零航速减摇鳍仿生机理及控制关键技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受风、浪、流等自然环境干扰影响,海上航行的船舶不可避免地会产生六自由度摇荡运动,即横摇、纵摇、艏摇、横荡、纵荡、垂荡,其中尤以横摇最为显著。剧烈的横摇运动严重影响船舶适航性、设备安全性及船员舒适度,因此,提高横摇稳定性至关重要。减摇鳍是迄今应用最广泛且成功的主动式减摇装置,减摇效果可达90%以上,然而因生力机理制约,其零航速下性能极差。尽管减摇水舱具备全航速减摇能力,但体积大、占(船内)空间等缺点使之并非理想选择。
     论文首先根据牛顿定律、海浪理论分析船舶三自由度非线性耦合模型及广义海浪干扰模型,建立水平面3-DOF运动仿真平台,简述横摇稳定原理与普通减摇鳍缺陷,围绕兼容性、模式切换、造价成本等问题,对单/双翼零航速减摇鳍进行详细讨论,评价各自优缺品质。
     从自然界水生或半水生动物附体的生力机制研究入手,探讨零航速减摇鳍仿生机理与工作模式。剖析动态水动力成分,针对原模型及建模方法存在的诸多弊端,运用高等流体力学理论,采用数值、解析结合法,建立水动力/力矩、驱动力矩/功率模型,力求足够准确且不失工程实用性。利用CFD软件FLUENT计算流体作用力,分析流场压力与速度分布规律,以FLUENT数据为基准,评定建模精度并讨论误差主要因素。采用权威机构公布的试验方法,测试零航速减摇鳍负载特性,二者结论基本一致。
     以往研究对鳍型尺寸选择较为随意,缺乏理论依据,且未考虑小展弦比鳍型对常规模式(升力特性)造成的不利影响。论文通过分析减摇鳍流体动力性能,依照常规/零航速模式对鳍型参数的具体要求,应用线性系统理论,提出零航速减摇鳍尺寸参数估算与综合评价方法,获得最佳展弦比范围(不可收放式鳍)。根据仿生机理、水动力建模等结论,兼顾双模式彼此协调,制定前/后缘鳍型优化原则,以课题组在仿生鳍领域的相关成果为基础,从定性或定量角度论证国内外若干仿生变形设计方案。
     详细阐述零航速减摇鳍系统特征及非线性输入特性,包括记忆性、单调性、饱和约束等,分析被控系统结构形式、对抗式PID设计思想/适用前提,说明其与整体设计法的本质缺陷。应用随机信号分析、谱估计理论建立横摇扰动力矩成形滤波器与增广状态空间模型。依据动态非线性子系统串联动态线性子系统的特殊结构,借助非线性分离策略,提出基于变约束模型预测控制与数值迭代反演的两步主从控制律,运用无源性理论证明该设计的收敛性。仿真结果表明,控制器性能良好,但受物理性硬约束影响,零航速减摇效率随海情增加而呈非线性递减。
     零航速减摇鳍仍将充当普通减摇鳍而频繁用于中/高航速状态,但此类问题未被重视。论文针对零航速小展弦比鳍型引起的非线性升力特性,研究适用于常规减摇模式的鲁棒自适应神经元控制律,分析其Lyapunov稳定性。仿真结果显示,该设计不仅自适应性较强,而且在各种海情下均可获得满意效果。建立航行阻力模型(指标)对姿控系统综合评定,数据表明,横摇控制有利于降低航行阻力,节省推进能量。
The unavoidable motion in six degrees of freedom of ships in underway can be induced by the action of environmental disturbances such as winds, waves and currents. Among all motions disturbed including the rolling-pitching-yawing-swaying-surging-heaving, the roll motion is the most serious so as to influence the ship navigability, security of equipments and comfort of the crew, therefore it is of crucial importance to improve the roll stabilization. Common active fin stabilizers have been considered as the most widely used and effective anti-roll equipments with ninety percent of roll reduction, however they have the poor performance at anchored due to their force generation mechanism. Although anti-roll tanks have the capacity of damping the rolling under any speed, they are not perfect options with several drawbacks such as large volumes and much space occupied in the cabin.
