与星际和大气污染相关的小分子光谱性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激发态是原子、分子和离子存在的重要形态。分子激发态的结构、特性和行为,如能级、寿命、预解离和自电离等,与许多化学反应的动力学性质直接相关。分子激发态,特别是高能电子激发态的研究,是分子物理学和理论化学的重要前沿。含有硫元素的小分子以及具有高偶极矩的累接双键烃分子的气相光谱,在大气化学、星际化学和燃烧化学中的研究一直以来受到光谱学工作者的广泛关注。本文采用了全活化空间自洽场(CASSCF)方法,对H2CCC, H2CCSi, HSiCN, HSiNC分子及其阴阳离子,CH3SS分子及其阳离子的激发态性质进行了深入的研究。主要的内容概括如下:
     1.使用CASPT2//CASSCF理论方法,在Cs对称性和ANO-S基组水平下,研究了H2CCC及它的同族类似物H2CCSi自由基及其阴阳离子的基态和低能激发态的性质。计算了分子几何、谐振频率、绝热激发能以及跃迁强度。在优化得到的H2CCC和H2CCSi自由基基态的几何构型基础上,分别计算了H2CCC和H2CCSi的垂直激发能。对于H2CCC,X1A1→1A2,X1A1→1B1和X1A1→21A1在159.0 kJ/mol,216.5 kJ/mol和476.4 kJ/mol处的激发可分别归因于π(b2)→π*(b1),n(a1)→π*(b1)和π(b1)→π*(b1)的跃迁特征,理论波长与紫外吸收光谱得到的实验数据一致;对于H2CCSi,最强的跃迁发生在348.2 kJ/mol处的X1A1→1B1的电子跃迁,归因于n(a1)→π*(b1)的跃迁特征,并且激发能最低。在CASPT2//CASSCF理论水平下,计算得到了H2CCC和H2CCSi的垂直和绝热电离能。所得到的数据为实验上进一步研究H2CCC和H2CCSi提供了理论依据。
     2.使用CASPT2//CASSCF理论方法,在Cs对称性和aug-cc-pVTZ基组水平下,使用全价电子活化空间即包含13个活化轨道和14,15和13个活化电子,分别计算了HSiCN和HSiNC及其阴阳离子的基态和激发态的几何结构、能量以及电子排布和振动频率,并对吸收光谱进行了研究,计算了HSiCN和HSiNC自由基5个电子态的几何结构,在CASPT2水平上做了单点能校正,计算得到的几何结构与以前的理论和实验值是一致的。同时计算得到的谐振频率值与实验值符合得较好。第一电子激发态为3A″,其与基态之间的能隙差(单-三重态的劈裂能)分别为0.99和1.40 eV,-CN和-NC的取代加大了SiH2的单-三重态的能隙差,并且HSiCN的单-三重态的能隙差大于HSiNC。基于在CASSCF水平上得到的电子结构,合理地解释了各个电子激发态对于电子基态的几何结构的变化。通过垂直激发计算得到了比较完整的吸收光谱。
     3.使用CASPT2//CASSCF理论方法,在Cs对称性和ANO-S基组水平下,研究了CH3SS自由基及其阳离子的基态和低能激发态的性质。对CH3SS自由基优化了五个电子态的结构,其中基态为X2A" ,电子结构为(core)(12a')2(3a")2(13a')2(14a')2(15a')2(4a")2(16a')2(5a")α,计算得到的几何参数与其他人得到的理论值符合得很好。计算得到了CH3SS的垂直和绝热激发能,在跃迁允许的激发当中,在3.349 eV处,X2A″→22A″具有最大的跃迁强度f = 0.04,归因于4a"→5a"的单电子跃迁,具有π(a")→π*(a")的跃迁特征。通过分别优化CH3SS基态和对应的阳离子各个电子态得到的能量差,得到了绝热电离能。在优化得到的CH3SS的基态几何结构的基础上,计算了垂直电离能,合理地解释了CH3SS的光电子能谱(PES),计算得到CH3SS自由基的第一垂直电离能为8.525 eV与实验值8.630±0.02 eV符合得很好。
The small molecules and radicals including Si atom and the hydrocarbon molecule with high dipole like cumulene carbenes which are detected in the interstellar medium have received much attention. These molecules and radicals not only participate in many photochemistry and photophysical reactions but have been involved in combustion chemistry and interstellar chemistry as well. There have been considerable interests in the sulphur compounds, both experimentally and theoretically, due to important role of these species in the air pollution. As a result, quantum chemical investigations on the excited states of these molecules and free redicals is becoming necessary and meaningful, so in this thesis high level ab initio method CASPT2//CASSCF have been used to perform investigation on H2CCC, H2CCSi, HSiCN, HSiNC and CH3SS molecule radicals. The main results are summarized as follows:
     1.CASPT2(multiconfiguration second-order perturbation theory)// CASSCF(Complete active space self-consistent field) calculations with ANO-S basis set in C2v symmetry were performed for several electronic states of H2CCC and H2CCSi. The geometries, vibrational frequencies and energies of the ground states and low-lying excited states are obtained from the theoretical investigations. The electronic configurations are used to explain the geometrical alteration in detail. The ground states of H2CCC and H2CCSi turned out to be X1A1. The CASSCF geometry for the ground state of H2CCC and H2CCSi are compared with the experimental geometry. And the calculated harmonic freqencies of the H2CCC and H2CCSi are in agreement with the experimental data. The singlet-triplet energy gap of H2CCC(106.1 kJ/mol) is larger than that of H2CCSi(98.4 kJ/mol).
     We have presented results from a fully correlated ab initio investigation of the electronic spectrum of H2CCC and H2CCSi neutral radical by means of using CASPT2//CASSCF method, a well-established procedure for accurated calculations of electronic spectra of molecules. The results (CASPT2 vertical excitation energies and RASSI oscillator strengths) suggest that the calculated most intensive transition of H2CCC and H2CCSi at 476.4 kJ/mol and 348.2 kJ/mol are attributed to the X1A1→21A1 and X1A1→1B1, respectively. The most intensive absorption peak is red shifted.
     CASPT2//CASSCF calculations with ANO-S basis set in C2v symmetry were also performed for a large number of electronic states of the H2CCC+ and H2CCSi+. Based on the corresponding results, the PES of the H2CCC and H2CCSi are assigned. The vertical and adiabatic ionization energies assigned to 15 and 16 ionic states for H2CCC and H2CCSi at the CASPT2 level, respectively. The computed first VIP/AIP of H2CCC(993.9/979.3 kJ/mol) are larger than that of H2CCSi( 779.5/773.8 kJ/mol).
     Due to H2CCC neutral radical’s high dipole moment, all excited H2CCC- negative ion states can be characterized as dipole-bound states, but its homolog H2CCSi has valence anion excited state. The first adiabatic electronic affinity of H2CCC(160.1 kJ/mol) is larger than that of H2CCSi(100.1 kJ/mol).
     2. Equilibrium geometries of low-lying electronic states of cyanosilylene (HSiCN), isocyanosilylene (HSiNC), and their ions have been investigated using the complete active space self-consistent field (CASSCF) approach. The harmonic vibrational frequencies on the optimized geometries were calculated using the multiconfiguration linear response (MCLR) method. Taking the further correlation effects into account, the complete active space perturbation theory of second-order (CASPT2) was carried out for the energetic correction. The CASPT2 calculations have been performed to obtain the vertical excitation energies of selected low-lying excited states of HSiCN and HSiNC. Computed results show that the singlet-triplet splitting energies are calculated to be 0.99 eV and 1.30 eV for HSiCN and HSiNC, respectively. The vertical excitation energies of the lowest singlet and triplet excited states in HSiCN are lower than those in HSiNC. The first vertical ionization energy of HSiCN (10.04 eV) is higher than that of HSiNC (9.97 eV). The ground-state adiabatic electron affinities are found to be rather high, and the value of HSiCN (1.87 eV) higher than that of HSiNC (1.86 eV). The existences of dipole-bound excited negative ion states have been discovered within HSiCN and HSiNC.
     3. CASPT2//CASSCF calculations with ANO-S basis sets were performed for 5 and 8 low-lying electronic states of CH3SS and CH3SS+ in Cs symmetry, respectively. All calculated states are valence states and their character are discussed in detail. The ground state of CH3SS is X2A", which has a leading electronic configuration (core)(12a')2(3a")2(13a')2 (14a')2(15a')2(4a")2(16a')2 (5a")α. The calculated the harmonic frequency of the ground stateν7(a') = 582 cm-1(S-S stretch)are in great agreement with the experimental data(610±160 cm-1).The electronic configurations are used to explain the geometrical alteration in detail.
     The ionization energies are obtained to compare with the PES data. The results are in agreement with previous experimental data.
引文
[1]. Lipshutz B H, Sengupta S. Organocopper reagents: Substitution, conjugate addition, carbo/metallocupration, and other reactions. Org. React., 1992, 41:135-632.
    [2]. Taylor R J K, Ed, Organocopper reagents: a practical approach. Oxford University Press: Oxford and New York, 1994.
    [3]. Modern organocopper chemistry; Krause N, Ed, Wiley-VCH: Weinheim, Germany, 2002, 6:p188.
