人工合成六倍体小麦遗传图谱构建及重要育种目标性状QTL定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦的生育期、株高、产量、品质、光合效率、抗病和抗逆性等大多数性状都是多基因控制的数量性状。准确鉴定和定位数量性状基因位点是进行数量性状基因分子标记辅助选择和图位克隆的基础。遗传图谱是发掘连锁数量性状的特异基因位点的有效工具。具有丰富遗传多样性的小麦野生祖先种是拓宽普通小麦遗传基础的重要基因资源。当前,利用人工合成种作为桥梁亲本已经成为转移小麦野生祖先种优异基因的有效途径。本研究通过对人工合成小麦为亲本构建的重组自交系群体进行遗传图谱构建和重要农艺性状QTL定位分析,以发掘人工合成小麦中的优异QTL位点区段,获得的主要研究结果如下:
     1)对以人工合成小麦SHW-L1为亲本构建的171份重组自交系群体(SHW-L1×川麦32,以下简称SC)进行高密度分子标记遗传连锁图谱构建。遗传图谱构建工作得到一张包含1862个标记位点的高密度遗传图谱,图谱全长3766.9cM,平均标记密度为2cM每个位点。该图谱的建立将有利于识别和发掘人工合成小麦SHW-L1中的优异遗传位点。利用定位的分子标记对SHW-L1及其合成亲本(节节麦AS60和圆锥小麦AS2255)进行基因型鉴定发现:SHW-L1中包含129个位点的32个遗传区段发生丢失;各基因组间丢失位点比较发现:SHW-L1在六倍化过程中,D基因组遭受的冲击大于AB基因组。对这类区段深入研究将有助于对小麦驯化和基因组进化的进一步了解。
     2)利用已构建的高密度分子遗传图谱对SC群体进行出苗期、分蘖期、抽穗期、扬花期、成熟期和全生育期的QTL定位,以及各生长时期和全生育期的条件QTL分析,共检测到30个生长期相关QTL位点,贡献率为3.3-34.7%,其中贡献率超过10%的QTL有10个;其中,在不同环境下均表达的QTL有4个。条件QTL分析表明:SC群体中全生育期的差异主要是由抽穗期决定的。位于2D上控制抽穗期的主效位点对全生育期起着决定作用,同时该位点还控制出苗期和成熟期的主效表达;而成熟期对全生育期影响较小;出苗期、分蘖期对全生育期几乎无影响,而扬花期对其影响程度不确定。本研究检测到的各生长期性状相关QTL、以及各生长期与全生育期在QTL水平上的遗传关系为选育生育期适应特定环境的小麦品种提供了遗传基础和理论依据。
     3)利用已构建的高密度分子遗传图谱对SC群体进行产量相关性状的QTL定位分析,共检测到30个产量相关性状QTL位点,贡献率为3.87-31.85%。其中贡献率超过10%的位点11个,在多个环境中显著性表达的位点21个。检测到的QTL位点中,15个位点正向加性效应来自人工合成小麦SHW-L1,其中1A、2D(wPt-730529-wPt-8134区段)、4D (wPt-732586-wPt-730409区段)和6A(wPt-2216-rPt-6189区段)上产量相关QTL位点的表达受到环境干扰较少,这些位点可用于小麦产量育种的遗传改良研究工作中。
     4)利用ITMI群体(W7984xOpata85)和SC群体两套RIL群体对穗颈节间长、穗长和株高进行QTL定位分析,同时还进行了株高和穗颈节间长与穗长的条件QTL定位分析。ITMI群体中共检测到40个控制株高及相关性状的QTL,贡献率为2.5-33.3%,贡献率超过10%的位点15个,在检测环境中都表达的位点7个。SC群体中40个控制株高及其相关性状的QTL位点,贡献率为3.4-44.8%。贡献率超过10%的位点11个,在两个以上环境都表达的QTL有6个。条件QTL分析表明:大多数控制穗颈节间长和穗长的QTL位点对株高影响不显著。穗长对株高的影响弱于穗颈节间长。本研究发现的穗长和穗颈节间长与株高的遗传关系可以结合以上QTL位点用于指导小麦品种的形态学改良。
     5)利用ITMI群体和SC群体两套RIL群体对小麦苗期的植株总干重、茎干重和根干重的进行耐湿性QTL定位研究,同时还进行了总干重耐湿指数与其组成性状的条件QTL分析。ITMI群体中共检测到18个耐湿性QTL位点,其贡献率为4.2-18%,贡献率超过10%的位点13个。各检测位点中,9个位点正向加性效应来源于人工合成小麦W7984。SC群体中共检测到7个耐湿性QTL位点,其贡献率为5.9-13.2%,贡献率超过10%的位点4个。各检测位点中,2个位点正向加性效应来源于人工合成小麦SHW-L1。这类QTL位点都是普通小麦中未曾报道的新位点,可以用于改良普通小麦的耐湿性。条件分析表明在ITMI群体和SC群体中茎干重耐湿指数较根干重耐湿指数更容易影响总干重耐湿指数。同时在多个位点上存在茎与根的互作以抑制总干重耐湿指数的表达,打破此类抑制关系对小麦耐湿育种具有重要意义。
Most traits in wheat such as growling period, plant height, quality, phosynthesis associated traits, biotic stress and abiotic stress tolerance are generally controlled by multiple genes. Accurate phenotyping and genetic mapping are essential for marker-assisted selection and map-based cloning. And genetic maps are powerful tools for identification of such quantitative trait loci. Genetic variation in Common wheat is poorly, but highly in wild ancestral species of wheat. Therefore, utilization of genetic resources in wild ancestral species of wheat can break the bottleneck of yield breeding in common wheat. Synthetic hexaploid wheats offer breeder ready access to potentially novel genetic variations in wild ancestral species. In present study, we constructed genetic map for recombinant intercross lines (RILs) population derived from the cross of synthetic wheat, and performed QTL mapping for important agronomic traits, to identified novel genetic regions associated investigated traits in synthetic wheat. The major study and result were described as follows:
     1) Genetic map construction was conducted in a SC (SHW-L1×Chuanmai32) population which contains171lines derived from the cross of synthetic wheat SHW-L1. A total of1,862makers were assigned to21chromosomes and covered a total of3,766.9cM of genetic distance with an average of2.0cM between markers in map constriction. This map is essential to identify novel loci associated agronomic traits in SHW-L1. In addition, we also performed genotyping for SHW-L1, and its parents of AS60and AS2255through the markers located on the map. The genotypic analysis identified129loci were eliminated in SHW-L1, and these loci clustered in32genetic regions. It was suggested that D genomes of SHW-L1suffered more shake than AB genomes in allopolyploidization. These eliminated regions identification will help domestication research and genomic evolution research in wheat.
     2) QTL mapping for emergence date, tillering date, heading date, flowering date, maturation period, and growling period were performed through the high resolution map of SC population. We also conducted conditional QTL analysis for growling period and other investigated traits to determine the genetic relationships between growling period and its components. A total of30QTLs were identified in present study, which explained3.3-34.7%of the phenotypic variation,10of which explained the phenotypic variation higher than10%, and4of which were environments independent. Conditional analysis suggested that growling period were major effected by heading date, especially the major locus for heading date on2D, which also showed major effect on emergence date and maturation period. In addition, the effect of maturation period on growling period was lower. No significant effect of emergence date and tilling date on growling period were observed, and the effect or flowering date was not sure. This QTL mapping study and genetic relationship analysis between growling period and its components traits should be great practical value and theoretical value for wheat growling period breeding.
     3) QTL mapping for yield related traits were performed through the high resolution map of SC population. A total of30QTLs were detected in present study, which explained3.87-31.85%of the phenotypic variation,11of which explained the phenotypic variation higher than10%, and21of which were environments independently. For these QTLs,15alleles from synthetic wheat SHW-L1contributed positively to phenotypic variation, especially QTLs on1A,2D (wPt-730529-wPt-8134),4D (wPt-732586-wPt-73040),and6A(wPt-2216-rPt-6189), these environments independent QTLs should be great value for yield breeding in wheat.
     4) QTL mapping for uppermost internode length, spike length, and plant height were performed in ITMI (W7984×Opata85) and SC populations. We also conducted conditional QTL mapping for plant height and other two investigated traits. A total of40QTLs were identified in ITMI population, which explained2.5-33.3%of the phenotypic variation,15of which explained the phenotypic variation higher than10%, and7of which were detected in all investigated environments. A total of40QTLs were identified in ITMI population, which explained3.4-44.8%of the phenotypic variation,11of which explained the phenotypic variation higher than10%, and6of which were environments independently. Conditional QTL analysis suggests that:Most QTLs identified for UTL and SL were independent to PH, and PH were more independent to SL. The QTL identification and genetic relationship analysis will accelerate selection of suitable locus to improve the commercial wheat morphology to avoid the change of PH.