     As a first step nonlinear models coupled describing the ship motion in three degrees of freedom and generalized wave disturbance models are analyzed according to the Newton law and wave theory, then a platform simulating horizontal motions in three degrees of freedom is established. The principle of roll stabilization and drawbacks existing in common fin stabilizers are presented, and zero speed fins with single and double wings are discussed in detail around problems such as the compatibility, mode switch, cost etc. Their advantage and disadvantage are evaluated impersonally.
     After a detailed investigation on the force generation mechanism employed by appendages of aquatic and semi-aquatic animals in the nature, the bionic mechanism and working mode for zero speed fin stabilizers are proposed. With analysis of hydrodynamic components and defects from existing models and their modeling methods, models describing hydrodynamics and driving are established with the use of advanced hydrodynamics theory and a composite method of the analytical approach and numerical simulations for the purpose of enough accuracy without loss of engineering practicability. The fluid dynamics is simulated with the computational fluid dynamics (CFD) software FLUENT, then the pressure and velocity distribution is analyzed. The modeling precision is evaluated in comparison with the data from FLUENT and main reasons inducing errors are discussed. The experiment published by the academic authority to test the load characteristic for zero speed fin stabilizers is performed, and their results show good agreement with each other.
     In previous researches the selection of fin sizes is more optional due to the lack of theoretical basis, and the adverse influence of the low aspect ratio on the conventional working mode such as lift characteristic has been not taken into consideration. With analysis of the hydrodynamic performance, a method on fin size estimation and integrated evaluation for zero speed fin stabilizers is proposed using the linear systems theory according to the detail requirements for the common and the zero speed modes, and then the optimal range of aspect ratio for non-retractable fins is obtained. Based on conclusions of bionic mechanism and hydrodynamic modeling, the principle for optimizing the leading and trailing edges is established to make a compromise between the two working modes. From the viewpoint of quality or quantity, several morphing design proposal both here and abroad are demonstrated on the basis of research findings in the bionics field obtained by the team.
     The characteristics of the zero speed fin stabilizer system and nonlinear input are explained in detail including the memory, monotonicity and saturation constraints. The structural configuration of the controlled system and design philosophy as well as applicable premise of the opposed PID controller are analyzed, and the essential drawbacks of opposed PID and integrated design is shown. Then the shape filters for roll disturbance moments and augmented state space model are established using the random signal analysis and the spectrum estimation theories. According to the special structure (i.e. dynamic nonlinear subsystem in series with dynamic linear subsystem), a two-step master slave control law consisting of a variable constrained model predictive controller and a numerical iterative inverse controller is proposed by means of the nonlinear removal strategy, and its convergence is proved with the use of the passivity theory. The results from simulations are given to show the good performance of the controller designed, but due to hard constraints induced by physical reasons the anti-roll efficiency under zero speed presents the nonlinear degression with increased sea conditions.
     As a matter of fact that zero speed fin stabilizers are also used as common fins to reduce the roll motion at the moderate or the high sailing speed, however this problem has been not paid any attention to. For solution of the nonlinear lift characteristic induced by the low aspect ratio, a robust adaptive neuron control law adequate for the conventional anti-roll mode is developed, and its Lyapunov stability is proved. The results from simulations performed show that this design with the better adaptability can obtain the satisfying effect for roll stabilization under any sea conditions. The whole attitude control system is evaluated using the sailing resistance model established, and the fact is testified that damping the rolling is of great advantage to reduce the sailing resistance and save the energy for ship propulsion.
