E. Panteley. Global Uniform Asymptotic Stability of Cascade Time-varying Nonlinear Systems: Case Study. Proc. of 35th IEEE Conference on Decision and Control, 1996, Kobe:590-591
    138 G. Ambrosino, G. Celentano, F. Garofalo. Variable Structure Model Reference Adaptive Control Systems. International Journal of Control. 1984, 39(6): 13391349
    139刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展.控制理论与应用. 2007,24(3):408-418
    140冯纯伯.非线性控制系统分析与设计.东南大学出版社. 1990
    141 K. K. D. Young, P. V. Kokotovic, V. I. Utkin. A Singular Perturbation Analysis of High-gain Feedback Systems. IEEE Transactions on Automatic Control. 1997, 22(6): 931-938
    142庄开宇.变结构控制理论若干问题研究及其应用.浙江大学博士论文. 2002
    143高为炳.变结构控制的理论及设计方法.科学出版社. 1996
    144 J. Y. Hung, W. B. Gao, J. C. Hung. Variable Structure Control. A Survey. IEEE Transactions on Industrial Electronics. 1993, 40(1):2-22
    145于华男.开架式水下机器人辨识与控制技术研究.哈尔滨工程大学博士论文.2003
    146严卫生,高剑,杨立等.一种远程自主水下航行器纵向滑模控制研究.西北工业大学学报. 2007, 25(4):538-542
    147 O. Kaynak, K. Erbatur, M. Ertugrul. The Fusion of Computationally Intelligent Methodologies and Sliding-mode Control - A Survey. IEEE Transactions onIndustrial Electronics. 2001, 48(1):4-17
    148 L. A. Zadeh. Fuzzy Sets. Information and Control. 1965, 8:338-353
    149 E. H. Mamdani. Applications of Fuzzy Algorithms for Control of Simple Dynamic Plant. Proc. IEEE. 1974,121(21):1585-1588
    150李士勇.模糊控制,神经网络和智能控制论.哈尔滨:哈尔滨工业大学出版社,1998
    151王立新.模糊系统与模糊控制教程.北京:清华大学出版社.2003
    152 R. Babuska, H.B. Verbruggen. Overview of Fuzzy Modeling for Control. Control Engineering Practice. 1996,4(11):1593-1606
    153刘和平.浅水水下机器人设计与控制技术工程研究.上海大学博士论文. 2009
    154 G. C. Huang, S. C. Lin. Stability Approach to Fuzzy Control Design for Nonlinear Systems. Fuzzy sets and Systems. 1992, 48:269-278
    155 R. Palm. Robust Control by Fuzzy Sliding Mode. Automatica. 1994, 30(9): 1429-1437
    156 M. M. Abdelhameed. Enhancement of Sliding Mode Controller by Fuzzy Logic with Application to Robotic Manipulators. Mechatronics. 2005, 15(4):439-458
    157于双和,傅佩琛,强文义.模糊变结构控制及设计方法.哈尔滨工业大学学报. 2001,32(2):217-220
    158傅春,谢剑英.模糊滑模控制研究综述.信息与控制. 2001, 30(5):434-439
    159 S. Wang, H. Zhang, W. Hou et al. Control and Navigation of the Variable Buoyancy AUV for Underwater Landing and Takeoff. International Journal of Control. 2007, 80(7):1018-1026
    160 J. Guo, F.C. Chiu, C.C. Huang. Design of a Sliding Mode Fuzzy Controller for the Guidance and Control of an Autonomous Underwater Vehicle. Ocean Engineering. 2003, 30(16):2137-2155
    161 J. H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 1975
    162王小平,曹立明.遗传算法—理论、应用与软件实现.西安:西安交通大学出版社.2002
    163席裕庚,柴天佑,恽为民.遗传算法综述.控制理论与应用. 1996, 13(6):697-708
    164季春霖,张洋洋,郝培锋.用于模糊控制器设计的遗传算法研究.控制与决策. 2003, 18(6): 733-735
    165杨智民,王旭,庄显义.遗传算法在自动控制领域中的应用综述.信息与控制. 2000, 29(4):330-339
    166 P. M. Lee, S. W. Hong, Y. K. Lim, et al. Discrete-time Quasi-sliding Mode Control of an Autonomous Underwater Vehicle. IEEE Journal of Oceanic Engineering. 1999, 24(3):388-395
