玉米秸秆降解及其生产乙醇的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源问题日趋严峻,迫切需要人们开发替代能源。乙醇以其可再生、绿色无污染等优点受到重视,利用木质纤维素生产燃料乙醇是未来能源发展的一个重要方向,既解决能源危机,又充分利用资源、保护环境。本论文由此立题,进行利用农作物秸秆生产燃料乙醇的研究。
     通过预处理、酶糖化条件的选择,高效降解纤维素菌种的筛选,单菌和混合菌共同降解及其发酵乙醇等几个方面,综合研究了现阶段利用木质纤维素生产乙醇的工艺方法。
     通过对多种预处理方法的比较,最终确定0.75%稀硫酸,固液比1:20,在130℃下处理30min为最优预处理条件。
     随后使用纤维素酶,对预处理后的秸秆进行糖化,并使用酵母进行乙醇发酵,发现乙醇产量与酶的使用量密切相关,确定出酶处理条件为:酶用量15mg/gDS、50℃,150rpm下处理5小时,随后按酵母接种量10%、发酵培养2天,乙醇产率可达0.163g/gDS。
     本论文重点是菌种筛选,通过分离筛选,确定出10株降解效果较好的菌种,分别测定羧甲基纤维素酶活(CMCA)和滤纸酶活(FPA),对其纤维素酶活力及相关性质进行测定,最终获得6株降解活性较强的菌种,其酸性纤维素酶活较强,最优产酶时间为6天。采取非等温同时糖化发酵法(NSSF)和同步糖化发酵法(SSF)进行乙醇发酵,发现NSSF的乙醇产率大于SSF,乙醇产率达0.126g/gDS。
     为了提高微生物降解秸秆的产糖率及利用秸秆降解物发酵乙醇的产率,进一步研究了现阶段研究较少的多种微生物混合培养降解糖化秸秆,比较酶活力,同样采用NSSF和SSF进行乙醇发酵,发现黑曲霉和康宁木霉混合培养降解秸秆时的纤维素酶活力较高,NSSF发酵乙醇产率可达到0.139g/gDS。
     最后对菌种筛选过程中发现的一株能利用纤维素高产红色素的菌种进行初步鉴定,可以作为秸秆利用的一个方向。
Concerns about the soaring cost of fossil fuel and energy security have rekindled the interest in producing the substitute fuels from the renewable sources. There lies great interest of fuel ethanol production from lignocellulose owing to its sustainable and zero-omission characters. It holds a great hope and future to solve energy crisis for its resource saving and environment protecting. From this point of view, conversion of lignocellulose to ethanol is focused on in this thesis.
     Comprehensive research in transforming lignocellulose to ethanol had been accomplished basically: ascertainment of optimum conditions of pretreatment and enzymolysis, screening of cellulose-degrading strains with high performance, study on pure cultivation and co-cultivation.
     Comparing among the results elaborated the pretreatment condition by autoclaving: 0.75% H_2SO_4, solid-liquid ratio 1:20,130℃and 30min.
     Subsequently, those pretreated was saccharified through enzymolysis by cellulase and then fermentation proceeded by inoculating of yeast. Dynamic interaction between the quantity of cellulase and ethanol yield was found. Therefore, the following was considered to fit the cellulase best: quantity of 15mg/gDS, 50℃for 5h and at a speed of 150rpm. And two-day fermentation with 10% inoculation size of yeast was followed achieving the final ethanol yield of 0.163g/gDS.
     Screening the most wanted strains is the chief point of this thesis. Afrer primary screening by filter-paper Hutchison solid media and CMC solid culture medium,and further screening by filter-paper inorganic salt culture medium and Congo red culture medium with the CMC-Na as the only carbon source. 10 strains with high performance of degrading ability were picked out. According to their CMCA, FPA and the related properties, 6 strains with strong acidic cellulase activity were obtained finally and their highest enzyme yield time was on the 6th day. Ethanol yield rate of NSSF was up to 0.126g/gDS which was higher than that of SSF.
     To improve the sugar yield rate by straw-degrading microorganisms and ethanol yield rate via fermentation, further research on cross-feeding and fermentation by NSSF and SSF was carried out. Results indicated that the activity of cellulase excreted by cross-feeding of Aspergillus niger and Trichoderma koningi was the highest, with ethanol yield up to 0.139g/gDS by NSSF.
     In this process, a high red-pigment-yielding strain was obtained. Primary work on this strain and its pigment suggests that the strain merits further investigation for it will probably be a new way of straw utilization.
引文
[1]Royal Belgian Academy Council of Applied Science Industrial Biotechnology and Sustainable Chemistry[R].BACAS-report,2004.
    [2]马赞华.酒精高效清洁生产新工艺[M].北京:化学工业出版社.2003.
    [3]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社.2003.
    [4]朱跃钊,卢定强等.木质纤维素预处理技术研究进展[J].生物加工过程.2004,11.
    [5]张力田.碳水化合物化学[M].北京:化学轻工业出版社.1988.
    [6]Biely P,Mislovicova D,Toman R.Soluble chromogenic substrates for the assay of endo-1,4-β-xylanases and endo-1,4-β-glucanases[J].Anal Biochem.1985,144(1):142-146.
