带矢量推力的涡扇发动机实时数学模型及智能控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建立发动机实时数学模型是建立发动机控制系统半物理仿真实验平台的重
    要基础。本文通过对涡扇发动机部件的热力计算过程的深入分析,提出了一种
    全新的实时模型建模方法,该方法通过将发动机部件参数间的关系通过解析式
    表示,从而避免了部件计算过程中复杂而又耗时的迭代过程。这样,不仅使模
    型完全达到实时性要求,而且使得计算过程思路更加清晰,易于理解。另外,
    该建模方法还有通用性强,精度高的优点。该模型可以计算多种控制规律下的
    涡扇发动机稳态和动态过程,也可以进行涡扇发动机多变量控制研究。通过与
    非实时模型对比仿真,表明该模型在全飞行包线内均有很好的收敛性和满意的
    精度。
     根据矢量喷管流场计算结果,本文建立了带推力矢量的涡扇发动机实时数
    学模型,该模型可以模拟在不同的矢量角度发动机的工作过程,也可以模拟矢
    量喷管角度改变时对发动机的影响。因此该模型可作为矢量喷管控制模型。
     智能控制的蓬勃发展使其已渗透到各个领域,研究智能控制在航空发动机
    上的应用对提高整个推进系统的性能具有重大意义。本文,利用智能控制中十
    分活跃的模糊控制、模糊神经网络和遗传算法研究了涡扇发动机加速过程控制。
    首先,设计了一种连续型的模糊控制器,接着利用遗传算法对模糊控制器中的
    三个量化因子进行了寻优。最后,本文还研究了模糊神经网络控制在航空发动
    机上的应用。仿真结果表明,控制系统表现出良好的性能。研究结果均表明,
    智能控制在航空发动机控制中具有广阔的应用前景。
Real-time mathematical model of the aero-engine is the basis for the engine half
     physical simulation test platform. In this paper, a novel method of establishing the
     real-time model is proposed through deeply analyzing to the thermal calculation
     process of the aero-engine components. In this method, the relation of the thermal
     parameters of the parts of the engine is presented by analytical formula. So, the
     complex and time-consuming iterative calculation process is avoided, which makes
     the calculating process not only reaches the real-time requirements but also becomes
     clearer and more comprehensible. In addition, this method has good quality of high
     precision and broad applicability. The model established by this method can be used
     to calculate the steady and dynamic characteristic of the turbo-fan engine and can also
     be used to study the MIMO control of the aero-engine. Compared with the calculating
     results of the non-real time model of the engine, the real-time model has good
     convergence and satisfying calculation precision within the full flight envelope.
    
     According to the results of the CFD a real-time thrust-vectoring nozzle turbofan
     engine model is established. The model can simulate the working process of the
     engine in different deflected angle and can be applied to the control of the vectoring
     nozzle.
    
     The intelligent control theory has penetrated into many fields. And to study the
     application of the intelligent control to the aero-engine control system is very
     important for the improvement of the performance of the propulsion system. In this
     paper, three different intelligent control methods, fuzzy logic control, neuro-fuzzy
     network and genetic algorithm (GA) were used to study the accelerating process
     control of the turbofan engine. Firstly, a P-D type C-F controller is designed.
     Secondly, the GA is applied to optimize the three important parameters of the fuzzy
     Logic controller. Finall~. a neuro-fuzzy controller is studied. Simulation results show
     that the control systems behave very well, which indicates that the intelligent control
    
     ?III ?
    
    
    
    
    
    
    
    
    