     5) QTL mapping for waterlogging tolerance was performed at seedling stage in ITMI population (W7984×Opata85) and SC population. The waterlogging tolerance waterlogging tolerance traits include total dry weight index (TDWI), shoot dry weight index (SDWI), and root dry weight index (RDWI). We also conducted conditional QTL analysis for total dry weight index with other two traits. A total of18QTLs were identified in ITMI population, which explained4.2-18%of the phenotypic variation,13of which explained the phenotypic variation higher than10%. For these QTLs,9alleles from synthetic wheat W7984contributed positively to phenotypic variation. A total of7QTLs were identified in ITMI population, which explained5.9-13.2%of the phenotypic variation,4of which explained the phenotypic variation higher than10%. For these QTLs,2alleles from synthetic wheat W7984contributed positively to phenotypic variation. These results indicated that SDWI showed tighter genetic correlation with TDWI than RDWI in both ITMI population and SC population. Several QTLs for RDWI were coordinated with SDWI to affect the expression of QTL for TDWI, and most of them showed suppression. Breakthrough these suppressed relationship will be notable improvement for waterlogging breeding in wheat.
引文
l.Akbari M, Wenzl P, Caig V, Carling J, et al.2006. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409-1420
    2.Ahmed TA, Tsujimoto H, Sasakuma T.2000. Identification of RFLP markers linked with heading date and its heterosis in hexaploid wheat. Euphytica 116(2): 111-1119
    3.Ammiraju JSS, Dholakia BB, Santra DK, et al.2001. Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theor Appl Genet 102(5):726-732
    4.Anderson JA, Sorrells ME, Tanksley SD.1993. RFLP analysis f genomic regions associated with resistance to preharvest sprouting in wheat. Crop Sci 33:453-459
    5.Araghi SG, Assad MT 1998. Evaluating four screening techniques for drought resistance and their relationship to yield reduction ratio in wheat. Euphytica 103:293-299
    6.Araki E, Miura H, Sawada S.1999. Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4 A of wheat. Theor Appl Genet 98: 977-984
    7.Asins MJ.2002. Present and future of quantitative trait locus analysis in plant breeding. Plant Breeding 121:281-291
    8.Ayala L, Henry M, van Ginkel M, Singh R, Keller B, Khairallah M.2002. Identification of QTLs for BYDV tolerance in bread wheat. Euphytica 128(2): 249-259
    9.Baga M, Chodaparambil SV, Limin AE, Pecar M, Fowler DB, Chibbar RN.2007. Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct Integr Genomics 7: 53-68
    10.Basten CJ, Weir BS, Zeng ZB.1999. QTL Cartographer:A reference manual and tutorial for QTL mapping. Center for Quantitative Genetics, NCSU: statgen.ncsu.edu/qtlcart
    11.Barrett BA, Kidwell KK.1998. AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Sci 38:1261-1271
    12.Barrett BA, Kidwell KK, Fox PN.1998. Comparison of AFLP and pedigree-based genetic diversity assessment methods using wheat cultivars from the Pacific Northwest. Crop Sci 38:1271-1278
    13.Beales J, Turner A, Griffiths S, Snape J W, Laurie D A.2007. A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-Dla mutant of wheat (Triticum aestivum L.). Theoretical and Applied Genetics,115:721-733
    14.Beavis WD.1994. The power and deceit of QTL experiments:lessons from comparative QTL studies. Paper presented at the Proceedings of the Forty-ninth Annual Corn and Sorghum Industry Research Conference, Washington, D.C
    15.Beavis WD.1998. QTL analyses:power, precision, and accuracy. In:Paterson, A.H. (ed.) Molecular Dissection of Complex Traits. CRC Press, Boca Raton
    16.Bessonova El.1989. Correlations between yield characters and length of the uppermost internode in wheat hybrids. Sbornik Trudov Uzbekskogo Nauchno-Issledovatel'skogo Instituta Zerna 24:25-28
    17.Blanco A, Pasqualone A, Troccoli A et al.2002. Detection of grain protein content QTL across environments in tetraploid wheats. Plant Mol Biol 48:615-623
    18.Blanco A, Bellomo M P, Lotti C, et al.1998. Genetic mapping of sedimentation volume across environments using recombinant inbred lines of durum wheat. Plant Breeding 117:413-417
    19.Blom CWPM.1999. Adaptations to flooding stress:from plant Community to Molecule. Plant Biol 1:261-273
    20.Brenchley R, Spannagl M, Pfeifer M, et al.2012. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705-710
