星载GPS技术在航天器编队定轨中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轨道确定是航天器飞行和控制的基础。星载GPS技术因其能够提供相对经济、连续、准确的定位服务而备受关注,成为航天器轨道确定方面的研究热点。本文以星载GPS技术在航天器编队定轨方面的应用为研究对象,分别在星载GPS测量数据处理、基于星载GPS的航天器绝对定轨、基于星载GPS的航天器编队相对定轨等方面展开研究,具体工作如下:
     通过统计分析星载GPS接收机关于导航星的观测情况,提出了采用降低观测截止高度角的方法增加参与定轨的测量数据量,以提高定轨连续性。针对降低观测高度角所引起的测量误差增大问题,分析了测量误差对周跳探测的影响。在此基础上对TurboEdit算法周跳探测部分提出改进,通过引入加权系数的方式,根据观测数据质量相应地调整周跳判断条件,从而实现减少周跳误判发生,提高周跳探测效率。并分别设计了两种构造加权系数的方法。
     在载波相位整周模糊度LAMBDA解算算法的实数解估计环节,设计并引入加权矩阵。根据测量时刻的观测高度角对测量数据质量进行评价,并据此在估计过程中分配以不同的权重,达到降低相关性和减小估算误差的目的。
     考虑到未来GPS系统将同时提供L1、L 2和L 5三频载波信号,针对目前三频逐级模糊度解算方法存在的缺陷,提出了一套检验、修正方法。该方法综合利用载波相位宽巷、窄巷技术对三频逐级模糊度解算结果进行检验,并根据检验结果,对解算过程进行反复修正,直至解算出正确解。经过分析和讨论,证明该方法是有效的。最后给出了关于三频载波相位整周模糊度解算、检验和修正的完整工作流程。
     在基于星载GPS的航天器绝对定轨研究中,对运动学最小二乘法、动力学Kalman法、弱动力学最小二乘法和弱动力学Kalman法等四种定轨方法进行了分析比较。在弱动力学定轨中,设计了一种经验加速度相关参数的选取方法。通过对定轨过程中由未建模误差和观测量误差所引起的定轨偏差进行充分估算,根据估算结果选择恰当的经验加速度相关参数,从而最大程度抵消这两种误差对定轨结果的影响。并采用GRACE卫星编队实测数据对以上方法进行了仿真验证。
     在航天器绝对定轨结果的基础上,设计了两种航天器编队相对定轨方法。在“基于C-W相对动力学方程的相对定轨方法”中,提出根据绝对定轨数据计算C-W方程摄动加速度,从而使相对动力学方程由非线性褪变成线性,简化了相对定轨过程的计算。在“基于绝对轨道差分的相对定轨方法”中,采用差分的方式根据参考航天器的绝对定轨结果和成员航天器的绝对轨道动力学方程,构造相对定轨的状态方程,从而避免了C-W方程的参与,为航天器编队相对定轨增加了一条途径。同时,为了提高估计精度并减少计算量,这两种定轨方法均采用球形单边UKF滤波器。
     根据星载GPS测量的特点,为充分利用观测数据,提出在两种相对定轨方法中,均同时采用参考与成员航天器之间、成员与成员航天器之间的双差载波相位组合作为观测量。从而使参与相对定轨的观测数据量显著增加,对提高相对定轨估计精度具有积极意义。最后,引入联邦滤波器,对上述两种方法的相对定轨结果进行融合,实现最优的相对定轨,并进行仿真验证。
Spacecraft orbit determination is the key technology for flying and control. Due to the ability to provide relative economic, accurate, continuous position services, spaceborne GPS technology for spacecraft gradually becomes to be the research hotspot of orbit determination technology. In this paper, the spaceborne GPS technology applied in spacecraft formation orbit determination is choose as the research object. And the spaceborne GPS measurement data processing, the absolute orbit determination, the relative orbit determination of spacecraft formation based on spaceborne GPS are researched in this paper. The specific research work are as follows:
     Through the statistical analysis of GPS navigation satellite observations situation, propose that in order to increase the amount of measured data, which will participated in orbit determination calculation, by reducing the observation elevation angle. And in the same time improve the continuity of low orbit spacecraft Orbit Determination. Subsequently, as the lower elevation angle observations will lead to increased measurement error, the impact of measurement error on cycle slip detection is analyzed. On this basis, the cycle slip detection part of TurboEdit algorithm is modified. In the process of cycle slip judgment process, accordance with the quality of observable data the weighting factor is introduced. And two kinds of mathematical models are proposed to construct the weighting factors. This relates the judgment of cycle slip detection with the carrier phase measurement error and observation elevation angle. Thereby reducing the risk of misjudgment of justice cycle slip.