     has wide prospect in the aspect of control of the aero-engine.
引文
[1] 樊思齐、徐芸华,航空推进系统控制,西北工业大学出版社,1999年5月
    [2] 张智星、孙春在、水谷英二(日),神经-模糊和软计算,西安交通大学出 版社,2000年6月
    [3] 徐丽娜,神经网络控制,哈尔滨工业大学出版社,1999年5月
    [4] 张文修,梁怡,遗传算法的数学基础,西安交通大学出版社,2000年4月
    [5] 李士勇,模糊控制神经控制和智能控制论,哈尔滨工业大学出版社,1998 年,9月
    [6] 李仁厚,智能控制理论与方法,西安电子科技大学出版社,1999,10
    [7] 易继昌等,智能控制技术,北京工业大学出版社,1999年9月
    [8] 孙增圻等,智能控制理论与技术,清华大学出版社,1997年4月
    [9] 王永骥,涂健,神经元网络控制,机械工业出版社,1998年2月
    [10] 潘锦珊,气体动力学基础,西北工业大学出版社,1995年6月
    [11] 六二四所,12A验证机性能设计要求,1994年11月
    [12] 俄Ю.В.聂恰耶夫,航空动力装置控制规律与特性,国防工业出版社, 1999年5月
    [13] 唐狄毅、廉小纯,航空燃气轮机原理,国防工业出版社,1990年1月
    [14] 张力明,人工神经网络的模型及其应用,复旦大学出版社,1992年9月
    [15] 王士同,神经模糊系统及其应用,北京航航空航天大学,1997年8月
    [16] 张乃尧,阎平凡著,神经网络与模糊控制,清华大学出版社,1998年10 月
    [17] Narendra K S and Parthasarathy, Identification and Control for Dynamic Systems Using Neural Networks, IEEE Trans.on NN, 1990, 1
    [18] 焦李成,神经网络系统理论,西安电子科技大学出版社,1995
    [19] 焦李成,神经网络的应用与实现,西安电子科技大学出版社,1993
    [20] 焦李成,神经网络计算,西安电子科技大学出版社,1995
    [21] 蔡自兴,神经控制器的典型结构,控制理论与应用,Vol.15,No.1
    
    
    [22] MA Xiaomin, Inverse Identification and Closed-Loop control of Dynamics Systems Using Neural Networks , CONTROL THEORY AND APPLICATIONS, Vol.14, No.6
    [23] 陈卫田,施颂椒,基于神经网络的非线性自适应控制,控制理论与应用, Vol.13,No.5
    [24] Narendra K S and Parthasarathy, Identification and Control for Dynamic Systems Using Neural Networks, IEEE Trans.on NN, 1990, 1
    [25] Alexander S.Poznyak,Wen Yu,Edgar N.Sanchez and Jose P.Perez, "Nolinear Adaptive Trajectory Tracking Using Dynamic Neural Networks " IEEE, 1045-9227,1999.
    [26] Suha Toprak,Aydan M.Erkmen and I.Sinan Akmandor , "Identification and Control of a Radial Turbjet With Neural Network and Fuzzy Logic", 36th Aerospace Sciences Meeting & Exhibit, January 12-15,1998.
    [27] K.KrishnaKumar and Nilesh Kulkarni, "Inverse Adaptive Neuro-Control of a Turbo-Fan Engine", AIAA-99-3994.
    [28] Adibhatla, S. and Lewis, T., "Model-Based Intellogent Digital Engine Control," AIAA-97-3192,33rd Joint Propulsion Conference ,July,1997.
    [29] Brown and J.A. Elgin , "Aircraft Engine Control Mode Analysis, " ASME Paper 84-GT-262, Presented at the Gas Turbine Conf. And Exhibit ,Amsterdam, June, 1984.
    [30] Y.H.Pao and D.J.Sobajic, "Nolinear Process Control with Neural Nets," Neurocomputing, Vol.2. pp.51-59,1990.
    [31] Lin,S.T. and Chin, Y.S., " Multivariable Control of the F-100 Turbofan Engine Using Edmunds' Method," International Joural of Turbo & Jet-Engines ,Vol. 12,pp.307-322,1995.
    [32] Lin, S.T. and Lee,C.M ., "Control of the J-85 Turbojet Engine Using the Edmunds' Methold and the Extended Kalman Filter Technique," International Joural of Turbo & Jet-Engines,Vol. 13,pp. 103-111,1996. 93-1977,June 1993.
    