    21Bullrich, L., M.L. Appendino, G. Tranquilli, S. Lewis & J. Dubcovsky, 2002.Mapping of a thermo-sensitive earliness per se gene on Trticum monococcum chromosome lAm. Theor Appl Genet 105:585-593
    22.Borner A, Schumann E, Furste A, Coster H, Leithold B, Roder S, Weber E.2002. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet.105(6-7):921-936
    23.Borner A, Worland AJ, Plaschke J, Schumann E, Law CN.1993. Pleiotropic effects of genes for reduced height (rht) and day-length insensitivity (ppd) on yield and its components for wheat grown in middle Europe. Plant Breed.111(3): 204-216
    24.Burgos MS, Messmer MM, Stamp P, chmid JE 2001. Flooding tolerance of spelt (Triticum spelta L.) compared to wheat (Triticum aestivum L.)-A physiological and genetic approach. Euphytica 122:287-295
    25.Boru G, Van GM, Kronstad WE, Boersma L.2001. Expression and inheritance of waterlogging tolerance stress in wheat. Euphytica 117:91-98
    26.Campbell BT, Baenziger PS, Gill KS, Eskridge KM, Budak H, Erayman M, Dweikat I, Yen Y.2003. Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3 A of wheat. Crop Sci43: 1493-1505
    27.Carlborg O, Haley CS.2004. Epistasis:too often neglected in complex trait studies? Nature Reviews Genetics 5:618-625
    28.Castro AJ, Chen X, Corey A, Filichkina T, Hayes P, Mundt C, Richardson K, Sandoval-Islas S, Vivar H.2003. Pyramiding and validation of quantitative trait locus (QTL) alleles determining resistance to barley strip rust:Effects of Adult Plant Resistance. Crop Science 43:2234-2239
    29.Cattivelli LG, Baldi P, Crosatti C, et al.2002. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Molecular Biology 48:649-665
    30.Chartrain L, Brading PA, Widdowson JP, et al.2004. Partial resistance to Septoria tritici blotch (Mycosphaerella graminicola) in wheat cultivars Arina and Riband. Phytopathology 94:497-504
    31.Chen J, Griffey CA, Saghai Maroof MA, et al.2006. Validation of two major quantitative trait loci for fusarium head blight resistance in Chinese wheat lineW14. Plant Breeding 125:99-101
    32.Chalmers KJ, Campbell AW, Kretschmer J, et a3.2001. Construction of three linkage maps in bread wheat, Triticum aestivum. AustralianJournal of Agricultural Research 52:1089-1119
    33.Chao S, Sharp PJ, Worland AJ,Warham EJ, Koebner RMD, Gale MD.1989. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theoretical and Applied Genetics 78:495-504
    34.Chen XM.2005. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can. J. Plant Pathol 27:314-337
    35.Chu CG, Xu SS, Friesen TL, Faris JD.2008. Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol Breed 22:251-266
    36.Cantrell R.G, Joppa L R.1991. Genetic analysis of quantitative traits in wild emmer(Triticum turgidum L.var dicoccoides). Crop Science 31:645-649
    37.Cao Y, Cai SB, Wu ZS, Zhu W, et al.1995. Studies on genetic features of waterlogging tolerance in wheat. Jiangsu Agricultural Sciences 11:11-15
    38.Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK.2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement:The basic concepts. Euphytica 142:169-196
    39.Coe EH, Polacco M.1995. Gene list and working maps. Maize Genet Coop News Lett 694:157-191
    40.Colmer TD, Flowers TJ, Munns R.2006. Use of wild relatives to improve salt tolerance in wheat. Journal of Experimental Botany 57:1059-107
    41.Cordell J.2002. Epistasis:what it means, what it doesn't mean, and statistical methods to detect it in humans. Human Molecular Genetics 11:2463-2468
    42.Cui F, Li J, Ding AM, Zhao CH, Wang L, Wang XQ, Li SS, Bao YG, Li XF, Feng DS, Kong LR,Wang HG.2011. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet 122:1517-1536
    43.Cui F, Zhao CH, Li J, Ding AM, Li XF, Bao YG, Li JM, Ji J, Wang HG (2012a) Kernel weight per spike:what contributes to it at the individual QTL level?. Mol Breed. doi:10.1007/s 11032-012-9786-8
    44.Cui F, Li J, Ding AM, Zhao CH, Li XF, Feng DS, Wang XQ, Wang L, Wang HG (2012b) QTL detection of internode length and its component index in wheat using two related RIL populations. Cereal Res Commun 40(3):373-384
    45.Daryl Mares, Kolumbina Mrva (2008) Genetic variation for quality traits in synthetic wheat germplasm. Australian Journal of Agricultural Research 59, 406-412
    46.Danyluk J, Kane NA, Breton G, Limin AE, Fowler DB, Sarhan F.2003. TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol.132:1849-1860,
    47.Devos KM, Atkinson M, Chinoy CN, Liu CJ, Gale MD.1992a. RFLP-based geneticmap of the homoeologous group 3 chromosomes of wheat and rye. Theoretical and Applied Genetics 83,931-939.