     In ambiguity solution process of spaceborne GPS carrier phase measurements, the LAMBDA algorithm is introduced in this paper. In the least squares estimation of LAMBDA method a weighting matrix is designed. The construction of weighting matrix is depened on the elevation angle of carrier phase measurement and the quality of measurement data. According the data quality to assign different weighting factor in ambiguity in estimation process, in order to reduce the relation between different ambiguity and reduce the estimation error.
     Considering that GPS system will provide three kind of frequencies carrier signal in future, in this paper the shortcoming of CAR three frequencies ambiguity solution algorithm is analyzed. Then a verification method to verify the results that given by CAR is proposed. This verification method combines both wide-lane and narrow–lane carrier phase techniques to verify the CAR results. After the verification, the revise method for the CAR ambiguity algorithm is also given. Mathematical analysis and discussion show that the test method is feasible. Finally, the whole flow of three frequencies carrier phase integer ambiguity resolution, verification and revise process is given.
     In the research on spacecraft absolute orbit determination based on spaceborne GPS, four kinds of spacecraft absolute orbit determination method, which are the kinematics least-square method, dynamics Kalman method, reduced dynamic least-square method and the reduced Kalman method, are analyzed and compared. In the reduced dynamics orbit determination method, a select method of relevant parameters for empirical acceleration is proposed. Through fully estimating the unmodeling error and measurement error in orbit determination process, the appropriate parameters of empirical acceleration are chosen. With the more accurate relevant parameters, the effect of unmodeling error and measurement error on absolute orbit determination is reduced. Then a simulation of the above method which is based on the GRACE formation measurement is given.
     In the research on the spacecraft formation relative orbit determination, base on the absolute orbit determination results, two kinds of spacecraft formation relative orbit determination method are designed in this paper. In the“relative orbit determination method based on C-W dynamics equation”, proposed that comput the perturbation acceleration of C-W equation in advance according to the result of absolute orbit results. So that the relative dynamics equation is changed into a linear, which simplify the process of relative orbit determination calculations. In the“relative orbit determination method based on absolute orbit difference”, the relative orbit is composed by the difference of absolute spacecraft orbit results. Thus avoids the application of C-W equation and provides a another way for spacecraft formation relative orbit determination. In order to improve the accuracy of estimation, the two relative orbit determination methods both use the spherical UKF as the filter.
     In order to take full advantage of double difference observation data in spaceborne GPS, in two kinds of relative orbit determination method proposed by this paper, choose both double difference carrier phase measurement combinations of the refer spacecraft to member spacecraft and the member spacecraft to member spacecraft as observation. So that, in relative orbit determination process, the quantity of observation data has been significantly increased, and this will improve the accuracy of the relative orbit determination.Finally, the federal filter technology is introduced to fuse the results of two relative orbit determination methods, in order to get the optimal relative orbit. Then the simulations on the above methods are given.