    [4]. Lipshutz B H. In Organometallics in Synthesis: A Manual; Schlosser, M., Ed.; Wiley: Chichester, UK, and New York, 2002, 665-815.
    [5]. Kharasch M S, Tawney P O. Factors Determining the Course and Mechanisms of Grignard Reactions. II. The Effect of Metallic Compoundson the Reaction between Isophorone and Methylmagnesium Bromide. J. Am. Chem. Soc., 1941, 63:2308-2315.
    [6]. House H O, Respess W L, Whitesides G M. The Chemistry of Carbanions. XII. The Role of Copper in the Conjugate Addition of Organometallic Reagents1. J. Org. Chem., 1966, 31: 3128-3141.
    [7]. Herbst E. Some Spectroscopic Reminiscences. Ann. Rev. Phys. Chem., 1995,46:1-28.
    [8]. Wootten H A, The 119 Reported Interstellar and Circumstellar Molecules. 1999.
    [9]. Henning T & Salama F. Carbon in the Universe. Science, 1998, 282:2204-2210
    [10]. Tielens A G G M & Snow T P. The Difuse Interstellar Bands (Dordrecht: Kluwer) 1995.
    [11]. Jones W M, Stowe M E, Wells E E, Jr, Lester E W. Attempts to generate diphenylcyclopropenylidene. IV. J. Am. Chem. Soc., 1968, 90:1849-1859
    [12]. Bernheim R A, Kempf R J, Gramas J V, Skell P S. Electron Paramagnetic Resonance of Triplet Alternant Methylenes. Propargylene and Homologs. J. Chem. Phys., 1965, 43:196-200
    [13]. Chi F K, Dissertation, Michigan State University, 1972.
    [14]. Jacox M E, Milligan D, E. Matrix isolation study of the vacuum ultraviolet photolysis of allene and methylacetylene. Vibrational and electronic spectra of the species C3, C3H, C3H2, and C3H3. Chem. Phys., 1974, 4:45-61.
    [15]. McAllister T, Nicholson A J C. J. Chem. Soc. Faraday Trans. I., 1981, 77, 821.
    [16]. Reisenauer H P, Maier G, Riemann A, Hoffmann R W. Angew. Chem. 1984, 96, 596. Cyclopropenylidene. Angew Chem. Int. Ed. 1984, 23, 641.
    [17]. Lee T J, Bunge A, Schaefer H F. III. Toward the laboratory identification ofcyclopropenylidene. J. Am. Chem. Soc. 1985,107:137-142.
    [18]. Thaddeus P, Vrtilek J M, Gottlieb C A. Astrophys. J. 1985, 299, L63.
    [19]. Sander W, Bucher G, Wierlacher S. Carbenes in matrices-spectroscopy, structure and reactivity [J]. Chem Rev, 1993,93:1583-1621
    [20]. Bauschlicher T C W, Schaefer H F. Structur e and energetics of simple carbenes CH2, CHF, CHCl, CHBr, CF2 and CCl2 [J]. J. Am. Chem. Soc, 197 7 ,99:7106-7110.
    [21]. Rechards J C A, Kim S J, Yama Guchi Y, et al. Dimethyl carbine: a singlet ground state[J]. J. Am. Chem. Soc., 1995,117:10104-10107.
    [22]. Sulbach H M,Boltone, Lenoird, et al. Tetra-tert-butylethylene: an elusive molecule with a hightly twisted double bond. Can it be made by carbine dimerizationn [J]. J. Am. Chem. Soc, 1996,118:9908-9914.
    [23]. Achkasova E, Araki M, Denisov A, et al. Gas phase electronic spectrum of propadienylidene C3H2 Journal of Molecular Spectroscopy 2006,237(1):70-75
    [24]. Cernicharo J; Gottlieb C A, Guelin M, et al. Astronomical detection of H2CCC, Astrophysical Journal, Letters,1991,368(2):L39-L41 L43-L45
    [25]. Vrtilek J M, Gottlieb C A; Gottlieb, E W, et al. Laboratory Detection of propadienylidene, H2CCC. Astrophysical Journal. 1990, 364(2):L53-L56
    [26]. Kawaguchi K, Kaifu N, Ohishi M, et al. Observations of Cumulene Carbenes, H2CCCC and H2CCC in Tmc-1. Publications of the Astronomical Society of Japan, 1991, 43(4):607-619.
    [27]. Seburg R A, Mchmahon R J. Automerizations and Isomerizations and in Propynylidene(HCCCH), Propadienylidene (H2CCC), and Cyclopropenylidene (C-C3H2). Angewandte Chemie-International Edition in English 1995, 34 (18):2009-2012
    [28]. Aldulayymi J R, Baird M S. A direct and a formal trapping ofpropa-1,2-dienylidene. Tetrahedron Letters. 1995,36(19):3393-3396.
    [29]. Cherchneff I, Glassgold A E. The formation of carbon-chain molecules in irc+10216. Astrophysical Journal, 1993,419(1):L41-L44
    [30]. Maluendes S A, Mclean A D, Herbst E. Calculations concerning interstellar isomeric abundance ratios for C3H and C3H2 Astrophysical Journal 1993,417(1):181-186.
    [31]. Gottlieb C A, Killian T C, Thaddeus P, et al. Structure of propadienylidene, H2CCC. J. Chem. Phys., 1993, 98(6):4478-4485.
    [32]. Maluendes S A, Mclean A D. Ab initio predictions on the rotational spectra of carbon-chain carbene molecules. Chemical. Physics. Letters., 1992, 200(5): 511-517.
    [33]. Cernicharo J, Cox P, Fosse D, Gusten R. Detection of linear C3H2 in absorption toward continuum sources Astronomy & Astrophysics. 1999, 351(1):341-346.
    [34]. Redondo P, Redondo J R and Largo A. Structures and energies of the chlorine-substituted analogues of C3H2: an ab initio and density functional theory comparative study Journal of Molecular Structure: THEOCHEM, 2000, 505:221-232.
    [35]. Sun W Z, Yokoyama K, Robinson J C, et al. Discrimination of product isomers in the photodissociation of propyne and allene at 193 nm. J. Chem. Phys. 1999, 110(9):4363-4368.
    [36]. McCarthy M C, Travers M J, Kovacs A, et al. Eight new carbon chain molecules Astrophysical Journal Supplement Series. 1997, 113(1):105-120.
    [37]. Yokoyama K, Leach G W, Kim J B, et al. Autodetachment spectroscopy and dynamics of dipole bound states of negative ions: (2)A(1)-B-2(1) transitions of H2CCC-J. Chem. Phys., 1996, 105(24):10696-10705.
    [38]. Yokoyama K, Leach G W, Kim J B, et al. Autodetachment spectroscopy anddynamics of vibrationally excited dipole-bound states of H2CCC-. J. Chem. Phys 1996, 105(24):10706-10718.
    [39]. Botschwina P. On the out-of-plane bending potentials of H2CCCC and H2CCC. Journal of Molecular Spectroscopy. 1996, 179(2):343-344.
    [40]. Kassaee M Z, Haerizade B N, Arshadi S, Halogenated isomers of the interstellar C3H2: an ab initio comparative study. Journal of Molecular Structure- THEO CHEM., 2003, 639:187-193
    [41]. Redondo J R, Redondo P, Largo A, Structures and stabilities of C3Cl2 and C3Cl2+ isomers: a theoretical study Journal of Molecular Structure- THEO CHEM., 2003, 621(1-2):59-73.
    [42]. Tulej M, Guthe F, Pachkov M V, Tikhomirov K, Xu R, Jungen M, Maier J P Feshbach states of the propadienylidene anion H2CCC-. Phys. Chem. Chem. Phys., 2001, 3(21):4674-4678.
    [43]. Nguyen T L, Mebel A M, Kaiser R I. A theoretical investigation of the triplet carbon atom C(P-3) plus vinyl radical C2H3((2)A') reaction and thermo- chemistry of C3Hn (n=1-4) species. J. Phys. Chem. A., 2001, 105(13):3284 -3299.
    [44]. Achkasova E,Araki M, Denisov A, et al. Gas phase electronic spectrum of propadienylidene C3H2 Journal of Molecular Spectroscopy. 2006, 237(1):70-75.
    [45]. Chandra S, Musrif P G, Dharmkare R M, et al. Search for 1(11)-1(10) and 2(11)-2(12) transitions of H2CCO, H2CCC and H2CCCC in cosmic objects New Astronomy, 2006, 11(7):495-502.
    [46]. Lau K C, Ng C Y. Accurate ab initio predictions of ionization energies and heats of formation for cyclopropenylidene, propargylene and propadienylidene 2006, 19(1):29-38
    [47]. Taatjes C A, Klippenstein S J, Hansen N, et al. Synchrotron photoionizationmeasurements of combustion intermediates: Photoionization efficiency and identification of C3H2 isomers Phys. Chem. Chem. Phys., 2005, 7(5):806-813
    [48]. Birza P, Chirokolava A, Araki M, et al. Rotationally resolved electronic spectrum of propadienylidene Journal of Molecular Spectroscopy, 2005, 229(2): 276-282.
    [49]. Clifford E, Dykstra, Craig A, Parsons, Caren L. Oates Structures and energies of cumulene carbenes. J. Am. Chem. Soc., 1979, 101(21):6174-6178.