    48.Devos KM, Gale MD.1992b. The use of random amplified polymorphic DNA markers in wheat. Theoretical and Applied Genetics 84:567-572
    49.Diaz A, Zikhali M, Turner AS, Isaac P, Laurie DA.2012. Copy number variation affecting the Photoperiod-B 1 and Vernalization-Al genes is associated with altered flowering time in wheat(Triticum aestivum). PLoS One,7(3), e33234. doi: 10.1371/journal.pone.0033234
    50.Ding AM, Li J, Cui F, Zhao CH, Ma HY, Wang HG.2011. Mapping QTLs for Yield Related Traits Using Two Associated RIL Populations of Wheat. Acta agronomica sinica 37(9):1511-1524
    51.Distelfeld A, Li C. Dubcovsky J.2009. Regulation of flowering in temperate cereals. Curr. Opin. Plant Biol.12,178-184
    52.Dodds KG, Ball R, Djorovic N, Carson SD.2004. The effect of an imprecise map on interval mapping QTLs. Genetic Research Cambridge 84:47-55
    53.Doerge RW.2002. Mapping and analysis of quantitative trait loci in experimental populations. Nature Rev Genet 3:43-52
    54.Dubcovsky J, Dvorak J.2007. Genome plasticity a key factor in the success of polyploidy wheat under domestication. Science 316:1862-1866
    55.Dudnikov AJ, Kawahara T.2006. Aegilops tauschii:genetic variation in Iran. Genetic Resources and Crop Evolution 53:579-586
    56.Dvorak J, Luo MC, Yang ZL, Zhang HB.1998. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97: 657-670
    57.Dubcovsky J, Dvorak J.2007. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862-1866
    58.Eilam T, Anikster Y, Millet E.2008. Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the genera Aegilops and Triticum. Genome 51:616-627
    59.Ellegren H.2004. Microsatellites:Simple sequences with complex evolution. Nature Rev Genet 5:435-445
    60.ElouaW I, Nachit M M, Elsaleh A, et al.2000. QTL-mapping of genomic regions controlling gluten strength in durum(Triticum turgidum L. var. durum). International Centre for Advanced Mediterranean Agronomic Studies, Zaragoza, Spain 40:363-371
    61.Ercan S, Ertugrul F, Aydin Y, et al.2010. An EST-SSR marker linked with yellow rust resistance in wheat. Biologia Plantarum 54 (4):691-696
    62.Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W.2002. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399-407
    63.Feldman M, Levy AA.2009. Genome evolution in allopolyploid wheat—a revolutionary reprogramming followed by gradual changes. J. Genet. Genomics 36:511-518
    64.Feldman M, Levy AA.2005. Allopolyploidyiia shaping force in the evolution of wheat genomes. Cytogenet. Genome Res.109:250-258.
    65.Feldman M, Lupton FGH, Miller TE.1995. Wheats. In:Smartt J, Simmonds NW (eds) Evolution of crops (2nded.). Longman Scientific, London, pp 184-192
    66.Flood RG, Halloran GM.1983. The influence of certain chromosomes of hexaploid wheat cultivar Thatcher on time to ear emergence in Chinese Spring. Euphytica 32:121-124
    67.Flowers T.2004. Improving crop salt tolerance. J Exp Bot 55:307-319
    68.Foulkes MJ, Sylvester-Bradley R, Worland AJ, Snape JW.2004. Effects of a photoperiod-response gene Ppd-Dl on yield potential and drought resistance in UK winter wheat. Euphytica 135:63-73
    69.Francki MG, Berzonsky WA, Ohm HW, Anderson JM.2002. Physical location of a HSP70 gene homologue on the centromere of chromosome 1B of wheat (Triticum aestivum L.) Theor Appl Genet 104:184-191
    70.Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW.2010. A genetic framework for grain size and shape variation in wheat. The Plant Cell 22:1046-1056
    71.Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G Herrmann RG.1991. Construction of an RFLP map of barley. Theoretical and Applied Genetics 83:250-256
    72.Gororo NN, Flood RG, Eastwood RF, Eagles HA.2001. Photoperiod and vernalization responses in Triticum turgidum × T. tauschii synthetic hexaploid wheats. Annals of Botany,88,947-952
    73.Groos C, Gay G, Perretant MR, Gervais L, Bernard M, Dedryver F, Charmet D. 2002. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white (?) red grain bread-wheat cross. Theor Appl Genet 104:39-47
    74.Gupta PK, Roy JK, Prasad M.2001 Single nucleotide polymorphisms:A new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Current Science 80:524-535
    75.Gupta PK, Balyan HS, Edwards KJ, et al.2002. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theoretical and Applied Genetics 105, 413-422
    76.Gupta PK, Rustgi S.2004. Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct Integr Genomics 4:139-162
    77.Gupta PK, Varshney RK, Sharma PC, Ramesh B.1999. Molecular markers and their applications in wheat breeding. Plant Breed 118:369-390