引文
1吴江飞.星载GPS卫星定轨中若干问题的研究.中国科学院研究生院博士论文. 2006: 1~134
    2 F. Gottifredi, L. Marradi, G. Adami, Results from the ARP-GPS Receiver Flight on the ORFEUS-SPAS Mission. Proceedings of the ION-GPS Conference, Nashville, TN. 1999
    3 M. J. Unwin, P. L. Palmer, Y. Hashida, C. I. Underwood, The SNAP-1 and Tsinghua-1 GPS Formation Flying Experiment. Proceedings of the IN-GPS Conference, Salt Lake City, UT. 2000
    4 A. Das and R. Cobb. TechSat21– Space Missions Using Collaborating Constellation of Satellites. Proceedings of the 12th Annual AIAA/USU Conference on Small Satellites, Logan, UT. 1998
    5 R. Zenick, K. Kohlhepp. GPS Micro Navigation and Communication System for Clusters of Micro and Nanosatellites. Small Satellites Conference, UT. 2000
    6 C. Reigber, H. Luhr, P. Schwintzer. First CHAMP Mission Results for Gravity. Magnetic and Atmospheric Studies. Springer Verlag, Berlin. 2003
    7 D. Svehla, M. Rothacher. Kinematic Arid Reduced-dynamic Precise Orbit Determination of Low Earth Orbiters. EGS, France Tapley. 2002
    8 B. D Tapley. The GRACE Mission: Status and Results. 2nd International GOCE User Workshop, Frascati Italy. 2004
    9 R. Kroes, O. Montenbruck. Spacecraft Formation Flying: Relative Positioning Using Dual Frequency Carrier Phase. GPS World. 2004(7): 37~42
    10 R. Kroes, O. Montenbruck, W. Bertiger, P. Visser. Precise GRACE Baseline Determination Using GPS. GPS Solution. 2005(9): 21~31
    11 A. Jaggi, U. Hugentobler, H. Bock, G. Beutler. Precise Orbit Determination for GRACE Using Undifferenced or Doubly Differenced GPS Data. Advances in Space Research. 2007, (39): 1612~1619
    12 A. Moreira, G.. Krieger, I. Hajnsek, et al. A Tandem TerraSAR-X configuration for single-pass interferometry. http://www.dlr.de/hr/tdmx. 2007
    13 M. E. Cannon, High-Accuracy GPS Semikinematic Positioning: Modeling and Results[J], Navigation, 1990, 37: 53~64
    14陈小明.高精度GPS动态定位的理论与实践.武汉测绘科技大学博士论文.1997
    15 C. C. Goad, Precise Positioning with the GPS. Lecture Notes in Earth Sciences, 1987, 12: 17~30
    16 M. E. Napier, V. Ashkenazi, J. M. Westrop. Cycle Slips on the Move: Detection and Elimination. Procedings(A90-43676 19-17), Colorado. 1989: 31~34
    17刘基余. GPS卫星导航定位原理与方法.科学出版社. 2003: 1~433
    18王贵文,王泽民,殷海涛.基于三差观测量的实时动态GPS周跳修复方法.武汉大学学报. 2007, 32(8): 711-714
    19贾沛璋,连大.单频GPS周跳检测与估计算法.天文学报. 2001, 42(2): 192~197
    20 G. Wubbena The GPS Adjustment Software Package GEONAP: Concepts and Models, Proceedings of the 5th International Geodetic Symposium on Satellite Positioning, Physical Science Laboratory, New Mexico State University. 1989
    21 B W. Remnodi, Using the Global Positioning System Phase Observable for Relative Geodesy: Modeling Processing and Results, NOAA, Rockville, MD 20852, 1984
    22 B. W. Remondi, Hofmann W B. Accuracy of GPS Orbit for Relative Surveys. National Geodetic Survey, Rockville. MD 20852, 1989
    23 R. Hatch. Ambiguity Resolution in the Fast Lane, Proc. ION GPS-89. 1989: 45-50
    24 R. Hatch, Instantaneous Ambiguity Resolution, Proceedings of Kinematic Systems in Geodesy, Surveying, and Remote Sensing, KIS Symposium, Banff, Canada, 1990