引文
[1]金鸿章,李国斌.船舶特种装置控制系统.北京:国防工业出版社,1995
    [2]T. W. Treakle Ⅲ, D. T. Mook, S. I. Liapis et al. A time-domain method to evaluate the use of moving weights to reduce the roll motion of a ship. Ocean Engineering,2000(27):1321-1343P
    [3]D. W. Bass. Roll stabilization for small fishing vessels using paravanes and anti-rolling tanks. Marine Technology,1998,35(2):74-84P
    [4]赖志昌.U型减摇水舱及实验摇摆台研究.哈尔滨工程大学博士学位论文,2002
    [5]W. E. Cowley, T. H. Lambert. The use of a rudder as a roll stabilizer.3rd Ship Control System Symposium-SCSS, Bath, UK,1972
    [6]W. E. Cowley. Development of an autopilot to control yaw and roll.3rd Ship Control System Symposium-SCSS, Bath, UK,1972
    [7]A. E. Baitis. The development and evaluation of a rudder roll stabilization system for the WHEC Hamilton Class. ReportDTNSRDC/SPD-0930-02, Bethesda, Md, USA,1980
    [8]E. Baitis, D. A. Woolaver, T. A. Beck. Rudder roll stabilization for coast guards cutters and frigates. Naval Engineers Journal,1983,95(3):267-282P
    [9]C. G. Kallstrom, W. L. Schultz. An integrated rudder control system for roll damping and maintenance. Proceeding of the 9th International Ship Control System Symposium, Bethesda, MD,1990:3278-3296P
    [10]T. Perez, C. Y. Tzeng, G. C. Goodwin. Model predictive rudder roll stabilization control for ships. Proceeding of MCMC'2000, Aalborg, Denmark, 2000:39-44P
    [11]C. Y. Tzeng, C. Y. Wu, Y. L. Chu. A sensitivity function approach to the design of rudder roll stabilization controller. Journal of Marine Science and Technology,2001,9(2):100-112P
    [12]V. Nicolau. The influence of the ship's steering machine over yaw and roll motion. The Annals of "DUNAREA DEJOS" University of GALATI FASCICLE III, 2003:76-82P
    [13]V. Nicolau, Ceanga. Fuzzy rudder-roll damping system based on analysis of autopilot command. Proceeding of CAMS'2004,2004:285-290P
    [14]缪国平.关于舵在尾斜浪和横浪中横摇衰减效果的理论研究.中国造船,1982(1):35-43页
    [15]金鸿章.具有积分信号的舵鳍联合控制系统最优设计.中国造船,1989(3):107-116页
    [16]缪国平,朱文蔚等.舵减摇的试验研究.中国造船,1991(1):39-46页
    [17]朱文蔚,缪国平等.舵减摇仿真研究.中国造船,1997(1):33-42页
    [18]R. P. Dallinga. Roll stabilization of motor yachts:use of fin stabilizers in anchored conditions. Project 1999, Amsterdam,1999
    [19]H. M. van Wieringen. Design considerations on at anchor stabilizing system. Project 2002, Amsterdam,2002
    [20]R. P. Dallinga. Roll stabilization at anchor:Hydrodynamic aspects of the comparison of anti-roll tanks and fins. Project 2002, Amsterdam,2002
    [21]G. Gaillarde, S. Toxopeus, T. Verwoest, et al. Hydrodynamics of large motor yachts:Past experience and future developments. Project 2006, Amsterdam,2006
    [22]http://www.naiad.com
    [23]http://www.quantumhydraulic. com
    [24]綦志刚.船舶零航速减摇鳍升力机理及系统模型研究.哈尔滨工程大学博士学位论文,2008
    [25]罗延明.零航速减摇鳍及其电伺服系统研究.哈尔滨工程大学博士学位论文,2007
    [26]J. Ooms. The use of roll stabilizer fins at zero speed. Project 2002, Amsterdam,2002
    [27]张晓飞.船舶零航速减摇鳍建模与控制策略研究.哈尔滨工程大学博士学位论文,2008
    [28]金鸿章,张晓飞,罗延明等.零航速减摇鳍升力模型研究.海洋工程,2007,25(3):83-87页
    [29]金鸿章,罗延明,张晓飞等.零航速减摇鳍电动伺服系统驱动功率研究.中国造船,2008,49(2):67-74页
    [30]T. Kawazoe, S. Nishikido, Y. Wada. Effect of fin area and control methods on reduction of roll motion with fin stabilizers. Bulletin of the M. E. S. J. 1994,22(1):25-32P
    [31]http://gb.cri.cn/8606/2006/12/27/401@1369740.htm