    78.Hammer K.1980. Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten:Aegilops L. Kulturpflanze 28:33-180
    79.Hao ZF, Cang XP, Guo XJ, et al.2003. QTL Mapping for Drought Tolerance at Stages of Germination and Seedling in Wheat(Triticum aestivum L.) Using a DH Population Agricultural Sciences in China 2:943-949
    80.Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glemin S, David J. Grinding up wheat:A massive loss of nucleotide diversity since domestication. Mol Biol Evol 24(7):1506-1517
    81.Heidari B, Sayed-Tabatabaei BE, Saeidi G, Kearsey M, Suenaga K.2011. Mapping QTL for grain yield, yield components, and spike features in a doubled haploid population of bread wheat. Genome 54 (6):517-27
    82.Huang B, Johnson JW, Nesmith DS, Bridges DC.1994. Root and shoot growth of wheat genotypes in response to hypoxia and subsequent resumption of aeration. Crop science 34:1538-1544
    83.Huang L, Wang Q, Zhang LQ, Yuan zw, Wang JR, Zhang HG, Zheng YL, Liu DC. 2011. Haplotype variations of gene Ppd-D1 in Aegilops tauschii and their implications on wheat origin. Genet Resour Crop Evol 59:1027-1032
    84.Huang XQ, Kempf H, Ganal MW, Roder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933-943
    85.Hoogendom,C.,1985.Areciprocal Fl analysis of the genetic control of ear emergence, number of leaves and number of spikelets in wheat. Euphytica 34: 545-55
    86.Jaccoud D, Peng K, Feinstein D, Kilian A,2001. Diversity Arrays:a solid state technology for sequence information independent genotyping. Nucleic Acids Research 29, e25
    87.Jansen RC.1993. Interval mapping of multiple quantitative trait loci. Genetics 135: 205-211
    88.Jansen R, Stam P.1994. High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447-1455
    89 Joppa L R, Du C, Hart G E, Hareland G A.1997. Mapping a QTL for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci 37:1586-1589
    90.Kao CH, Zeng ZB, Teasdale RD 1999. Multiple interval mapping for qutatitve trait locil Genetics,152:1203-1216
    91.Kato K, Miura H, Sawada S.1999. Detection of an earliness per se quantitative trait locus in the proximal region of wheat chromosome 5AL. Plant Breed 118: 391-394
    92.Kato K, Miura H, Sawada S.2000. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat.Theor Appl Genet101:1114-1121
    93.Kearsey MJ, Farquhar AGL.1998. QTL analysis in plants; where are we now? Heredity 80:137-142
    94.Kerfal S. et al.2010. Mapping quantitative trait loci (QTLs) associated with dough quality in a soft xhard bread wheat progeny, Journal of Cereal Science doi: 10.1016/j.jcs.2010.03.001.
    95.Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of vulgare wheat. Agric. Hortic 19:889-890
    96.Kihara H, Yamashita K, Tanaka M.1965. Morphological, physiological, genetical and cytological studies in Aegilops and Triticum collected from Pakistan, Afghanistan and Iran. In:Yamashita K (ed) Results of the Kyoto University Scientific Expedition to the Karakoram and Hindukush. Kyoto University, Kyoto, pp 1-118
    97.King IP, Forster BP, Law CC, Cant KA, et al.1997. Introgression of salt-tolerance genes from Thinopyrum bessarabicum into wheat. New phytologist,137:75-81
    98.Kinoshita T (1991) Report of the committee on gene symbolization, nomenclature and linkage group. Rice Genet News 18:2-37
    99.Kirigwi FM, Van Ginkel M, Brown-Guedira G et al.2007. Markers associated with a QTL for grain yield in wheat under drought. Molecular Breeding 20:401-413
    100.Klahr A, Zimmermann G, Wenzel G, Mohler V (2007) Effects of environment, disease progress, plant height and heading date on the detection of QTLs for resistance to Fusarium head blight in an European winter wheat cross. Euphytica 154:17-28
    101.Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B.2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360-1363
    102.Kulwal P, Kumar N, Kumar A, Gupta RK, Balyan HS, Gupta PK.2005a. Gene networks in hexaploid wheat:interacting quantitative trait loci for grain protein content. Funct. Integr. Genomics 5(4):254-259
    103.Kulwal P L, Kumar N, Gaur A, et al.2005b. Mapping of a major QTL for pre-harvest sprouting tolerance on chromosome 3A in bread wheat. Theor Appl Genet 111:1052-1059
    104.Kulwal PL, Roy JK, Balyan HS, Gupta P K.2003. QTL mapping for growth and leaf characters in bread wheat. Plant Sci.164(2):267-277
    105.Kumar N, Kulwal PL, Balyan HS, Gupta PK.2007. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol. Breed. 19(2):163-17