    [50]. Jonas V, Boehme M, Frenking G. Structures and energies of the lowest lying singlet and triplet states of C3H2 and C3F2: a theoretical study. J. Phys. Chem., 1992, 96(4):1640-1648.
    [51]. Hehre W J, Pople J A, Lathan W A, Radom L, Wasserman E, Wasserman Z R. Molecular orbital theory of the electronic structure of organic compounds. 28. Geometries and energies of singlet and triplet states of the C3H2 hydrocarbons. J. Am. Chem. Soc., 1976, 98(15):4378-4383
    [52]. Gross C, Noller B, Fischer I. On the photodissociation of propadienylidene, 1-C3H2. Phys. Chem. Chem. Phys., 2008, 10(34):5196-5201.
    [53]. Hemert M C vana, Dishoeck E F vanb,*. Photodissociation of small carbonaceous molecules of astrophysical interest. Chem. Phys., 2008, 343:292-302.
    [54]. McCarthy M C, Apponi A J, Gottlieb C A and Thaddeus P. Laboratory Detection of Five New Linear Silicon Carbides: SiC3, SiC5, SiC6, SiC7, and SiC8. Astrophys. J., 2000, 538:766-772.
    [55]. McCarthy M C, Apponi A J, Gottlieb C A and Thaddeus P. Rotational spectra of SiCN, SiNC, and the SiCnH (n=2, 4–6) radicals J. Chem. Phys., 2001, 115: 870-877.
    [56]. Izuha M, Yamamoto S and Saito S. Microwave spectrum of silylidene H2CSi. J. Chem. Phys., 1996,105:4923-4926.
    [57]. Harper W W, Waddell K W and Clouthier D J. Jet spectroscopy, structure, anomalous fluorescence, and molecular quantum beats of silylidene (H2C=Si), the simplest unsaturated silylene. J. Chem. Phys. 1997, 107: 8829-8839.
    [58]. Cernicharo J, Gottlieb C A, Gu′elin M, Killian T C, Paubert G, Thaddeus P and Vrtliek J M. Astrophys. J. Lett., 1991, 368:L39-L41.
    [59]. J. Cernicharo, C. A. Gottlieb, M. Gu′elin, T. C. Killian, P. Thaddeus, and J. M. Vrtliek, Astrophys. J. Lett. 1991, 368:L43-L45.
    [60]. M. Gu′elin, S. Muller, J. Cernicharo, A. J. Apponi, M. C. McCarthy, C. A. Gottlieb, and P. Thaddeus, Astro. Astrophys. 2000, 363:L9-L12.
    [61]. Glassgold A E and Mamon G A. in“Chemistry and Spectroscopy of Interstellar Molecules”(D. K. Bohme et al., Eds.), Univ of Tokyo Press,Tokyo, 1992, p261.
    [62]. Allendorf M D, Energy Res. Abstr. 1992, 17, 24960
    [63]. Frenking G, Remington R B and Schaefer H F III. Structures and energies of singlet silacyclopropenylidene and 14 higher lying C2SiH2 isomers. J. Am. Chem. Soc., 1986,108(9):2169-2173.
    [64]. Cooper D L. Ab initio predictions for silicon analogs of astrophysically interesting molcecules:SiC2H2, SiH2CN, SiH2C2 and CH2CSi. Astrophys. J., 1990, 354:229-231.
    [65]. Sherrill C D, Brandow C G, Allen and Schaefer H F III. Cyclopropyne and Silacyclopropyne: A world of difference. J. Am. Chem. Soc. 1996, 118 (30):7158-7163.
    [66]. Xin-Juan Hou, Ming-Bao Huang. CAS calculations of excited electronic states in the vinylidene anion. Chem. Phys. Lett., 2003, 379:526-533.
    [67]. Serrano-Andres L, Merchan M, Nebot-Gil I, Lindh R and Roos B O. Towards an Accurate Molecular-Orbital Theory for Excited-States - Ethene, Butadiene, and Hexatriene. J. Chem. Phys., 1993, 98:3151-3161.
    [68]. McCarthy M C and Thaddeus P. The Rotational Spectra of H2CCSi and H2C4Si. Journal of Molecular Spectroscopy. 2002, 211:228-234.
    [69]. Cernicharo J, Gottlieb C. A, Guelin M, et al. Astronomical and stronomical and laboratory detection of the SiC radical. Astrophys. J. [J], 1989, 341:L25-L28.
    [70]. Guelin M, Muller S, Cernicharo J, et al. Astronomical detection of the free radical SiCN. Astron. Astrophys. [J], 2000, 363: L9-L11.
    [71]. Guelin M, Muller S, Cernicharo J, et al. Detection of the SiNC radical in IRC+10216. Astron. Astrophys. [J], 2004, 426: L49-L52.
    [72]. Apponi A. J, McCarthy M C, Gottlieb C A, et al. Astronomical detection of rhomboidal SiC3. Astrophys. J. [J], 1999, 516:L103-L106.
    [73]. Wang Q, Ding Y H, Sun C C. Potential energy surface study of [H, Si, C, N] and its ions. Chem. Phys., 2006, 323:413-428.
    [74]. Stanton J F, Dudek J, Theule P, Gupta H, McCarthy M C, Thaddeus P. Laser spectroscopy of Si3C. J. Chem. Phys., 2005, 122:124314
    [75]. Flores J R, Perez-Juste I, Carballeira L. A theoretical study of the SiCNH isomers. Chem. Phys., 2005, 313:1-15.
    [76]. Liu H L, Huang X R, Chen G H, Ding Y H, Sun C C. Promising interstellar molecule with stable cyclic isomers. J. Phys. Chem. A., 2004, 108, 6919.
    [77]. McCarthy M C, Gottlieb C A, Thaddeus P. Silicon molecules in space and in the laboratory. Mol. Phys., 2003, 101, 697-704.
    [78]. McCarthy M C, Thaddeus P. The Rotational Spectra of H2CCSi and H2C4Si. J. Mol. Spectrosc. [J], 2002, 211:228-234.
    [79]. Srinivas R, Vivekananda S, Schroder D, Schwarz H. SiNCO+ and SiNCS+and their neutral counterparts. Chem. Phys. Lett., 2000, 316:243-247.
    [80]. Apponi A J, McCarthy M C, Gottlieb C A, Thaddeus P. The radio spectra of SiCCH, SiCN, and SiNC. Astrophys. J., 2000, 536:L55-L58.
    [81]. Bailleux S, Bogey M, Breidung J, Burger H, Fajgar R, Liu Y Y, Pola J, Senzlober M, Thiel W. Silaethene H2CSiH2: Millimeter Wave Spectrum and Ab Initio Calculations. Angew. Chem. Int. Ed. Engl., 1996, 35(21):513-2515.
    [82]. Rauk A, Chiroptical properties of disulfides. Ab initio studies of dihydrogen disulfide and dimethyl disulfide. J. Am. Chem. Soc., 1984, 106:6517-6524.
    [83]. Maksymovych P, Yates J T. Propagation of conformation in the surface-aligned dissociation of single CH3SSCH3 molecules on Au (111). J. Am. Chem. Soc., 2006, 128 (33):10642–10643.
    [84]. Tadafumi Uchimaru, Seiji Tsuzuki, Masaaki Sugie, Kazuaki Tokuhashi and Akira Sekiya. A theoretical study on the strength of two-center three-electron bonds in the NO3 radical adducts of reduced sulfur molecules, H2S, CH3SH, CH3SCH3, and CH3SSCH3. Chem. Phys., 2006, 324(2-3): 465-473.
    [85]. Meyer M. Infrared, raman, microwave and ab initio study of dimethyl disulfide: structure and force field. J. Mol. Struct., 1992, 273(30):99-121.
    [86]. Sokalski W A, Lai J, Luo N, Sun S, Shibata M, Ornstein R, Rein R. Ab initio study of the electrostatic multipole nature of torsional potentials in CH3SSCH3, CH3SSH, and HOOH. Int. J. Quantum. Chem. Quantum. Biol. Symp., 1991, 18:61-71.
    [87]. Chiu S W , Ma Z X, Liao C L, Ng C Y. Adiabatic ionization energy of CH3SSCH3. J. Chem. Phys., 1993, 99:8440-8444.
    [88]. Wayne R P. Chemistry of Atomospheres . Clarendon Press, Oxford (UK), 1991, P460.
    [89]. Andreae M O and Raemdonck H. Dimethyl Sulfide in the Surface Ocean and the Marine Atmosphere: A Global View. Science. 1983, 221:744-747.
    [90]. Yin F, Grosjean D and Seinfeld J H. Analysis of Atmospheric Photooxidation Mechanisms for Organosulfur Compounds. J. Geophys. Res., [Space Phys.] 1986, 91:14417-14438.
    [91]. Calvert J G and Pitts J N. Photochemistry .Wiley, New York. 1996.
    [92]. Thompson S D, Carrol D G, Watson F, O’Donnell M and McGlynn S P. Electronic Spectra and Structure of Sulfur Compounds. J. Chem. Phys., 1966, 45:1367-1379.