    [32]http://www.sbirsttrmall. com/Library/Documents/FlexSys-AF98-180%20Innov ation%20Story.pdf
    [33]巩晋.船舶变形减摇鳍的升力机理及建模研究.哈尔滨工程大学硕士学位论文,2009
    [34]金鸿章,巩晋,李冬松.仿驼背鲸减摇鳍升力数值计算.中国造船,2009,50 (4):22-27页
    [35]N. A. Hickey, M. A. Johnson, M. R. Katebi, et al. PID control optimization for fin roll stabilisation. IEEE International Conference on Control Applications, Hawai, USA,1999
    [36]S. Surendran, S. K. Lee, S. Y. Kim. Studies on an algorithm to control the roll motion using active fins. Ocean Engineering,2007(34):542-551P
    [37]金鸿章,王科俊等.智能技术在船舶减摇鳍系统中的应用.北京:国防工业出版社,2003
    [38]D. A. Liut, F. H. Owen, T. M. Den. Control of rolling in ships by means of active fins governed by a fuzzy-logic controller. Journal of Ship Research, 2001,45(4):279-288P
    [39]S. Surendran, V. Kiran. Control of ship roll motion by active fins using fuzzy logic. Ships and Offshore Structures,2007,2(1):11-20P
    [40]A. J. Koshkouei, K. J. Burnham, Y. Law. A comparative study between sliding mode and proportional integrative derivative controllers for ship roll stabilisation. IET Control Theory Application,2007,1(5):1266-1275P
    [41]P. Crossland. The effect of roll-stabilisation controllers on warship operational performance. Control Engineering Practice,2003(11):423-431P
    [42]T. Perez, G. C. Goodwin. Constrained predictive control of ship fin stabilizers to prevent dynamic stall. Control Engineering Practice,2008,16(4):482-494P
    [43]T. Perez. Ship motion control:course keeping and roll stabilisation using rudder and fins. Springer London,2005
    [44]J. N. Sgobbo, M. G. Parsons. Rudder/fin roll stabilization of the USCG WMEC 901 class vessel. Marine Technology,1999,36(3):157-170P
    [45]金鸿章,姚绪梁.船舶控制原理.哈尔滨:哈尔滨工程大学出版社,2001
    [46]T. W. Fogh. Quik estimates of flight fitness in hovering animals including novel mechanism for lift production. Journal of experimental Biology, 1973(59):169-230P
    [47]王献孚.船用翼理论.北京:国防工业出版社,1998
    [48]Zhang Shesheng, Wang Xianfu. A numerical model of the Weis-Fogh mechanism with a separation vortex. Journal of Hydrodynamics,1994(4):97-102P
    [49]章社生,吴秀恒,王献孚.叶栅型Weis-Fogh振动推进装置.武汉交通科技大学学报,1996,20(6):726-732页
    [50]章社生,吴秀恒,王献孚.叶栅型Weis-Fogh水翼推进机构流体动力性能研究.中国造 船(增刊),1998:42-54页
    [51]M. Tsutahara, T. Kimura, K. Ro. Ship's propulsion mechanism of Two-Stage Weis-Fogh type. ASME Journal of Fluid Engineering,1994(2):278-286P
    [52]M. Tsutahara, T. Kimura. An application of the Weis-Fogh mechanism to ship propulsion. Journal of Fluid Engineering,1987(2):107-113P
    [53]M. J. Lighthill. On the Weis-Fogh mechanism of lift generation. Journal of Fluid Mechanics,1973(60):1-17P
    [54]http://www.rolls-royce.com/marine/products/stabilisation_manoeuvring/s tabilisers/stabilisation/index.jsp
    [55]F. E. Fish. Structure and mechanics of nonpiscine control surfaces. IEEE Journal of Oceanic Engineering,2004,29(3):605-618P
    [56]C. P. van Dan. Efficiency characteristics of crescent-shaped wings and caudal fins. Nature,1987(325):435-437P
    [57]F. E. Fish. Influence of hydrodynamic design and propulsive mode on mammalian swimming energetics. Australian Journal of Zoology,1993,42(1):79-101P
    [58]F. E. Fish. Passive and active flow control by swimming fishes and mammals. Annual Review of Fluid Mechanics,2006(38):193-224P