    25 H. Euler, H. Landau, Fast GPS Ambiguity Resolution On-the-fly for Real-time Application, Proceedings of 6th International Geodetic Symposum on Satellite Positioning, Columbus, OH. 1992
    26 D. Chen, G. Lachapelle. A Comparison of the FASF and Least-squares Search Algorithms for On-the-fly Ambiguity Resolution, Navigation: Journal of the ION. 1995,42: 371-390
    27 E. Frei. G. Beulter. Rapid Static Positioning Based on the Fast Ambiguity Resolution Approach FARA: The Alternative to Kinematic Positioning. Proceedings of Second International Symposium on Precise Positioning with GPS, CanadianInstitute of Geomatics, Ottawa. 1990
    28 D. Kim, R. Langley. An Optimized Least-squares Technique for Improving Ambiguity Resolution and Computational Efficiency. ION GPS, Nashcille, 1999
    29 M. Martin-Neira, M. Toledo, A. Pelaez. The Null Space Method for GPS Integer Ambiguity Resolution, Proceedings of DSNS, Norway. 1995
    30 J. O. Beck, G. R. Chippendale, M. A. Krop, C. W. Merle. NAVSTAR GPS satellite to satellite tracking study. Lockheed Missiles and Space Company, Inc., 1975
    31 W. P. Birmingham, B. L. Miller, W. L. Stein. Experimental Results of Using the GPS for Landsat-4 Onboard Navigation. Navigation. 1983, 30(3): 244~251
    32 T. P. Yunck, W. I. Bertiger, S. C. Wu, et al. First Assessment of GPS-based Reduced Dynamic Orbit Determination on Topex/Poseidon. Geophysical Research Letter. 1994, 21(7): 541~544
    33 W. I. Bertiger, Y. E. Barsever, E. J. Christensen, et al. GPS Precise Tracking of Topex/Poseidon: Results and Implications. Journal of Geophysical Research. 1994, 99(12): 24449~24464
    34 B. D. Tapley, J. C. Ries, G. W. Davis, et al. Precision Orbit Determination for Topex/Poseidon. Journal of Geophysical Research. 1994, 99(12): 24383~24404
    35 L. E. Schutz, B. D. Tapley, P. A. M. Abusali, et al. Dynamic Orbit Determination Using GPS Measurement from Topex/Poseidon. Geophysical Research Letters. 1994, 21(19): 2179~2182
    36 SSTL. SSTL SGR-10 space GPS receiver, fact sheet. Issue No.SSTL-9001-05. 2003
    37 O. Montenbruck, B. Mortier, S. Mostert. A Miniature GPS Receiver for Precise Orbit Determination of the SUNSAT2004 Micro-Satellite. ION NTM 2004 Conference, Dan Diego. 2004: 26~28
    38 Astrium. A GPS Receiver for LEO, MEO and GEO Applications. Mosaic fact sheet, 2002
    39吴显兵.星载GPS低轨卫星几何法定轨及动力学平滑方法研究.解放军信息工程大学硕士论文. 2004: 1~79
    40 M J Unwin, M K Oldfield, S. Purivigraipong. Orbital Demonstration of A New Space GPS Receiver for Orbit and Attitude Determination. Int. Workshop on Aerospace Apps. Of GPS, Breckenridge, Colorado. 2000
    41 C. Reigber, P. Schwintzer, K. H. Neumayer, et al. The CHAMP Only Earth Gravity Field Model EIGEN-2. Advances in Space Research. 2003, 31(8): 1883~1888
    42 S. B. Bisnath, R. B. Langley. Precise Orbit Determination of Low Earth Orbiters with GPS Point Positioning. Proceedings of the Institute of Navigation National Technical Meeting 2001, Long Beach, USA. 2001: 725-733
    43 H. Rim, Z. Kang, P. Nagel, et al. CHAMP precision orbit determination. AAS/AIAA Space Flight Mechanics Meeting, San Antonio. 2002: 27~30