    167 J. H. Li, P. M. Lee. A Neural Network Adaptive Controller Design for Free-pitch-angle Diving Behavior of an Autonomous Underwater Vehicle. Robotics and Autonomous Systems. 2005, 52(2-3):132-147
    168汪伟,边信黔,王大海. AUV深度的模糊神经网络滑模控制.机器人. 2003, 25(3):209-212
    169 S. K. Lee, K. H. Sohn, S. W. Byun, et al. Modeling and Controller Design of Manta-type Unmanned Underwater Test Vehicle. Journal of Mechanical Science and Technology. 2009, 23(4):987-990
    170熊华胜,边信黔,施小成.自治水下机器人深度的鲁棒H-infinite控制仿真.计算机仿真. 2007, 24(3):156-159
    171 C. L. Chen, C. T. Hsish. User-friendly Design Method for Fuzzy Logic Controller. IEE Proceedings-Control Theory and Applications. 1996, 143(4): 358-366
    172 J. Kennedy. Decoupled Modelling and Controller Design for the Hybrid Autonomous Underwater Vehicle: MACO. Canada: University of Victoria, 2002
    173 Luo W. L., Zou Z. J. Neural Network Based Robust Controller for Trajectory Tracking of Underwater Vehicles. China Ocean Engineering, 2007,21(2): 281-292
    174 C. Silvestre, A. Pascoal, I. Kaminer. On the Design of Gain-scheduled Trajectory Tracking Controllers. International Journal of Robust and Nonlinear Control. 2002, 12(9):797-839
    175 I. Kaminer, A. Pascoal, E. Hallberg, et al. Trajectory Tracking for Autonomous Vehicles: An Integrated Approach to Guidance and Control. Journal of Guidance, Control, and Dynamics. 1998, 21(1):29-38
    176 W. J. Rugh, J. S. Shamma. Research on Gain-Scheduling. Automatica. 2000, 36(10): 1401-1425
    177 T. Koo, S. Sastry. Output Tracking Control Design of a Helicopter Model Based on Approximate Linearization. Proc. 37th Conference Decision and Control, 1998, Tampa:3635-3640
    178 S. AI-Hiddabi, N. Mcclamroach. Tracking and Maneuver Regulation Control for Nonlinear Nonminimum Phase Systems: Application to Flight Control. IEEE Transactions on Control Systems Technology. 2002, 10(6):780-792
    179 A. Isidori. Nonlinear Control Systems. 3rd ed. London, U.K.: Springer-Verlag,1989
    180 J. L. Luc. Robust Set-membership State Estimation: Application to Underwater Robotics. Automatica. 2009, 45(1):202-206
    181 K.Y. Pettersen, H. Nijmeijer. Global Practical Stabilization and Tracking for an Underactuated Ship - A Combined Averaging and Backstepping Approach. Modeling Identification and Control. 1999, 20(4):189-199
    182 Y.P. Tian, K.C. Cao. Time-varying Linear Controllers for Exponential Tracking of Non-holonomic Systems in Chained Form. International Journal of Robust and Nonlinear Control. 2007, 17(7):631-647
    183段广仁.线性系统理论.哈尔滨工业大学出版社. 2004
    184 H. Ashrafiuon, K.R. Muske, L.C. McNinch, et al. Sliding-mode Tracking Control of Surface Vessels. IEEE Transactions on Industrial Electronics. 2008 55(11): 4004-4012
    185 A. Behal, D. M. Dawson, W. E. Dixon, et al. Tracking and Regulation Control of an Underactuated Surface Vessel with Nonintegrable Dynamics. IEEE Transactions on Automatic Control. 2002, 47(3): 495-500
    186 J. Kim, K. Kim, H. S. Choi, et al. Estimation of Hydrodynamic Coefficients for an AUV Using Nonlinear Observers. IEEE Journal of Oceanic Engineering. 2002, 27(4):830-840