    
    [33] Karr,C.L. and Centry ,E.J.," Fuzzy Control PH Using Genetic Algorithm, "IEEE Trans., Fuzzy Systems ,Vol.l.No.l,pp.46-53,1993.
    [34] Karr,C.L. and Schaffer,J.,"Design of an Adaptive Fuzzy Logic Using a Genetic Algorithm," Proc.of Int.Conf.on Genetic Algorithm, 1989.
    [35] Holland,J.H., "Genetic Algorithms and the Optimal Allocation of Trials," SIAM,J. of Comput.Vol 2, pp.89-104,1973.
    [36] A.Matesanz,A.Velazquez,and M.Rodriguez, " Aerodynamics Performance Prediction of Thrust Vectoring Nozzles" ,AIAA Paper ,1997,10,16.
    [37] Marcarle J.G.,and Esker.B.S., "Performance Characteristics of a Variable-Area Vane Nozzle for Vectoring an ASTOVL Exhaust Jet up to 45 Degrees" ,AIAA Paper 93-2437, June 1993.
    [38] Re,R.J.,and Leavitt,L.D., " Static Internal Performance Including Thrust Vectoring and Reversing of Two-Dimensional Convergent-Divergent Nozzles" ,NASA TP-2253,Feb,1984
    [39] Taylor, J. G., "Static Investigation of a Two-Dimensional Convergent-Divergent Exhaust Nozzle with Multiaxis Thrust-Vectoring Capability" ,NASA TP-2973, April 1990.
    [40] Maclean, M. K., and Meyer , B. E., "Scale Model Test Results for Several Spherical Two-Dimensional Nozzle Conceppts" , AIAA Paper 93-2430, June 1993.
    [41] Cler, D. L , Mason, M. L., and Guthrie, A. R., " Experimental Investigation of Spherical Convergent-Flap Thrust-Vectoring Two-Dimensional Plug Nozzle, " AIAA Paper 93-2431, June, 1993.
    [42] Matesanz, A., Velazquez, A., and Rodriguez, M., "Mach Disk Simulation in Jets from Convergent-Divergent Axisymmetric and Thrust Vectoring Nozzles" ,AIAA Paper 94-2328,June 1994.
    [43] Matesanz, A., Velazquez, A., and Rodriguez, M., "Numerical Simulation of Slot Film Cooling in Convergent-Divergent Nozzles" , AIAA Paper
    
    
    [44] Jimenez, A., Esteban, A., Matesanz, A., Velazquez, A., and Rodriguez, M., "Turbulence κ-ε Models in the Study of Supersonic External Flows, " AIAA Paper 96-4586,Nov, 1996.
    [45] Kuchar, A. P., " Variable Convergent-Divergent Exhaust Nozzle Aerodynamics " ,edited by G. 0ates, Air Force Aero Propulsion Lab., TR-78-52, July 1978.
    [46] Addy, A. L., "Effect of Axisymmetric Sonic Nozzle Geometry on Mach Disk Characteristics" ,AIAA Journal, Vol. 19, No. 1, 1981, p. 121R.
    [47] Rebolo, P. Arredondo, A. Matesanz, A. Velazquez and M.Rodriguez, "Aerodynamics Design of Convergent-Divergent Nozzles" ,AIAA Paper 93-2574, June 1993
    [48] Benjamin, G.-0. , "Vectored Propulsion, Supermaneuverability and Robot Aircraft" , Springer-Verlag, New York, 1990
    [49] Loria.C. J., Kelly, M., and Hatney, R., " X-31 A Quasi-Tailless Evaluation " ,IEEE Aerospace Applications Conference,Inst. of Electrical and Electronics Engineer, Vol. 4, New York, 1996, pp. 253-276
    [50] 刘延年,忻欣,冯纯伯,基于神经网络的一类非线性连续系统的稳定自 适应控制,控制理论与应用,Vol.13,No.1
    [51] 孟庆明,方昌德,推力矢量飞行/推进综合控制技术研究,航空信息研究 报告,1998
    [52] [美]J.-JE.斯洛廷、李卫平,应用非线性控制,国防工业出版社,1991 年9月
    [53] Michal J.Young著,邱仲潘等译,Visual C++6从入门到精通,电子工业 出版社1999年1月
    [54] David J.Kruglinski 著,潘爱民,王国印译,Visual C++技术内幕
    [55] 钱能,C++语言学习教程,清华大学出版社,1999年9月
    [56] 第九届全国航空动力自动控制专业学术会议论文集,1998年10月
    
    
    [57] 段首付,航空发动机自适应建模技术研究,西北工业大学硕士论文,1998 年2月
    [58] 时瑞军,带矢量推力的涡扇发动机实时数学模型及非线性控制研究,西 北工业大学硕士学位论文,2000年3月
    [59] 卢燕,轴对称矢量喷管流场计算及数学模型研究,西北工业大学硕士学 位论文,2000年3月
    [60] 丁凯锋,带推力矢量的涡扇发动机控制研究,西北工业大学博士学位论 文,2000年7月
    [61] 马会民,樊思齐,涡扇发动机实时数学模型研究,第十届全国航空发动 机自动控制会议论文,2000年9月
    [62] 樊思齐,马会民,时瑞军,涡扇发动机实时数学模型研究报告,2000年 9月
    [63] 樊思齐,马会民,卢燕,时瑞军,带推力矢量喷管的涡扇发动机实时数 学模型研究报告,2000年9月