    44 J. V. D. Ijssel, P. Visser, E. P. Rodriguez. CHAMP Precise Orbit Determination Using GPS Data. Advance Space Research. 2003, 31(8): 1889~1895
    45 D. Svehla, M. Rothacher. CHAMP Double-difference Kinematic POD with Ambiguity Resolution. First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, Springer. 2003
    46 B. Haines, W. Bertiger, S. Desai, et al. Initial Orbit Determination Results for Jason-1: Towards A 1-cm Orbit. Proceedings of the ION GPS 2002, Portland USA. 2002
    47 Z. Kang, B. Tapley and S. Bettadpur et al. Precise Orbit Determination for the GRACE Mission Using Only GPS Data, Journal of Geodesy. 2006, 80(6): 322~331
    48 Van Barneveld, O. Montenbruck, P.N.A.M. Visser. Differential Ionospheric Effects in GPS Based Navigation of Formation Flying Spacecraft. Proceedings of the 3rd International Symposium on Formation Flying, Missions and Technologies, ESA-ESTEC, Noordwijk, The Netherlands. 2008
    49 G. Krieger, A. Moreira, H. Fiedler, et al. TanDEM-X: A Satellite For-mation for High-resolution Interferometry. IEEE Transactions Geoscience and Remote. 2007, 45(11): 3317~3341
    50王辉,顾学迈.卫星编队飞行的相对轨道自主确定研究.中国空间科学技术. 2009, 29(3): 50~63
    51宋琛,韩潮.编队飞行卫星高精度自主相对定轨研究.测控技术. 2008, 27(9): 89~91
    52孟鑫,李俊峰,高云峰.卫星编队飞行相对轨道的摄动研究综述.宇航学报. 2004, 25(4): 473~478
    53李晓明,曾国强,姚红,王黎沁.基于最小二乘的编队飞行卫星相对轨道确定.装备指挥技术学院学报. 2009, 20(4): 65~68
    54李晨光,韩潮.编队飞行卫星群相对轨道测量研究.北京航空航天大学学报.2005, 31(6):614~617
    55 M. Christina. Relative Orbit Element Estimation for Satellite navigation. AIAA Guidance, Navigation,and Control Conference and Exhibit, San Francisco, California. 2005: 15~18
    56 R. FRANK, T. LOVELL. Relative-orbit Element Estimation for Satellite Navigation and Guidance. AIAA/AAS Astrodynamies Specialist Conference and Exhibit, Providence, Rhode Island. 2004: 16~19
    57吴云华,曹喜滨.编队飞行卫星自主相对导航算法研究.哈尔滨工业大学学报. 2007, 39(3): 354~358
    58雪丹,曹喜滨.相对轨道自主确定方法的改进.航天控制, 2005, 23(6): 41~44
    59马骏,肖业伦.编队星座相对位置精确测定与自主定轨方法.北京航空航天大学学报. 2008, 34(6): 665~668
    60 D. Highsmith, P. Axelrad. Relative State Estimation Using GPS Flight Data from Co-orbiting Spacecraft. Proceedings of the ION GPS-99 Meeting, Nashvill. 1999: 401~409
    61 J. R. Carpenter, E. Schiesser. Semi Major Axis Knowledge and GPS Orbit Determination. Navigation. 2001, 48(1):57~68
    62 I. Kawano, M. Mokuno, T. Kasai, et al. First Autonomous Rendezvous using relative GPS navigation by ETS-VII. Navigation. 2001, 48(1): 49~56
    63 I. Kawano, M. Mokuno, T. Kasai, T. Suzuki. Result of Autonomous Rendezvous Docking Experiment of Engineering Test Satellite– VII. Journal of Spacecraft and Rockets. 2001, 38(1): 105~111
    64 O. Montenbruck, T. Ebinuma, E. G. Lightsey, S. Leung. A Real-time Kinematic GPS Sensor for Spacecraft Relative Navigation. Aerospace Science and Technology. 2002, 6: 435~449
    65 J. Galdos, T. N. Upadhyay. A GPS Relative Navigation Filter for Automatic Rendezvous and Capture. 1993 National Technical Meeting, Institute of Navigation, Fairfax. 1993: 83~94
    66 L. V. Zyla, M. N. Montez. Use of Two GPS Receivers in Order to Perform Space Vehicle Orbital Rendezvous. ION GPS-93, Institute of Navigation, Fairfax. 1993: 301~312