    [93]. Rao P M and Knight A R. Reactions of thiyl radicals. V. The gas phase photolysis of methyl disulfide and ethyl disulfide mixtures in the presence of ethylene. Can. J. Chem., 1968, 46:2462-2464.
    [94]. Lee Y R, Chiu C L, Lin S M. Ultraviolet photodissociation study of CH3SCH3 and CH3SSCH3. J. Chem. Phys., 1994, 100:7376- 7384.
    [95]. Rinker A, Halleman C D, Wedlock M R. Photodissociation dynamics of dimethyl disulfide. Chem. Phys. Lett., 2005, 414:505-508.
    [96]. Martínez-Haya B, Bass M J, Brouard M and Vallance C, Torres I and Barr J. Photodissociation and multiphoton dissociative ioni- zation processes in CH3S2CH3 at 193 nm studied using velocity -map imaging., J. Chem. Phys., 2004, 120:11042-11052.
    [97]. Vatsa R K, Majumder C, Jayakumar O D, Sharma P,. Kulshreshtha S K, Mittal J P. Multiphoton dissociation/ionisation of dimethyl sulfide. Rapid Commun.Mass Spectrom., 2001,15:1941-1946.
    [98]. Su-Yu Chiang, Chien-I Ma, and Der-Jr Shr. Dissociative photoioni- zation of CH3SSCH3 in the region of ~ 8-25 eV. J. Chem. Phys., 1999, 110:9056-9063.
    [99]. Hsu C W and Ng C Y. Nonresonant two-photon pulsed field ionization ofCH3S formed in photodissociation of CH3SH and CH3SSCH3. J. Chem. Phys., 1994, 101:5596-5599.
    [100]. Koch L C,Marshall P and Ravishankara A R. An Investigation of the Reaction of CH3S with CO. J. Phys. Chem. A., 2004, 108(24): 5205-5212.
    [101]. Florent. D, Timothy P. Murrells, Carleton J. Howard. Kinetics of the reactions of nitrogen dioxide with CH3S, CH3SO, CH3SS, and CH3SSO at 297 K and 1 torr. J. Phys. Chem., 1990, 94(15): 5839-5847.
    [102]. Barone S B, Turnipseed A A, Gierczak T, Ravishankara A R. Quantum Yields of H(2S) and CH3S(2E) from the Photolysis of Simple Organosulfur Compounds at 193, 222, and 248 nm. J. Phys. Chem., 1994, 98(46):11969-11977.
    [103]. Yang H, Caves T C, Whitten J L, Huntley D R. Chemisorption Studies of CH3S on Ni(111). J. Am. Chem. Soc., 1994, 116(18): 8200-8206.
    [104]. Nourbakhsh S, Norwood K, He G Z, Ng C Y. Photoionization study of supersonically cooled polyatomic radicals: heat of formation of the thiomethoxy ion (CH3S+). J. Am. Chem. Soc., 1991, 113(16): 6311-6312.
    [105]. Balla R J, Weiner B R, Nelson H H. Kinetics of the reaction of the methylthiyl radical (CH3S) with unsaturated hydrocarbons. J. Am. Chem. Soc., 1987, 109 (16):4804-4808.
    [106]. Ross H. Nobes, Willem J. Bouma, Leo Radom. Rearrangement and fragmentation processes in the methanethiol and dimethyl sulfide radical cations. J. Am. Chem. Soc., 1984, 106(10):2774-2781.
    [107]. Ma Z X, Liao C L and Ng C Y, Cheung Y S and Li W K, Baer T. Experimental and theoretical studies of isomeric CH3S2 and CH3S. J. Chem. Phys., 1994, 100:4870-4875.
    [108]. Wart W H E, Cardinaux F, Scheraga H A. Low frequency Raman spectra of dimethyl, methyl ethyl and diethyl disulfides, and rotational isomerismabout their carbon-sulfur bonds. J. Phys. Chem., 1976, 80(6):625-630.
    [109]. Krauss M and Roszak S. Calculation of disulfide neutral and anion molecular excitation energies. J. Phys. Chem., 1992, 96:(21) 8325- 8328.
    [110] a)Miskowski V M, Houlding V H. Electronic spectra and photophysics of platinum(II) complexes with .alpha.-diimine ligands solid-state effects. 2. Metal-metal interaction in double salts and linear chains. Inorg. Chem., 1991, 30:4446-4452. b)Miskowski V M, Houlding V H. Electronic spectra and photophysics of platinum(II) complexes with .alpha.-diimine ligands. Solid-state effects. 1. Monomers and ligand .pi. dimmers. Inorg. Chem., 1989,28:1529-1533.
    [111]. a)Kunkely H, Vogler A. Photoluminescence of platinum complex [PtII(4,7-diphenyl-1,10-phenanthroline)(CN)2] in solution. J. Am. Chem. Soc, 1990, 112:5625-5627. b)Wan K T, Che C M, Cho K C. J.Chem. Soc. Dalton Trans., 1991, (4):1077-1080
    [112] a)Wong E, Giomenico C M. Current Status of Platinum-Based Antitumor Drugs.Chem. Rev., 1999, 99:2451-2466 b)Arena G, Scolaro L M, Pasternack R F, et al. Synthesis, Characterization, and Interaction with DNA of the Novel Metallointercalator Cationic Complex (2,2':6',2''-terpyridine)methylplatinum(II). Inorg. Chem., 1995, 34: 2994-3002
    [113] Lindqvist I. Ark. Kemi.[J], 1952, 5: 247 Lindqvist I, Aronsson B. Ark. Kemi.[J], 1954,7:49
    [114]. Goiffon A, Philippot E, Maurin M. ReV. Chim. Miner.[J], 1980, 17:466.
    [115]. Dmitrenko O, Huang W L, Polenova T W, et al. J. Phy. Chem. B.[J], 2003, 107, 7747.Derat E, Kumar D, Neumann R, Shaik S. Inorg. Chem.[J], 2006, 46, 8655.
    [116]. a)Li J J. Clust. Sci.[J], 2002, 13, 137. b) Yang X, Waters, T, Wang X B, O’Hair R A J,Wedd A G, Li J, Dixon D. A, Wang L S. J. Phy. Chem.[J], 2004, 108, 10089.
    [1]. a) Heitler W, London F. Wechselwirkung neutraler Atome und hom?opolare Bindung nach der Quantenmechanik. Z. Physik, 1927, 44:455-472.b) Pauling L, Wilson E B. Introduction to Quantum Mechanics (McGraw-Hill Book Company, Inc., New York.). 1935, 340–380.
    [2]. a) Hund F. Zur Deutung der Molekenspektren. IV. Z. Physik, 1928, 51:759-795.; Zur Frage der chemischen Bindung. Z. Physik, 1931, 73:1-30. b) Mulliken R S. The assignment of quantum numbers for electrons in molecules. I. Phys. Rev., 1928, 32:186-222.; The Assignment of Quantum Numbers for Electrons in Molecules. II. Correlation of Molecular and Atomic Electron States. Phys. Rev., 1928, 32: 761-772.; Electronic Structures of Polyatomic Molecules and Valence. II. General Considerations. Phys. Rev., 1932, 41:49-71.
    [3]. a)唐敖庆,杨忠志,李前树,量子化学,北京,科学出版社, 1982. b)徐光宪,黎乐民,王德民,量子化学基本原理和从头计算法,北京,科学出版社, 1985.
    [4]. Born M and Oppenheimer R. Quantum theory of the molecules. Zur Quantentheorie der Molekeln Ann. Phsik.(Quantum Theory of the Molecules Ann. Phys.), 1927, 84:457-84.
    [5]. a) Hehre W J, Radom L. and Schleyer P v R, et al. Ab Initio Molecular Orbital Theory. John Wiley &Sons, Inc., 1986. b) McQuarrie D A. Quantum Chemistry University Science Books: Mill Vally. CA., 1983.
    [6]. Lowdin P O. Correlation Problem in Many-Electronic Quantum Mechanics. I. Review of Different Approaches and Discussion of Some Current Ideas. Adv. Chem. Phys. Ed. I. Prigogine, 1959, 2:207-322,
    [7]. Pople J A, Seeger R and Krishnan R. Variational Configuration Interaction Methods and Comparison with Perturbation Theory. Int. J. Quant. Chem. Symp., 1977, 11:149-163.
    [8]. Foresman J B, Head-Gordon M, Pople J A and Frisch M J. Toward a Systematic Molecular Orbital Theory for Excited States. J. Phys. Chem., 1992, 96:135 -149.
    [9]. Krishnan R, Schlegel H B and Pople J A. Derivate Studies in Configuration Interaction Theory. J. Chem. Phys., 1980, 72:4654-4655.
    [10]. Brooks B R, Laidig W D, Saxe P, Goddard J D, Yamaguchi Y and Schaefer H F. Analytic Gradient from Correlated Wave Functions via the Two-Particle Density Matrix and the Unitary Group Approach. J. Chem. Phys., 1980, 72:4652-4653.
    [11]. Salter E A, Trucks G W and Bartlett R J. Analytic Energy Derivatives in Many-Body Methods I. First Derivatives. J. Chem. Phys., 1989, 90:1752-1766.
    [12]. Raghavachari K and Pople J A. Int. The Calculation of One-Electron Properties Using Limited Configuration Interaction Techniques. J. Quant. Chem., 1981, 20:1067.