    [59]T. L. Daniel. Unsteady aspects of aquatic locomotion. American Zoologist,1984, 24(1):121-134P
    [60]http://www.naturephoto-cz.com
    [61]R. W. Blake. Influence of pectoral fin shape on thrust and drag in labriform locomotion. Journal of Zoology, London,1981(194):53-66P
    [62]R. M. Alexander. The history of fish mechanics. Fish Biomechanics,1983:1-35P
    [63]F. E. Fish. Transitions from drag-based to lift-based propulsion in mammalian swimming. American Zoologist,1996,36(6):628-641P
    [64]普朗特.流体力学概论.北京:科学出版社,1966
    [65]M. C. Potter, D. C. Wiggert. Mechanics of fluids.北京:机械工业出版社,2003
    [66]王献孚,熊鳌魁.高等流体力学.武汉:华中科技大学出版社,2003
    [67]L. Guglielmini, P. Blondeaux. Numerical experiments on the transient motions of a flapping foil. European Journal of Mechanics B/Fluids,2009,28(1):136-145P
    [68]ZHANG Yonghua, JIA Laibing, ZHANG Shiwu. Computational research on modular undulating fin for biorobotic underwater propulsor. Journal of Bionic Engineering, 2007,4(1):25-32P
    [69]夏国泽.船舶流体力学.武汉:华中科技大学出版社,2001
    [70]潘文全.流体力学基础.北京:机械工业出版社,1982
    [71]V. L. Streeter, E. B. Wylie, K. W. Bedford. Fluid mechanics.北京:清华大学出版社,2003
    [72]L. M. Milne. Theoretical Hydrodynamics. MacMillan Co. Ltd,1968
    [73]施生达.潜艇操纵性.北京:国防工业出版社,1995
    [74]陈澜,安锦文,杨常伟.平流层飞艇建模关键问题研究.西北工业大学学报,2007,25(3):383-387页
    [75]http://www.fluent.com/
    [76]FLUENT Inc. FLUENT User's Guide. Fluent Inc.2003
    [77]FLUENT Inc. GAMBIT User Defined Function Manual. Fluent Inc.2003
    [78]朱仕明.动力学.武汉:华中理工大学出版社,2000
    [79]王华羽.NJ系列减摇鳍技术手册.哈尔滨:哈尔滨工程大学出版社,1997
    [80]G. G. Cox, A. R. Lloyd. Hydrodynamic design basis for navy ship roll motion stabilization. SNAME Transactions,1977(85):51-93P
    [81]J. E. Conolly. Rolling and its stabilization by active fins. Transactions of the Royal Institution of Naval Architects,1968(111):21-48P
    [82]陶尧森.船舶耐波性.上海:上海交通大学出版社,1985
    [83]郑大钟.线性系统理论.北京:清华大学出版社,2002
    [84]S. Kota, J. A. Hetrick, et al. Adaptive structures:Moving into the mainstream. Aerospace America,2006:16-18P
    [85]http://www.flxsys.com
    [86]D. M. Bushnell, K. J. Moore. Drag reduction in nature. Annual Review of Fluid Mechanics,1991(23):65-79P
    [87]F. E. Fish, J. M. Battle. Hydrodynamic design of the humpback whale flipper. Journal of morphology,1995,225(1):51-60P
    [88]E. A. van Nierop, S. Alben, M. P. Brenner. How bumps on whale flippers delay stall:an aerodynamic model. Physical Review Letters,2008(2):054502-1-4P
    [89]D. S. Miklosovic, M. M. Murray, L. E. Howle. Experimental evaluation of sinusoidal leading edges. Journal of Aircraft,2007,44(4):1404-1407P
    [90]丁宝苍,席裕庚,李少远.具有输入非线性的离散时间系统预测控制稳定性分析.自动化学报,2003,29(6):827-834页
    [91]D. S. Bernstein, W. M. Haddad. Nonlinear controllers for positive real systems with arbitrary input nonlinearities. IEEE Transactions on Automatic Control,1994,39(7):1513-1517P
    [92]M. Zekri, S. Sadri, F. Sheikholeslam. Adaptive fuzzy wavelet network control design for nonlinear systems. Fuzzy Sets and Systems,2008,159(20):2668-2695P
    [93]G. Tao, P. Kokotovic. Adaptive control of systems with actuator and sensor nonlinearities. New York:Wiley,1996
    [94]T. Ninomiya, I. Yamaguchi, T. Kida. Feedback control of plants driven by nonlinear actuators via input-state linearization. Journal of Guidance, control and dynamics,2006,29(1):20-24P