    67 B. A. C. Ambrosius, E. T. Hesper, K. F. Wakker. Application of the Global Positioning System for Hermes Rendezvous Navigation. Journal of Guidance,Control, and Dynamics. 1993, 16(1): 197~205
    68 M. Frezet, H. Marcille, V. Pascal, J. M. Pairot. Relative GPS Navigation for ATV Rendezvous. ION GPS-95, Institute of Navigation, Fairfax, VA. 1995: 269~278
    69 D. B. Cox, J. D. W. Brading. GPS Autonomous Relative Navigation and Time Transfer for Orbiting Space Vehicles. ION GPS-95, Institute of Navigation, Fairfax, VA. 1995: 217~228
    70 P. Binning, I. Galysh. Satellite to Satellite Relative Navigation Using GPS Pseudoranges. Processing of ION National Technical Meeting, Santa Monica. 1997
    71 T. Ebinuma. Precision Spacecraft Rendezvous Using Global Positioning System: an Integrated Hardware Approach. University of Texas, Austin, 2002
    72 M. Hartrampf, E. Gottzein, M. Mittnacht, C. Mller. Relative Navigation of Satellites Using GPS Signals. Proceedings of Deutcher Luftund Raumfahrt Kongress, 2002
    73 F. D. Busse. Precise Formation State Estimation in Low Earth Orbit Using Carrier Differential GPS. Stanford University, Stanford. 2003
    74 S. Leung, O. Montenbruck. Real-time Navigation of Formation-flying Spacecraft Using Global-positioning-system Measurements. Journal of Guidance Control and Dynamics. 2005,28(2): 226~235
    75 B. D. Tapley. The GRACE Mission: Status and Results. 2nd International GOCE User Workshop, Frascati Italy. 2004
    76 R. Kroes, O. Montenbruck. Spacecraft Formation Flying: Relative Positioning Using Dual Frequency Carrier Phase. GPS World. 2004: 37~42
    77 R. Kroes, O. Montenbruck, W. Bertiger, P. Visser. Precise GRACE Baseline Determination Using GPS. GPS Solution. 2005(9): 21~31
    78 A. Jaggi, U. Hugentobler, H. Bock, G. Beutler. Precise Orbit Determination for GRACE Using Undifferenced or Doubly Differenced GPS Data. Advances in Space Research. 2007 (39): 1612~1619
    79王惠南. GPS导航原理与应用.科学出版社, 2005: 1~338
    80谢钢. GPS原理与接收机设计.电子工业出版社, 2009: 1~423
    81 P. Misra, P. Enge.全球定位系统——信号、测量与性能.罗鸣等译.电子工业出版社, 2008: 1~448
    82李学逊. GPS相位观测值中周跳的探测与修复.武测科技. 1994, 3: 14~21
    83魏子卿,葛茂荣. GPS相对定位的数学模型.测绘出版社, 1998: 1~182
    84 A.,Y. Kleusberg, Georgiadou, van den Heuvel F., P. Heroux. GPS Data Preprocessing with DIPOP 3.0. Internal Technical Memorandum, Deparment of Surveying Engineering, University of New Bruswick, Fredericton, 1993
    85 L. Bastos, H. Landau. Fixing Cycle Slips in Dual-frequency Kinematic GPS-applications Using Kalman Filttering. Manuscriqta Geodaetica, 1988, 13(4): 249~256
    86 C. Goad. Precise Positioning with the Global Position System, Proceedings of the Third International Symposium on Inertial Technology for Surveying and Geodesy, Banff, Canada. 1985: 745-756
    87 G. Blewitt. An Automatic Editing Algorithm for GPS Data. Geophysical Research Letters. 1990,17(3): 199~202
    88 E. D. Kaplan, C. J. Hegarty. GPS原理与应用.寇艳红译.电子工业出版社, 2007: 49~50
    89 C. Reichber. GRACE Mission. http://op.gfz-potsdam.de/grace/index_ GRACE. html. 2009
    90 O. Montenbruck, M. Markgraf, S. Leung, etc. A GPS Receiver for Space Applications. ION-GPS-2001, Salt Lake City, 2001: 227~232