    106.Kumar LS.1999. DNA markers in plant improvement:An overview. Biotechnology Advances 17:143-182
    107.Kunert.2007. AB-QTL analysis in winter wheat:I. Synthetic hexaploid wheat(T. turgidum ssp. dicoccoides-T. tauschii) as a source of favourable alleles for milling and baking quality traits. Theor Appl Genet 115:683-695
    108.Lage J, Skovmand B, and Andersen SB.2003. Expression and suppression of resistance to greenbug (Homoptera:Aphididae) in synthetic hexaploid wheats derived from Triticum dicoccum × Aegilops tauschii crosses. J. Econ. Entomol 96: 202-206
    109.Lagudah ES, Appels R, McNeil D.1991. The Nor-D3 locus of Triticum tauschii: natural variation and genetic linkage to markers in chromosome 5. Genome 36: 387-395
    110.Lande R, Thompson R.1990. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743-756
    111.Lander ES, Botstein D.1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185-199
    112.Lazo GR, Chao S, Hummel DD, et al.2004. Development of an expressed sequence tag (EST) resource for wheat (Triticum aestivum L.):EST generation, unigene analysis, probe selection and bioinformatics. Genetics 168:585-593
    113.Lehmensiek A, Eckermann PJ, Verbyla AP, Appels R, Sutherland MW, Daggard G.2005. Curation of wheatmaps to improvemap accuracy andQTL detection. Australian Journal of Agricultural Research 56:1347-1354
    114.Levinson G, Gutman GA.1987. High frequencies of short frameshifts in polyCT/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acids Res 15:5323-5338
    115.Levy AA, Feldman M.2002. The impact of polyploidy on grass genome evolution. Plant Physiol.130:1587-1593.
    116.Levy AA, Feldman M.2004. Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol. J. Linn. Soc. Lond.82:607-613.
    117.Lewis S, Faricelli ME, Appendino ML, Valarik M, Dubcovsky J.2008. The chromosome region including the earliness per se locus Eps-Aml affects the duration of early developmental phases and spikelet number in diploid wheat. J Exp Bot 59(13):3595-607
    118.Li GQ, Li ZF, Yang WY, Zhang Y, He ZH, Xu SC, Singh RP, Qu YY, Xia XC. 2006. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theoretical and Applied Genetics 112:1434-144
    119.Li WL, Zhang P, Fellers JP, Friebe B, Gill BS.2004. Sequence composition, organization, and evolution of the core Triticeae genome. Plant J 40:500-511
    120.Li HB, Vaillancourt R, Mendham NJ, Zhou MX.2008. Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley(Hordeum vulgare L.). BMC Genomics,9:401
    121.Li HH, Ye G, Wang JK.2007. A modified algorithm for the improvement of composite interval mapping. Genetics,175:361-374
    122.Liao CY, Wu P, Hu B, Yi KK.2001. Effects of genetic background and environ-ment of QTLs and epistasis for rice(Oryza sativa L.) panicle number. Theoretical and Applied Genetics 103:104-111
    123.Lillemo M, Asalf B, Singh R P, Huerta-Espino J, Chen X M, He ZH, BjΦrnstad A. 2008. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theoretical and Applied Genetics 116:1155-1166
    124.Lincoln S, Daly M, Lander E.1992. Mapping genes controlling quantitative traits with MAPMAKER/QTL 1.1. Whitehead Institute Technical Report, (2nd edn), Cambridge, MA
    125.Line RF, and Chen XM.1996. Wheat and barley stripe rust in North America. Cereal Rusts and Powdery Mildews Bulletin 24(Suppl.):101-104
    126.Liu DC, Lan XJ, Yang ZJ, Wei YM, Zhou YH (2002) A Unique Aegilops tauschii Genotype Needless to Immature Embryo Culture in Cross with Wheat. Acta Botanica Sinica44 (6):708-713
    127.Liu DC, Zhang LQ, Yan ZH, Lan XJ, Zheng YL (2010) Stripe rust resistance in Aegilops tauschii and its genetic Analysis. Genet Resour Crop Evol 57:325-328
    128.Liu ZH, Anderson JA, Hu J, et al.2005. A wheat intervarietal genetic linkagemap based onmicrosatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theoretical and Applied Genetics 111: 782-794
    129.Liu S, Hall MD, Griffey CA, McKendry AL.2009. Meta-Analysis of QTL Associated with Fusarium Head Blight Resistance in Wheat. Crop Science 49: 1995-1968
    130.Lu H, Romero-Severson J, Bernardo R.2002. Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105:622-628
    131.Lynch M, Walsh B.1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland
    132.Ma LQ, Zhou EF, Huo NX, Zhou RH, Wang GY, Jia JZ.2007. Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica,153:109-117
    133.Ma ZQ, Zhao DM, Zhang CQ, Zhang ZZ, Xue SL, Lin F, Kong ZX, Tian DG, Luo QY.2007. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Gen Genomics 277:31-42