    [95]S. Battilotti, C. Califano. A constructive condition for dynamic feedback linearization. Systems & Control Letters,2004,52(5):329-338P
    [96]Kou-Cheng Hsu. Sliding mode control for uncertain nonlinear systems with multiple inputs containing sector nonlinearities and deadzones. IEEE transactions on systems, man, and cybernetics-part B:cybernetics,2004, 34(1):374-380P
    [97]T. Fliegner, H. Logemann, E. P. Ryan. Low-gain integral control of continuous-time linear systems subject to input and output nonlinearities. Automatica, 2003,39(3):455-462P
    [98]K. P. Fruzzetti, A. Palazoglu, K. A. McDonald. Nonlinear model predictive control using Hammerstein models. Journal of Process Control,1997,7(1):31-41P
    [99]Q. M. Zhu, K. Warwich, J. L. Douce. Adaptive general predictive controller for nonlinear systems. Proceedings of the Institute of Electrical Engineering, PartD,1991,138(1):33-40P
    [100]徐湘元,毛宗源.基于Hammerstein模型的预测控制的分析与研究.控制理论与应用,2000,17(5):529-532页
    [101]X. F. Zhu, D. E. Seborg. Nonlinear predictive control based on Hammerstein models. Control Theory Application,1994,11 (6):564-575P
    [102]W. Wang. Generalized predictive control of nonlinear systems of the Hammerstein form. Control Theory Application,1994,11 (6):672-680P
    [103]D. B. Cang, L. S. Yuan, X. Y. Geng. Stability analysis of generalized predictive control with input nonlinearity based-on popov theorem. ACTA AUTOMATICA SINICA,2003,29(4):582-588P
    [104]丁宝苍.预测控制的理论与方法.北京:机械工业出版社,2001
    [105]W. Lin, C. I. Byrnes. Passivity and absolute stabilization of a class of discrete-time nonlinear systems. Automatica,1995,31(2):263-267P
    [106]K. H. Chan, J. Bao. Model predictive control of Hammerstein systems with multivariable nonlinearities. Industrial & Engineering Chemistry Research, 2007(46):168-180P
    [107]http://www.sosmath.com
    [108]T. Perez, G. C. Goodwin. Constrained control to prevent dynamic stall in ship fin stabilizers. Sixth IFAC conference on manoeuvering and control of marine craft MCMC'03,173-178P
    [109]赵希人.随机过程应用.哈尔滨:哈尔滨工程大学出版社,2003
    [110]王永德,王军.随机信号分析基础.北京:电子工业出版社,2009
    [111]丛玉良,王宏志.数字信号处理原理及其MATLAB实现.北京:电子工业出版社,2005
    [112]J. Nocedal, S. J. Wright. Numerical Optimization. Springer,1999
    [113]S. Boyd, L. Vandenberghe. Convex Optimization. Cambridge University Press,2004
    [114]徐士良.数值方法与计算机实现.北京:清华大学出版社,2006
    [115]邓自立,王建国.带模型误差系统自适应Kalman滤波的虚拟噪声补偿技术.信息与控制,1988,17(1):1-4页
    [116]邓自立.自校正滤波理论及其应用——现代时间序列分析方法.哈尔滨:哈尔滨工业大学出版社,2003
    [117]W. D. Chang. Robust adaptive single neural control for a class of uncertain nonlinear systems with input nonlinearity. Information sciences,2005 (171):261-271P
    [118]C. T. Chen, W. D. Chang. A feedforward neural network with function shape autotuning. Neural networks,1996,9(4):627-641P
    [119]W. D. Chang, R. C. Hwang, J. G. Hsieh. A multivariable on-line adaptive PID controller using auto-tuning neurons. Engineering Applications of Artificial Intelligence,2003(16):57-63P
    [120]H. Tanguy, G. Lebret. A gain scheduled control law for fin/rudder roll stabilisation of ships. IFAC Control Applications in Marine Systems,2004
    [121]T. Perez, G. C. Goodwin. On constrained control of fin, rudder or combined fin-rudder stabilizers:a quasi-adaptive control strategy. IFAC Control Applications in Marine Systems, Italy,2004