    [13]. Pople J A, Head-Gordon M, Raghavachari K. Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies. J. Chem. Phys., 1987, 87:5968-5975.
    [14]. Cioslowski J. A New Robust Algorithm for Fully Automated Determination of Attactor Interaction Lines in Moleclues. Chem. Phys. Lett., 1994, 219:151-154.
    [15]. Schlegel H B, Robb M A. MCSCF Gradient Optimization of the H2CO→H2 +CO Transition Structure. Chem. Phys. Lett., 1982, 93:43-46.
    [16]. Eade R H E and Robb M A. Direct Minimization in MCSCF Theory: The Quasi-Newton Method. Chem. Phys. Lett., 1981, 83:362-368.
    [17]. Hegarty D and Robb M A. Application of Unitary Group Methods toConfiguration Interaction Calculations. Mol. Phys., 1979, 38:1795-1812.
    [18]. Siegbahn P E M, Almlbf J, Heiberg A , Roos B O. The complete active space SCF (CASSCF) method in a Newton–Raphson formulation with application to the HNO molecule. J. Chem.Phys., 1981, 74:2384-2396.
    [19]. McDouall J J W, Robb M A. An intrinsic localization procedure for active CAS SCF orbitals. Chem. Phys. Lett., 1986, 132:319-324.
    [20]. McDouall J J W, Robb M A. The transformation of CAS SCF wavefunctions to valence bond space. Chem. Phys. Lett., 1987, 142:131-135.
    [21]. Bernardi F, Olivucci M, McDouall J J W, Robb M A. Parametrization of a Heitler–London valence bond Hamiltonian from complete-active-space self-consistent-field computations: An application to chemical reactivity. J. Chem. Phys., 1988, 89:6365-6375.
    [22]. Werner H J, W. Meyer. A quadratically convergent MCSCF method for the simultaneous optimization of several states. J. Chem. Phys., 1981, 74:5794-5800.
    [23]. Werner H J, Meyer W. The complete active space SCF (CASSCF) method in a Newton-Raphson formulation with application to the HNO molecule. J. Chem. Phys., 1981, 74:2384-2396.
    [24]. Diffenderfer R N, Yarkony D R. Use of the state-averaged MCSCF procedure: application to radiative transitions in magnesium oxide. J. Phys. Chem., 1982, 86:5098-5105.
    [25]. Docken K K, Hinze J. LiH Potential Curves and Wavefunctions for X1Σ+, A1Σ+, B1Π, 3Σ+, and 3Π. J. Chem. Phys., 1972, 57:4928-4936.
    [26]. Werner H J, Meyer W. A quadratically convergent muliticonfigutation -self- consistent field method with simultaneous optimization of orbitals and CI coefficients. J. Chem. Phys., 1980, 73:2342-2353.
    [27]. M?ller C, Plesset M S. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev., 1934, 46:618-622.
    [28]. Head-Gordon M, Pople J A, Frisch M J. MP2 energy evaluation by direct methods. Phys. Rev. Lett., 1988, 153:503-506.
    [29]. Pople J A, Binkley J S, Seeger R. Theoretical Models Incorporating Electron Correlation, Int. J. Quant. Chem. Symp., 1976, 10:1.
    [30]. Krishnan R, Pople J A. An Approximate Fourth Order Perturbation Theory of the Electron Correlation Energy. Int. J. Quant. Chem., 1978, 14:91-100.
    [31]. Raghavachari K, Pople J A, Replogle E S, Head-Gordon M. Fifth order Moeller-Plesset perturbation theory: comparison of existing correlation methods and implementation of new methods correct to fifth order. J. Phys. Chem., 1990, 94:5579-5586.
    [32]. Andersson K, Malmqvist P.-?., Roos B O, Sadlej A J and Wolinski. K. Secondorder perturbation theory with a CASSCF reference function. J. Phys. Chem., 1990, 94:5483-5488.
    [33]. Andersson K, Malmqvist P.-? and Roos B O. Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys., 1992, 96:1218-1226.
    [34]. Pople J A, Krishnan R, Schlegel H. B, Binkley J S. Electron Correlation Theories and Their Application to the Study of Simple Reaction Potential Surfaces. Int. J. Quant. Chem., 1978, XIV:545-560.
    [35]. Bartlett R J and Purvis G D. General Application of a Big Molecule Gaussian SCF/CI Program for Calculations of Excited Metastables and of Negative Ion Bound States and Resonances. Int. J. Quant. Chem., 1978, 14:516-518.
    [36]. Purvis G D and Bartlett R J. A Full Coupled-Cluster Singles and DoublesModel: The Inclusion of Disconnected Triples. J. Chem. Phys., 1982, 76: 1910-1918.
    [37]. Scuseria G E, Janssen C L and Schaefer H F. An Efficient Reformulation of the Closed-Shell Coupled Cluster Single and Double Excitation (CCSD) Equation. J. Chem. Phys., 1988, 89:7382-7387.
    [38]. Scuseria G E and Schaefer H F. Is Coupled Cluster Singlets and Doubles (CCSD) more Computationally Intensive Than Quadratic Configuration Interaction. J. Chem. Phys., 1989, 90:3700-3703.
    [39]. Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys. Rev., 1964, 136:B864-B871.
    [40]. Kohn W and Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev., 1965, 140:A1133-A1138.
    [41]. Slater J C. The Self-Consistent Field for Molecules and Solids: Quantum Theory of Molecules and Solids. McGraw-Hill, New York, 1974, 4: 20
    [42]. Salahub D R and Zerner M C, eds. The Challenge of d and f Electrons. ACS: Washington, D.C., 1989.
    [43]. Parr R G and Yang W. Density-functional theory of atoms and molecules. Oxford Univ. Press: Oxford, 1989.
    [44]. Pople J A, Gill P M W and Johnson B G. Kohn-Sham density-functional theory within a finite basis set. Chem. Phys. Lett., 1992, 199:557-560.
    [45]. Johnson B G and Frisch M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy. J. Chem. Phys., 1994, 100:7429-7442.
    [46]. Labanowski J K and Andzelm J W, eds. Density Functional Methods in Chemistry. Springer-Verlag: New York, 1991.
    [47].周公度,段连运编著,结构化学基础,北京大学出版社,1995.
    [48]. Condon U. Nuclear Motions Associated with Electron Transitions in Diatomic Molecules. Phys. Rev., 1928, 32:858-872.
    [49]. Franck J. Trans. Faraday Soc., 1925, 21:536.
    [50].梁映秋,赵文运编,分子振动和振动光谱,北京大学出版社,1990.
    [51]. Rohatgi-Makherjee K K.著,丁革非,孙万林,盛六四等译,光化学基础,北京,科学出版社,1991.
    [1]. Thaddeus P, McCarthy M C, Travers M J, et al. New carbon chains in the laboratory and in interstellar space. Faraday Discuss., 1998, 109: 121-135.
    [2]. Langer W D, Velusamy T, Kuiper T B H, et al. First Astronomical Detection of the Cumulene Carbon Chain Molecule H2C6 in TMC-1 Astrophys. J., 1997, 480: L63-L66.
    [3]. Thaddeus P, Gottlieb C A, Mollaaghababa R and Vrtilek J. Free carbenes in the interstellar gas. J. Chem. Soc. Faraday Trans., 1993,89,2125.
    [4]. Bettinger H F, Schleyer P v R, Schreiner P R and Schaefer H F. in Encyclopedia of Computational Chemistry, ed. Schleyer P v R, Wiley, Chichester, 1998, 1, 183. .
    [5]. Maier G, Reisenauer H P, Schwab W, et al. Vinylidene carbene: a new C3H2 species. J. Am. Chem. Soc., 1987, 109:5183-5188.
    [6]. Vrtilek J M, Gottlieb C A, Gottlieb E W, et al. Laboratory detection of propadienylidene H2CCC. Astrophys. J, 1990, 364: L53-L56
    [7]. Cernicharo J, Gottlieb C A, Guelin M, et al. Astronomical detection of H2CCC . Astrophys. J., 1991, 368: L39-L41
    [8]. Seburg R A, Patterson E V, Stanton J F, et al. Structures, Automerizations, and Isomerizations of C3H2 Isomers. J. Am. Chem. Soc., 1997, 119: 5847-5856
    [9]. Cernicharo J, Gottlieb C A, Guélin M,. Killian T C, Paubert G, Thaddeus Pand Vrtilek J M, Ap. J., 1991, 368:L39-L41.
    [10].De Frees D J and McLean A D. Ab initio molecular orbital studies of low-energy, metastable isomers of the ubiquitous cyclopropenylidene. Ap. J., 1986, 308:L31-L35.
    [11].Thaddeus P, Vrtilek J M and Gottlieb C A, Ap. J., 1985, 298:L63-L66.
    [12].Madden S C, Irvine W M, Matthews H E, Friberg P and Swade D A. Astron. J., 1989, 97:1403-1422.
    [13].Miller J A, Volponi J V and Pauwels J.-F. The effect of allene addition on the structure of a rich C2H2/O2/Ar flame. Combust. Flame., 1996, 105(4): 451-461.