    [7]卢雪梅,刘紫鹃,高培基.木质素降解的化学反应机制[J].林产化学与工业.1996.16(2):75-82.
    [8]W.Charles.Erans.Anaerobic degradation of Aromatic compounds Ann.Rer.Microbiol 42:289-317.
    [9]Sun Y,and Cheng.J.J..Dilute acid pretreatment of rye straw and bermudagrass for ethanol production[J].Bioresource Technology,2005,96:1599-1606.
    [10]刘春龙,李忠秋,孙海霞等.微生物处理秸秆的机制概述[J].农业系统科学与综合研究.2004.20(4):313-316.
    [11]徐文玉.木质纤维素的混合菌发酵法[J].微生物学通报.1991,18(2):130-136.
    [12]王玉万,徐文玉.担子菌对于蔗渣木质纤维素的降解[J].东北师大学报自然科学版.1985(4):85-91.
    [1]中华人民共和国轻工行业标准[S].QB.2583-2003,ICS 67.220.20,分类号:X69,备案号:12497-2003.
    [2]蒋和平.生物样品中乙醇浓度测定的讨论[J].川北医学院学报:2005年9月.第20卷,第3期:322-324.
    [3]谢友斌.气相色谱内标法分析啤酒中乙醇的含量[J].淮南师范学院学报:2005年第5期第7卷:19-20.
    [4]Stuart Earnest D,et al.Treatment method for fibrous lignocellulosic biomass using fixed stator device having nozzle tool with opposing coaxial toothed rings to make the biomass more susceptible to hydrolysis[P].US 5498766,1996.
    [5]Stuart Earnest D.Treatment of fibrous lignocellulosic biomass by high shear forces in a turbulent couette flow to make the biomass more susceptible to hydrolysis[P].US 5370999,1994.
    [6]Tossinari T,Macy C,Spano L Energy.[J].Biotechnology and Bioengineering,1980,22:1689-1705.
    [7]Koshijiima T,Yuka F,Muraki E,et al.[J].Journal Applied Polymer Synposium.1983,37:671-683.
    [8]Daniel J Schell,Chuck Harwood.[J].Applied Biochemistry and Biotechnology,1994,45/46:1591-1593.
    [9]Grous W R,Converse A O,Gtethlein H E.Efect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar[J].Enzyme Micmb Technol,1986,8:274-280.
    [10]Cullingford Hatice S,George Clifford E,Lightsey George R.Pretreatment in the enzymic saccharifieation of biomass with use of microwaves[P].US 5196069,1993.
    [11]Sung Bae Kum,et al.[J].Applied Biochemistry and Biotechnology,2000,91/93:81-94.
    [12]Kim S B,Lee Y Y.[J].Applied Biochemistry and Biotechnology,1996,57/58:147-156.
    [13]Leer PV,et al.[J].Applied Biochemistry and Biotechnology,1996,57/58:121-131.
    [14]Saha B C.[J].Process Biochemistry,2005,40(12):3693-3700.
    [15]Carrasco F E,et al.[J].Applied Biochemistry and Biotechnology,1994,45/46:23-34.
    [16]Jaime Baeza,et al.[J].Applied Biochemistry and Biotechnology,1991,31:273-282
    [17]Xiao Weiping,Clarkson William W.[J].Biodegradation,1997,(1):61-66.
    [18]Xiang Qian,Lee YY.[J].Applied Biochemistry and Biotechnology,2000,84-86:153-162.
    [19]Gould John M.Alkaline peroxide treatment of nonwoody lignocellulosics[P].US 4649113,1987.
    [20]Kazuhiro Mae,et al.[J].Energy and Fuels,2000,14:1212-1218.
    [21]Jun Seok Kim,et al.[J].Applied Biochemistry and Biotechnology,2000,84-86:129-139.
    [22]Brownell H H,et al.[J].Biotechnology Bioengineering,1986,28(6):792-800.
    [23]Schwald W,et al.[J].Applied Biochemistry and Biotechnology,1989,20/21:29-44.
    [24]Azzam A M.[J].Biomass,1987,12(1):1-77.
    [25]Mason W H.Apparatus for and process of explosion fibration of lignocellulose material[P].US 1655618,1928.
    [26]Quang A Nguyen,et al.[J].Applied Biochemistry and Biotechnology,2 000,84-86:561-576.
    [27]Heitz M,et al.[J].Bioresource Technology,1991,35:23-32.
    [28]Ballestcros I,et al.[J].Applied Biochemistry and Biotechnology,2000,84-86:97-110.
    [29]Holtzapple M T,et al.[J].Biotechnology and Bioengineering,1994,44(9):1122-1131.
    [30]Um B-H,Karim M N,Henk L L.Effect of sulfuric and phosphoric acid pretreatment on enzymatic hydrolysis of corn stover[J].Appl Biochem Biotechnol,2003,105-108:115-125.
    [31]Zhu Y,Lee Y Y,Elander R T.Dilute - acid p retreatment of corn stover using high-solids percolation reactor[J].App IBiochem Biotechnol,2004,117(2):103-114.