    91 O. Montenbruck. In-flight Performance Analysis of the CHAMP BlackJack GPS Receiver. GPS Solutions. 2003, 7(2): 74~86
    92 H. Eueler, C. C. Goad. On Optimal Filtering of GPS Dual-frequency Observation Without Using Orbit Information. Bull Geod. 1991, 65: 130~143
    93 G. P. Gerdan, A Comparison of Four Methods of Weighting Double-difference Pseudo-range Measurements. Trans Tasman Surveyor. 1995(1): 60~66
    94 P. J. G. Teunissen. Least-squares Estimation of the Integer GPS Ambiguities, in Section IV Theory and Methodologym, IAG General Meeting, Beijing. 1993
    95 P. J. G. Teunissen. , Adjustment Theory, an Introduction, Serie on Mathematical Geodesy and Positioning. Delft University Press, Delft, The Netherlands. 2000
    96 P. J. G. Teunissen. Dynamic Data Processing, Recursive Least-squares, Serie on MATHEMATICAL Geodesy and Positioning. Delft University Press, Delft TheNetherlands. 2001
    97 P. J. de Jonge, C. C. J. M. Tiberius. The LAMBDA Method for Interger Ambiguity Estimation: Implementaion Aspects. LGR Series, Geodetic ComputingCentre, Delft. 1996, 12
    98 G. P. Gerdan, A Comparison of Four Methods of Weighting Double-difference Pseudo-range Measurements, Trans Tasman Surveyor. 1995(1): 60~66
    99 D. Svehla,M. Rothacher. Kinematic Positioning of LEO and GPS Satellites and IGS Stations on the Ground. Advances in Space Research. 2005, 36(3): 376~381
    100 H. Bock, A. Jaggi, D. Svehla, G. Beutler, U. Hugentobler, P. Visser. Precise Orbit Determination for the GOCE Satellite Using GPS. Advances in Space Research. 2007, 39(10): 1638~1647
    101 H. Bock, A. Jaggi, R. Dach, S. Schaer, G. Beutler. GPS Single-frequency Orbit Determination for Low Earth Orbiting Satellites. Advances in Space Research. 2009, 43(5): 783~791
    102 Y. Hwang and G.H. Born, Orbit Determination Strategy Using Single-frequency Global-positioning-system Data, Journal of Spacecraft and Rockets. 2005, 42(5): 896~901
    103 O. Montenbruck, P. Ramos-Bosch. Precision Real-time Navigation of LEO Satellites Using Global Positioning System Measurements. GPS Solution. 2008, 12(3): 187~198
    104 O. Montenbruck, E. Gill1, R. Kroes. Rapid Orbit Determination of LEO Satellites Using IGS Clock and Ephemeris Products. GPS Solutions. 2005, 9(3): 226~235
    105 J. van den IJssel, P. Visser. Determination of Non-gravitational Accelerations from GPS satellite-to-satellite Tracking of CHAMP. Advances in Space Research. 2005, 36(3): 418~423
    106郑作亚,黄珹. GPS数据预处理和星载GPS运动学定轨研究及其软件实现.测绘学报. 2006, 35(4): 409~409
    107张丽敏,熊智,郁丰,贺亮,刘建业.基于GPS伪距的微小卫星定轨技术研究.中国空间科学技术. 2008, 28(3): 51~55
    108赵齐乐,施闯,柳响林,葛茂荣.重力卫星的星载GPS精密定轨.武汉大学学报:信息科学版. 2008, 33(8): 810-814
    109 D.J. PENG, B.WU. The Effect of GPS Ephemeris on the Accuracy of Precise Orbit Determination of LEO Satellite-borne GPS. Chinese Astronomy and Astrophysics. 2009, 33(2): 206~216
    110 A. Jaggi. Pseudo-Stochastic Orbit Modeling of Low Earth Satellites Using theGlobal Positioning System. Ph.D. Thesis, Astronomical Institute, University of Bern, Switzerland, 2006