    [14].Mebel A M, Jackson W M, Chang A H H and Lin S H. Photodissociation Dynamics of Propyne and Allene: A View from ab Initio Calculations of the C3Hn (n = 1?4) Species and the Isomerization Mechanism for C3H2. J. Am. Chem. Soc., 1998, 120:5751-5763.
    [15].Miller J A and Melius C F. Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels. Combust. Flame, 1992, 91(1):21-39.
    [16].Bhargava A and Westmoreland P R. Measured Flame Structure and Kinetics in a Fuel-Rich Ethylene Flame. Combust. Flame, 1998, 113:333-347.
    [17].Westmoreland P R, Dean A M, Howard J B.and Longwell J P. Forming benzene in flames by chemically activated isomerization. J. Phys. Chem., 1989, 93:8171-8180.
    [18].DeFrees D J, Mclean A D, Astrophys. J., 1986,308:L31
    [19].Jonas V, Bohme M, Frenking G. Structures and energies of the lowest lying singlet and triplet states of C3H2 and C3F2: a theoretical study J. Phys. Chem., 1992, 96:1640-1648.
    [20].Maier G, Reisenauer H P, Schwab W, Carsky P, Spirko V, Hess B A, Schaad LJ, Propargylene: A C3H2 isomer with unusual bonding. J. Chem. Phys., 1989, 91:4763
    [21].Westmoreland P R. PhD Thesis, Massachusetts Institute of Technology, Boston, MA, 1986.
    [22].Westmoreland P R, Howard J B and Longwell J P. Proc. Combust. Inst., 1986, 21, 773.
    [23].Bittner J D. ScD Dissertation, Massachusetts Institute of Technology, Boston, MA, 1981.
    [24].Oulundsen G. E. PhD Dissertation, University of Massachusetts Amherst, 1999.
    [25].Rubio M, St?lring J, Bernhardsson A, Lindh R and Roos B O. Theor. Chem. Acc., 2000, 105:15-30.
    [26].Takahashi J and Yamashita K. Ab initio studies on the interstellar molecules C3H2 and C3H and the mechanism for the neutral–neutral reaction C(3P)+C2H2. J. Chem. Phys., 1996, 104:6613-6627.
    [27].Seburg R A, Patterson E V, Stanton J F and McMahon R J. Structures, Automerizations, and Isomerizations of C3H2 Isomers. J. Am. Chem. Soc., 1997, 119:5847-5856.
    [28].Clauberg H, Minsek D W and Chen P. Mass and photoelectron spectroscopy of C3H2. Delta Hf of singlet carbenes deviate from additivity by their singlet-triplet gaps. J. Am. Chem. Soc., 1992, 114:99-107.
    [29].Maier G, Reisenauer H P, Schwab W, Cársky P, Spirko V, Hess Jr. B A and Schaad L J. Propargylene: A C3H2 isomer with unusual bonding . J. Chem. Phys., 1989, 91:4763-4773.
    [30].Hehre W J, Pople J A, Lathan W A, Radom L, Wasserman E and Wasserman Z R. Molecular orbital theory of the electronic structure of organic compounds. 28. Geometries and energies of singlet and triplet states of theC3H2 hydrocarbons. J. Am. Chem. Soc., 1976, 98:4378-4383.
    [31].Jonas V, Boehme M and Frenking G. Structures and energies of the lowest lying singlet and triplet states of C3H2 and C3F2: a theoretical study. J. Phys. Chem., 1992, 96:1640-1648.
    [32].Stanton J F, DePinto J T, Seburg R A, et al. Electronic Spectrum of Propadienylidene (H2CCC:) J. Am. Chem. Soc., 1997, 119: 429-430.
    [33].Hodges J A, McMahon R J, Stanton J F, et al. Electronic Spectrum of Propadienylidene (H2CCC:) and its Relevance to the Diffuse Interstellar Bands. Astrophys. J., 2000, 544:838-842
    [34].Robinson M S, Polak M L, Bierbaum W, et al. Experimental Studies of Allene, Methylacetylene, and the Propargyl Radical: Bond Dissociation Energies, Gas-Phase Acidities, and Ion-Molecule Chemistry. J. Am. Chem. Soc., 1995, 117(25): 6766-6778.
    [35].McCarthy M C, Apponi A J, Gottlieb C A and Thaddeus P. Laboratory Detection of Five New Linear Silicon Carbides: SiC3, SiC5, SiC6, SiC7, and SiC8. Astrophys. J. 2000, 538:766-772
    [36].McCarthy M C, Apponi A J, Gottlieb C A and Thaddeus P. Rotational spectra of SiCN, SiNC, and the SiCnH (n = 2, 4–6) radicals. J. Chem. Phys. 2001, 115:870-877.
    [37].Izuha M, Yamamoto S and Saito S. Microwave spectrum of silylidene H2CSi. J. Chem. Phys., 1996, 105:4923-4926.
    [38].Harper W W, Waddell K W and Clouthier D J. Jet spectroscopy, structure, anomalous fluorescence, and molecular quantum beats of silylidene (H2C=Si), the simplest unsaturated silylene. J. Chem. Phys. 1997, 107:8829-8839, and references therein.
    [39].Cernicharo J, Gottlieb C A, Gu′elin M, Killian T C, Paubert G, Thaddeus P and Vrtliek J M. Astrophys. J. Lett., 1991, 368:L39-L41.
    [40].Cernicharo J, Gottlieb C A, Gu′elin M, Killian T C, Thaddeus P and Vrtliek J. M. Astrophys. J. Lett., 1991, 368:L43-L45.
    [41].Gu′elin M, Muller S, Cernicharo J, Apponi A J, McCarthy M C, Gottlieb C A and Thaddeus P. Astro. Astrophys., 2000, 363:L9-L12.
    [42].Glassgold A E and Mamon G A in“Chemistry and Spectroscopy of Interstellar Molecules”(D. K. Bohme et al., Eds.), Univ. of TokyoPress, Tokyo, 1992, P261
    [43].Allendorf M D. Energy Res. Abstr., 1992,17,24960.
    [44].Maier G, Reisenauer H P and Egenolf H, Eur. J.Org. Chem., 1998, 7:1313–1317, and references therein.
    [45].Maier G., Reisenauer H P and Meudt A. Eur. J. Org. Chem. 1998, 7: 1285-1290.
    [46].Frenking G, Remington R B and Schaefer H F III. Structures and energies of singlet silacyclopropenylidene and 14 higher lying C2SiH2 isomers. J. Am. Chem. Soc., 1986, 108:2169-2173.
    [47].Cooper D L. Ab initio predictions for silicon analogs of astrophysically interesting molecules - SiC2H2, SiH2CN, SiH2C2, and CH2CSi. Astrophys. J. 1990, 354:229-231.
    [48].Sherrill, C. G. Brandow, W. D. Allen, and Schaefer H F III, Cyclopropyne and Silacyclopropyne: A World of Difference. J. Am. Chem. Soc., 1996, 118:7158-7163.
    [49].Hou C Y, Zhang H X, Sun C C. Ab Initio Study of the Spectroscopy of CH3N and CH3CH2N. J. Phys. Chem. A. [J], 2006, 110:10260-10266.
    [50].Hou C Y, Zheng Q C, Zhang H X., et al.. J. Phys. Chem. A. [J], 2007, 111:12037- 12041.
    [51].HOU Chun-Yuan(侯春园), ZHENG Qing-Chuan(郑清川), ZHANG Hong-Xing (张红星), et al.多组态二级微扰理论计算CH3O2激发光谱以及CH3O2→CH3+O2解离反应. Acta Chimica Sinica(化学学报) [J], 2007, 65(18): 1947-1950.
    [52].HOU Chun-Yuan(侯春园), ZHENG Qing-Chuan(郑清川), ZHANG Hong-Xing (张红星), et al. C6H5N光谱性质的多组态二级微扰理论研究. Chem. J. Chinese Universities (高等学校化学学报) 2008, 29: 1448 -1451.
    [53].Andersson K, Barysz M, Bernhardsson A, et al. MOLCAS. Version 6.0[CP], Lund: University of Lund, 2003
    [54].Pierloot K, Dumez B, Widmark P. -O., et al. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. Theor. Chim. Acta., 1995, 90: 87-114.
    [55].Gottlieb C A, Killian T C, Thaddeus P, et al. Structure of propadienylidene. H2CCC. J. Chem. Phys., 1993, 98:4478- 4485.
    [56]. Petre B, Andrei C, Mitsunori A, et al. J. Mol. Spectr., 2005, 229:276-282.
    [57].Serrano-Andres L, Merchan M, Nebot-Gil I, Lindh R and Roos B O. Electronic spectra of finite polyenes and polyacetylene obtained by electron and polarization propagator calculations. J. Chem. Phys., 1993,98:3151
    [58].Huang J W, Graham W R M. J. Chem. Phys., 1990,93,1583.
    [59]. Maier G, Reisenauer H P, Meudt A, et al. Silacyclopropyne: Matrix Spectroscopic Identification and ab Initio Investigationst. J. Am. Chem. Soc., 1995, 117:12712-12720.
    [60]. Maier G, Reisenauer H P, Pacl H. Angew. Chem., Int. Ed. Engl., 1994, 33, 1248-1250.
    [1]. Duley W W, Williams D A. Interstellar Chemistry, Academic Press: Lond, 1984.