    [1]王春卉,汪天虹,高培基.纤维素酶分子的纤维素吸附区的研究进展[J].纤维素科学与技术.1997,5(4):1-10.
    [2]Eriksson K-E L,Blanchette R A,Ander P.Michobil and Enzymatic Degradation of wood and wood compents,springer-verlag[C].Berlin Heidelberg,1990.89.
    [3]Marx-Figioni M.The control of molecular weight and molecular weight distribution in the hiogenesis of cellulose[A].Jrced cellulose and other natural polymer systems:biogenesis.Structure and degradation,plenum[Z].New york.1982:243-268.
    [4]余东游,冯杰.纤维素酶在动物营养上的研究进展[J].饲料研究,2000,(5):20-22.
    [5]阎伯旭,孙迎庆,高培基.有限酶切拟康氏木霉纤维素酶分子研究其结构域的结构与功能[J].纤维素科学与技术.1998,6(30):1-9.
    [6]Sinnott M L.Catalytic Mechanism of enzymntic glycosyl transfers[J].Chem Rev.,1990,90(12):1171-1192.
    [7]范桂芳,张树政.康氏木霉纤维素酶系中Cx酶的定位[J].微生物报.1986,26(2):151-153.
    [8]Tilbeugh H V,Tomme P,Claeyssens M,et al.Limited proteolysis of the cellohiohydrolase Ⅰ from T.ressei[J].FEBB Lett..1986,204(2):223-227.
    [9]高培基,曲音波,汪天虹.微生物降解纤维素机制的分子生物学研究进展[J].纤维素科学与技术.1995,3(2):1-19.
    [10]阎伯旭,齐飞,张颖舒.纤维素酶分子结构和功能研究进展[J].生物化学与生物物理进展.1999,26(3):235-237.
    [11]Nowles J.Lethovaara P.Teeri T T.Cellulases families and their genes[J].Thends Biotechnology.1987,(5):225-261.
    [12]Coutinho J B,Gilkes N R,Warren R A J,et al.The binding of Cellulomonas fimi endoglucanases C to cellulose and Sepradex is mediated by the N-terminal repeats [J].Molecular Microbiology.1992,6(9):1243-1252.
    [13]Gilkes N R.Domains in microbia 1.beta-1,4-glycanases:sequence conservation,function,and enzyme families[J].Microbiological Review.1991,55(2):303-3155.
    [14]Laymon R A,Adney W S,Mohagheghi A,et al.Cloning and expression of Full-length Trichoderma reesei-cellu biohydrolase I cDNA in Escherichia coli[J].Applied Bioch And Biotech,1996,57(58):389-397.
    [1]李越中,胡玮,吴斌辉.纤维堆囊菌的代谢产物及其生物学活性分析[J].微生物学报,2001,41(6):716-722.
    [2]Mandels M,Weber J.The production of cellulascs[J].Reese ET Cellulases and theirs application,1996,(95):391-413.
    [3]Robson L M,an chamblissG H.Cellulases of bacterial Origin[J].Enzyme Microb Technol,1989,(11):626-644.
    [4]沈萍.微生物学实验[M],高等教育出版社,1999.
    [5]张秀红,张彩琴,张云茹.高活性纤维素分解菌株的筛选及其产酶条件的研究[J].山西师范大学学报(自然科学版).第16卷第3期2002年9月:57-60
    [6]郝月,杨翔华,张晶等.秸秆纤维素分解茵的分离筛选[J].中国农学通报第2卷第7期2005年7月:58-60
    [7]中华人民共和国轻工行业标准[S].QB.2583-2003,ICS 67.220.20,分类号:X69,备案号:12497-2003.
    [8]菌种保藏手册[M].科学出版社1980年2月第一版 13031.1150.
    [9]佟勇.产纤维素酶放线菌及其酶学性质和淡水湖底微生物区系研究,中国科学院研究生院硕士学位论文[D].
    [10]张继泉,王瑞明,关凤梅等.预处理玉米秸秆发酵生产燃料酒精的研究[J].广州食品工业科技Vol.18 No.3:1-3.
    [11]Badal C.Saha,Loren B.Iten,Michael A.Cotta.Dilute acid pretreatment,enzymatic saccharificationand fermentation of wheat straw to ethanol[J].Process Biochemistry 40(2005):3693-3700.
    [12]夏黎明.固定化增殖酵母发酵半纤维素糖类的研究[J].食品与发酵工业,1994,20(1):1-6.
    [1]王业勤,李勤生.天然类胡萝卜素研究进展、生产、应用[M].北京:中国医药科技出版社,1996:81297.
    [2]Bramley PM.Is lycopene beneficial to human health ?[J].Phytochemistry,2000,54(3):233-236.
    [3]于华忠,李国章,唐克华.一种细菌红色素的基本特性研究[J].现代食品科技.Vol.21No.1:66-68.
    [4]钱存柔,黄仪秀.微生物试验教程[M].北京大学出版社.
    [5]沈萍,范秀容,李广武.微生物学实验[M].高等教育出版社.