    111 A. Jaggi, G. Beutler, U. Hugentobler. Reduced-dynamic Orbit Determination and the Use of Accelerometer Data. Advances in Space Research. 2005, 36(3): 438~444
    112 O. Montenbruck, T. van Helleputte, R. Kroes, E. Gill. Reduced Dynamic Orbit Determination Using GPS Code and Cartier Measurements. Aerospace Science and Technology. 2005, 9(3): 261~271
    113刘红新. CHAMP卫星定轨方法研究.同济大学博士论文. 2006: 1~164
    114 S. Bruinsma, D. Tamagnan, R. Biancale. Atmospheric Densities from CHAMP/STAR Accelerometer Observations. Planetary and Space Sciences. 2003, 52: 297~312
    115 T. Mayer-Gurr, K.H. Ilk. A. Eicker and M. Feuchtinger. ITG-CHAMP01: A CHAMP Gravity Field Model from Short Kinematical Arcs of A One-year Observation Period, Journal of Geodesy. 2005, (7–8): 462~480
    116 C. Urschl, W. Gurtner, U. Hugentobler, S. Schaer, G. Beutler. Validation of GNSS Orbits Using SLR Observations. Advances in Space Research. 2005, 36(3): 412~417
    117 Z. Kang, B. Tapley, J. Ries, S. Bettadpur, P. Nagel. Impact of GPS Satellite Antenna Offsets on GPS-based Precise Orbit Determination. Advances in Space Research. 2007, 39(10): 1524~1530
    118 S. C. Wu, T. P. Yunck, C. L. Thornton. Reduced-dynamic Technique for Precise Orbit Determination of Low Earth Satellites. Journal of Guidance, Control and Dynamics. 1991, 14(1): 24~30
    119彭冬菊,吴斌. Jason-1卫星厘米级星载GPS精密定轨.科学通报. 2008, 53(21): 2569~2575
    120 G J Bieman. Factorization Methods for Discrete Sequential Estimation. Academic Press. New York, 1977
    121 D. Kuang, Y. Bar-Sever, W. Bertiger, et al. Precise Orbit Determination for CHAMP using GPS Data from BlackJack Receiver. ION National Technical Meeting 2001. Long Beach, USA, 2001
    122 T. P. Yunck, S. C. Wu, J. T. Wu, Precise tracking of Remote Sensing Satellites with the Global Positioning System. IEEE Transactions on Geoscience andRemote Sensing. 1990, 28(1): 108~116
    123 G. Gomez, M. Marcote. High-order Analytical Solutions of Hill' s Equations. Celestial Mechanics and Dynamical Astronomy. 2006, 94(2): 197~211
    124李俊峰,雪丹.编队卫星相对运动描述方法综述.宇航学报. 2008, 29(6): 1689~1694
    125林来兴.卫星编队飞行动力学仿真及其应用.中国空间科学技术. 2005, 25(2): 26~33
    126赵德勇,王正明,潘晓刚等.基于半参数回归的联合定轨误差估计仿真算法.系统仿真学报. 2007, 19(8): 1692~1695
    127蔡志武,赵东明. UKF滤波器性能分析及其在轨道计算中的仿真试验.武汉大学学报. 2006, 31(2): 180~183
    128彭竞,李献球,王飞雪.基于UKF的GPS非线性动态滤波算法.全球定位系统. 2005, 30(6): 30~33
    129郑作亚,陈永奇,卢秀山. UKF算法及其在GPS卫星轨道短期预报中的应用.武汉大学学报:信息科学版. 2008, 33(3): 249-252
    130贾沛璋,熊永清.星载GPS卡尔曼滤波定轨算法.天文学报. 2005, 46(4): 441~451
    131李静. UKF滤波方法在组合导航系统中的应用研究.哈尔滨工程大学硕士论文. 2006: 1~70
    132 S. J. Julier. The Spherical Simplex Unscented Transformation. American Control Conf, Denver. 2003: 2430~2434
    133 S Juliser, J. Uhlmann. A New Approach for Filtering Nonlinear Systems. Proceeding of the Amerilcan Control Conference, Seattle, Washington. 1995: 1628~1632
    134 S. Julier, J. Uhlmann. A General Method for Approximating Nonlinear Transformations of Probablility Distributions. http://www.robots.ox. ac.uk /~ siju, 1994.
    135 N. A. Carlson. Federated Filter for Fault Tolerant Interated Navigation Systems. Processing Of IEEE PLANS’88, Orlando, FL. 1988: 110~119
    136秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理.西安工业大学出版社, 2007: 1~344