    [2]. Cernicharo J, Gottlieb C. A, Guelin M, et al. Astronomical and stronomical and laboratory detection of the SiC radical. Astrophys. J. [J], 1989, 341:L25-L28.
    [3]. Guelin M, Muller S, Cernicharo J, et al. Astronomical detection of the free radical SiCN. Astron. Astrophys. [J], 2000, 363: L9-L11.
    [4]. Guelin M, Muller S, Cernicharo J, et al. Detection of the SiNC radical in IRC+10216. Astron. Astrophys. [J], 2004, 426: L49-L52.
    [5]. Apponi A. J, McCarthy M C, Gottlieb C A, et al. Astronomical detection of rhomboidal SiC3. Astrophys. J. [J], 1999, 516:L103-L106.
    [6]. Wang Q, Ding Y H, Sun C C. Potential energy surface study of [H, Si, C, N] and its ions. Chem. Phys., 2006, 323:413-428.
    [7]. Stanton J F, Dudek J, Theule P, Gupta H, McCarthy M C, Thaddeus P. Laser spectroscopy of Si3C. J. Chem. Phys., 2005, 122:124314
    [8]. Flores J R, Perez-Juste I, Carballeira L. A theoretical study of the SiCNH isomers. Chem. Phys., 2005, 313:1-15.
    [9]. Liu H L, Huang X R, Chen G H, Ding Y H, Sun C C. Promising interstellar molecule with stable cyclic isomers. J. Phys. Chem. A., 2004, 108, 6919.
    [10]. McCarthy M C, Gottlieb C A, Thaddeus P. Silicon molecules in space and in the laboratory. Mol. Phys., 2003, 101, 697-704.
    [11]. McCarthy M C, Thaddeus P. The Rotational Spectra of H2CCSi and H2C4Si. J. Mol. Spectrosc. [J], 2002, 211:228-234.
    [12]. Srinivas R, Vivekananda S, Schroder D, Schwarz H. SiNCO+ and SiNCS+ and their neutral counterparts. Chem. Phys. Lett., 2000, 316:243-247.
    [13]. Apponi A J, McCarthy M C, Gottlieb C A, Thaddeus P. The radio spectra of SiCCH, SiCN, and SiNC. Astrophys. J., 2000, 536:L55-L58.
    [14]. Bailleux S, Bogey M, Breidung J, Burger H, Fajgar R, Liu Y Y, Pola J, Senzlober M, Thiel W. Silaethene H2CSiH2: Millimeter Wave Spectrum and Ab Initio Calculations. Angew. Chem. Int. Ed. Engl., 1996, 35(21):513-2515.
    [15]. Yamada C, Kanamori H, Hirota E, Nishiwaki N, Itabashi N, Kato K, Goto T. Detection of the silyleneν2 band by infrared diode laser kinetic spectroscopy. J. Chem. Phys., 1989, 91:4582.
    [16]. Grev R S, Schaefer H F, Gaspar P P. In search of triplet silylenes. J. Am. Chem. Soc., 1991, 113, 5638.
    [17]. Apeloig Y, Pauncz R, Karni M, West R, Steiner W, Chapman D. Why Is Methylene a Ground State Triplet while Silylene Is a Ground State Singlet. Oragnometallics, 2003, 22:3250-3256.
    [18]. Muramoo Y, Ishikawa H and Mikami N. First observation of the B1A1 state of SiH2 and SiD2 radicals by optical-optical double resonance spectroscopy J. Chem. Phys., 2005, 122:154302.
    [19]. Guerout R, Bunker P R. A calculation of the rovibronic energies and spectrum of the B1A1 electronic state of SiH2. J. Chem. Phys., 2005, 123:244312.
    [20]. Sanz M E, McCarthy M C, Thaddeus P. Laboratory Detection of HSiCN and HSiNC. Astrophys. J. [J], 2002, 577:L71-L74.
    [21]. Dover M R, Evans C J. J. Computational Study on the Structures of the [H, Si, N, C, O] Isomers: Possible Species of Interstellar Interest. Phys. Chem. A., 2007, 111:13148-13156.
    [22]. Kalcher J. J. Singlet?Triplet Splittings and Ground- and Excited-State Electron Affinities of Selected Cyanosilylenes, XSiCN (X = H, F, Cl, CH3, SiH3, CN). Phys. Chem. A., 2005, 109:11437-11442.
    [23]. Hou C Y, Zhang H X, Sun C C. Ab Initio Study of the Spectroscopy of CH3N and CH3CH2N. J. Phys. Chem. A. [J], 2006, 110:10260-10266.
    [24]. Hou C Y, Zheng Q C, Zhang H X, et al. Ab Initio Study of the Spectroscopy of (CH3)3CN and (CH3)2CHN. J. Phys. Chem. A. [J], 2007, 111:12037 -12041.
    [25]. HOU Chun-Yuan(侯春园), ZHENG Qing-Chuan(郑清川), ZHANG Hong-Xing (张红星),et al.多组态二级微扰理论计算CH3O2激发光谱以及CH3O2→CH3+O2解离反应. Acta Chimica Sinica(化学学报) [J], 2007, 65:1947-1950.
    [26]. HOU Chun-Yuan(侯春园), ZHENG Qing-Chuan(郑清川), ZHANG Hong-Xing (张红星),et al. C6H5光谱性质的多组态二级微扰理论研究. Chem. J. Chinese Universities (高等学校化学学报) [J], 2008, 29:1448-1451.
    [27]. Dunning T J. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. Chem. Phys., 1989, 90, 1007.
    [28]. Woon D E, Dunning T. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon . J. Chem. Phys., 1993, 98, 1358.
    [29]. Serrano-Andres L, Merchan M, Nebot-Gil I, Lindh R and Roos B O. J. Towards an accurate molecular orbital theory for excited states: Ethene, butadiene, and hexatriene. Chem. Phys., 1993, 98:3151.
    [30]. NIST Chemistry WebBook edited by Linstrom P J, Mallard W G. http://webbook.nist.gov/chemistry/ 2005.
    [31]. Lykke K R, Neumark D M, Anderson T, Trapa V J and Lineberger W C. Autodetachment spectroscopy and dynamics of CH2CN? and CD2CN?. J. Chem. Phys., 1987,87:6842-6853.
    [32]. Marks J, Brauman J I, Mead R D, Lykke K R and Lineberger W C. Spectroscopy and dynamics of the dipole-supported state of acetyl fluoride enolate anion. J. Chem. Phys., 1988, 88:785-6792
    [33]. Brinkman E A, Berger S, Marks J and Brauman J I. Molecular rotation and the observation of dipole-bound states of anions. J. Chem. Phys., 1993, 99:7586-7594.
    [34]. Desfran?ois C, Abdoul-Carime H, Adjouri C, Khelifa N and Schermann J. -P. Europhys. Lett., 1994,26, 25.
    [35]. Popple R A, Finch C D and Dunning F B. Production and properties of dipole-bound negative ions. Chem. Phys. Lett., 1995, 234:172-176.
    [36]. Abdoul-Carime H and Desfran?ois C. Eur. Phys. J. D., 1998, 2:149-155.
    [37]. Lecomte F, Carles S and Desfran?ois C. Dipole bound and valence state coupling in argon-solvated nitromethane anions. J. Chem. Phys., 2000, 113: 10973-10977.
    [38]. Suess L, Liu Y, Parthasarathy R and Dunning F B. Lifetime of dipole-bound CH3CN- ions: role of blackbody-radiation-induced photodetachment. Chem. Phys. Lett., 2003, 376:376-380.
    [39]. Hammer N I, Jordan K D, Desfran?ois C and Compton R N. Dipole-bound anions of carbonyl, nitrile, and sulfoxide containing molecules. J. Chem. Phys., 2003, 119(7):3650-3660.
    [40]. Suess L, Liu Y, Parthasarathy P and Dunning F B. Dynamics of Rydberg electron transfer to CH3CN: Velocity dependent studies. J. Chem. Phys., 2004, 121:7162-7168.
    [41]. Clary D C. Photodetachment of electrons from dipolar anions. J. Phys.Chem., 1988, 92:3173-3181.
    [42]. Simons J. Modified rotationally adiabatic model for rotational autoionization of dipole-bound molecular anions. J. Chem. Phys., 1989, 91:6858-6865.
    [43]. Giri P R, Gupta K S, Meijanac S and Samsarov A. Electron capture and scaling anomaly in polar molecules. Phys. Lett. A., 2008, 372:2967-2970.
    [1]. Rauk A, Chiroptical properties of disulfides. Ab initio studies of dihydrogen disulfide and dimethyl disulfide. J. Am. Chem. Soc., 1984, 106:6517-6524.
    [2]. Maksymovych P, Yates J T. Propagation of conformation in the surface-aligned dissociation of single CH3SSCH3 molecules on Au (111). J. Am. Chem. Soc., 2006, 128 (33):10642–10643.
    [3]. Tadafumi Uchimaru, Seiji Tsuzuki, Masaaki Sugie, Kazuaki Tokuhashi and Akira Sekiya. A theoretical study on the strength of two-center three-electron bonds in the NO3 radical adducts of reduced sulfur molecules, H2S, CH3SH, CH3SCH3, and CH3SSCH3. Chem. Phys., 2006, 324(2-3): 465-473.
    [4]. Meyer M. Infrared, raman, microwave and ab initio study of dimethyl disulfide: structure and force field. J. Mol. Struct., 1992, 273(30):99-121.
    [5]. Sokalski W A, Lai J, Luo N, Sun S, Shibata M, Ornstein R, Rein R. Ab initio study of the electrostatic multipole nature of torsional potentials in CH3SSCH3, CH3SSH, and HOOH. Int. J. Quantum. Chem. Quantum. Biol. Symp., 1991, 18:61-71.
    [6]. Chiu S W , Ma Z X, Liao C L, Ng C Y. Adiabatic ionization energy of CH3SSCH3. J. Chem. Phys., 1993, 99:8440-8444.
    [7]. Wayne R P. Chemistry of Atomospheres . Clarendon Press, Oxford (UK), 1991, P460.
    [8]. Andreae M O and Raemdonck H. Dimethyl Sulfide in the Surface Oceanand the Marine Atmosphere: A Global View. Science. 1983, 221:744-747.
    [9]. Yin F, Grosjean D and Seinfeld J H. Analysis of Atmospheric Photooxidation Mechanisms for Organosulfur Compounds. J. Geophys. Res., [Space Phys.] 1986, 91:14417-14438.
    [10]. Calvert J G and Pitts J N. Photochemistry .Wiley, New York. 1996.
    [11]. Thompson S D, Carrol D G, Watson F, O’Donnell M and McGlynn S P. Electronic Spectra and Structure of Sulfur Compounds. J. Chem. Phys., 1966, 45:1367-1379.
    [12]. Rao P M and Knight A R. Reactions of thiyl radicals. V. The gas phase photolysis of methyl disulfide and ethyl disulfide mixtures in the presence of ethylene. Can. J. Chem., 1968, 46:2462-2464.
    [13]. Lee Y R, Chiu C L, Lin S M. Ultraviolet photodissociation study of CH3SCH3 and CH3SSCH3. J. Chem. Phys., 1994, 100:7376- 7384.
    [14]. Rinker A, Halleman C D, Wedlock M R. Photodissociation dynamics of dimethyl disulfide. Chem. Phys. Lett., 2005, 414:505-508.
    [15]. Martínez-Haya B, Bass M J, Brouard M and Vallance C, Torres I and Barr J. Photodissociation and multiphoton dissociative ioni- zation processes in CH3S2CH3 at 193 nm studied using velocity -map imaging., J. Chem. Phys., 2004, 120:11042-11052.
    [16]. Vatsa R K, Majumder C, Jayakumar O D, Sharma P,. Kulshreshtha S K, Mittal J P. Multiphoton dissociation/ionisation of dimethyl sulfide. Rapid Commun.Mass Spectrom., 2001,15:1941-1946.
    [17]. Su-Yu Chiang, Chien-I Ma, and Der-Jr Shr. Dissociative photoioni- zation of CH3SSCH3 in the region of ~ 8-25 eV. J. Chem. Phys., 1999, 110:9056-9063.
    [18]. Hsu C W and Ng C Y. Nonresonant two-photon pulsed field ionization of CH3S formed in photodissociation of CH3SH and CH3SSCH3. J. Chem.Phys., 1994, 101:5596-5599.
    [19]. Koch L C,Marshall P and Ravishankara A R. An Investigation of the Reaction of CH3S with CO. J. Phys. Chem. A., 2004, 108(24): 5205-5212.
    [20]. Florent. D, Timothy P. Murrells, Carleton J. Howard. Kinetics of the reactions of nitrogen dioxide with CH3S, CH3SO, CH3SS, and CH3SSO at 297 K and 1 torr. J. Phys. Chem., 1990, 94(15): 5839-5847.
    [21]. Barone S B, Turnipseed A A, Gierczak T, Ravishankara A R. Quantum Yields of H(2S) and CH3S(2E) from the Photolysis of Simple Organosulfur Compounds at 193, 222, and 248 nm. J. Phys. Chem., 1994, 98(46):11969-11977.
    [22]. Yang H, Caves T C, Whitten J L, Huntley D R. Chemisorption Studies of CH3S on Ni(111). J. Am. Chem. Soc., 1994, 116(18): 8200-8206.
    [23]. Nourbakhsh S, Norwood K, He G Z, Ng C Y. Photoionization study of supersonically cooled polyatomic radicals: heat of formation of the thiomethoxy ion (CH3S+). J. Am. Chem. Soc., 1991, 113(16): 6311-6312.
    [24]. Balla R J, Weiner B R, Nelson H H. Kinetics of the reaction of the methylthiyl radical (CH3S) with unsaturated hydrocarbons. J. Am. Chem. Soc., 1987, 109 (16):4804–4808.
    [25]. Ross H. Nobes, Willem J. Bouma, Leo Radom. Rearrangement and fragmentation processes in the methanethiol and dimethyl sulfide radical cations. J. Am. Chem. Soc., 1984, 106(10):2774-2781.
    [26]. Ma Z X, Liao C L and Ng C Y, Cheung Y S and Li W K, Baer T. Experimental and theoretical studies of isomeric CH3S2 and CH3S. J. Chem. Phys., 1994, 100:4870-4875.
    [27]. Wart W H E, Cardinaux F, Scheraga H A. Low frequency Raman spectra of dimethyl, methyl ethyl and diethyl disulfides, and rotational isomerism about their carbon-sulfur bonds. J. Phys. Chem., 1976, 80(6):625-630.
    [28]. Krauss M and Roszak S. Calculation of disulfide neutral and anion molecular excitation energies. J. Phys. Chem., 1992, 96:(21) 8325- 8328.
    [29]. James L G, Edward F H. Nonempirical LCAO MO SCF and CI Studies of the Low Lying Electronic State of the HOO Radical. J. Chem. Phys. [J], 1972, 57:360-363.
    [30]. Hunziker H E, Wendt H R. Near infrared absorption spectrum of HO2. J. Chem. Phys. [J], 1972, 60:4622-4623.
    [31]. Yumin Li, Joseph S Francisco. Low-lying excited states of HO2-HONO, HO2-HONO2, and HO2-HO2NO2 complexes. J. Chem. Phys. [J], 2001, 114:211-214.
    [32]. Blint R J, Johnston H S. Ab initio studies of interoxygen bonding in O2, HO2, H2O2, O3, HO3, and H2O3. J. Chem. Phys. [J], 1973, 59: 6220-6228.
    [33]. Beers Y, Howard C J. The spectrum of DO2 near 60 GHz and the structure of the hydroperoxyl radical. J. Chem. Phys. [J], 1976, 64:1541-1543.
    [34]. Johns J W C, McKellar A R W, Riggin M. Laser magnetic resonance spectroscopy of theν3 fundamental band of HO2 at 9.1μm. J. Chem. Phys. [J], 1977, 68:3957-3966.
    [35]. Mark S Zahniser, Alan C. Stanton. A measurement of the vibrational band strength for theν3 band of the HO2 radical. J. Chem. Phys. [J], 1984, 80:4951-4960.
    [36]. Keiichi Nagai, Yasuki Endo, Eizi Hirota. Diode laser spectroscopy of the HO2ν2 band. J. Mol. Spectrosc. [J], 1981, 89:520-527.
    [37]. Mark S. Zahniser, Keith E McCurdy, Alan C Stanton. Quantitative spectroscopic studies of the hydroperoxo radical: band strength measurements for the .nu.1 and .nu.2 vibrational bands. J. Phys. Chem. [J], 1989, 93:1065-1070.
    [38].中国化学会.第九届全国量子化学学术会议论文集[C].桂林2005
    [39]. Nourbakhsh S, Liao C L and Ng C Y, A 193 nm laser photofragmen- tation time-of-flight mass spectrometric study of CH3SSCH3, SSCH3, and SCH3 . J. Chem. Phys., 1990, 92:6587-6593
    [40]. Ma Z X, Liao C L, Ng C Y, Cheung Y S, Li W K and Baer T. Electronic Spectra and Structure of Sulfur Compounds. J. Chem. Phys., 1994,100:4870-4875
    [41]. Butler J J, Baer T, Jr. and Evans S A. Energetics and structures of organosulfur ions: CH3SSCH3+, CH3SS+, C2H5S+, and CH2SH+. J. Am. Chem. Soc., 1983, 105:3451-3455.
    [42]. Zhu X J, Ge M F, Wang J, Sun Z, and Wang D X, HeI photoelectron spectroscopic study on the electronic structure of the (CH3CH2)2N neutral radical. Chem. Phys. Lett., 1999, 305(5-6):359-364.
    [43]. Ge M F, Wang J, Sun Z, Zhu X J and Wang D X. First experimental observation on different ionic states of the CH3SS radical: A HeI photoelectron spectrum. J. Chem. Phys., 2001, 114:3051-3054.
    [44]. Roos B O, Lawley K P (Eds.), Advances in Chemical Physics; Ab Initio Methods in Quantum Chemistry II, Wiley, Chichester, England, 1987, P399.
    [45]. Moran S, Ellison G B. Photoelectron Spectroscopy of Sulfur Ions. J. Phys. Chem., 1988, 92:1794-1803.