    134.Ma W, Appels R, Bekes F, Larroque OR, Morell M K, Gale KR.2005. Genetic characterisation of dough rheological properties in a wheat doubled haploid population:additive genetic effects and epistatic interactions. Theoretical and Applied Genetics 111:410-422
    135.Mason RE, Mondal S, Beecher FW et al.2010. QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress Euphytica 10.1007/s 10681-010-0151-x
    136.Mao SL, Wei YM, Cao WG, Lan XJ, Yu M, Chen ZM, Chen GY, Zheng YL. 2010. Confirmation of the relationship between plant height and Fusarium head blight resistance in wheat (Triticum aestivum L.) by QTL meta-analysis. Euphytica 174:343-356
    137.Marza F, Bai GH, Carver BF, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840xClark. Theor Appl Genet 112: 688-698
    138.McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered 37:81-89,107-116
    139.Meer JM, Cudmore Jr RH, Manly KF.2004. MapManager/QTX:software for complex trait analysis. www.mapmanager.org/mmQTX.html
    140.Melchinger AE, Utz HF, Schon CC.1998. Quantitative trait locus mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias of QTL effects. Genetics 149:383-403
    141.Mester DI, Ronin YI, Nevo E, Korol AB.2004. Fast and high precision algorithms for optimization of large-scale genomic problems. Comp Biol Chem 28:281-290
    142.Mujeeb-Kazi A, RosasV, Roldan S.1996. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. Non L.) in synthetic hexaploid wheats (T. turgidum L.x T. tauschii; 2n= 6x= 42, AABBDD) and its potential utilization for wheat improvement. Genet. Resour. Crop Evol 43: 129-134
    143.Munns R, James RA, Islam AKMR, Colmer TD.2011. Hordeum marinum-wheat amphiploids maintain higher leaf K+:Na+and suffer less leaf injury than wheat parents in saline conditions. Plant Soil,348:365-377
    144.Murai K, Miyamae M, Kato H, Takumi S, Ogihara Y.2003. WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth. Plant Cell Physiol.44:1255-1265
    145.Miura H, Nakagawa M, Worland AJ.1999. Control of ear emergence time by chromosome 3A of wheat. Plant Breeding 118:85-87
    146.Miura H, Worland AJ.1994. Genetic control of vernalization, day length response, and earliness per se by homoeologous group3 chromosomes in wheat. Plant Breed 113:160-169
    147.Nakai Y.1979. Isozyme variations in Aegilops and Triticum, TV. The origin of the common wheats revealed from the study on esterase isozymes in synthesized hexaploid wheats. Jpn J Genet 54:175-189
    148.Nelson JC, Sorrells ME, Van Deynze AE, Hai Lu Y, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA.1995. Molecular mapping of wheat:Major genes and rearrangements in homoeologous groups 4,5, and 7. Genetics 141:721-731
    149.Nelson JC.1997. QGENE:software for marker-based genomic analysis and breeding. Mol Breed 3:239-245
    15O.Nguyen AT, Iehisa JCM, Kajimura K, Murai K, Takumi S.2013. Identification of quantitative trait loci for flowering-related traits in the D genome of synthetic hexaploid wheat lines. Euphytica 2013.2
    151.Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M, Sourdille P.2004. Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 109:800-805
    152.Nishikawa K.1974. Alpha-amylase isozymes and phylogeny of hexaploid wheat. In:Sears ER, Sears LMS (eds) Proceedings of 4th international wheat genetics symposium.University of Missouri, Columbia, USA, pp 851-855
    153.Ozkan H, Levy AA, Feldman M.2001. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:17351747
    154.Olmos S, Distelfeld A, Chicaiza O, et al.2003. Precise mapping of a locus grain protein content in durum wheat. Theor Appl Genet107:1243-1251
    155.Pankova K, Milec Z, Simmonds J, Leverington-Waite M, Fish L, Snape JW. 2008. Genetic mapping of a new flowering time gene on chromosome 3B of wheat. Euphytica 164(3):779-787
    156.Paillard S, Schnurbusch T, Winzeler M, et al.2003. An integrative genetit linkage map of winter wheat(Triticum aestivum L.). Theoretical and Applied Genetics 107,1235-1242
    157.Parelle J, Dreyer E, Brendel O.2010. Genetic variability and determinism of adaptation of plants to soil waterlogging. In Waterlogging signalling and tolerance in plants, Eds., Mancuso, S. and S. Shabala. Heidelberg, Germany: Springer-Verlag, pp:241-265
    158.Parker GD, Chalmers KJ, Rathjen AJ, et al.1999. Mapping loci associated with milling yield in wheat (Triticum aestivum L.). Molecular Breeding 5:561-568
    159.Pena RJ.2002. Wheat for bread and other foods. In:Curtis BC, Rajaram S, Macpherson HG (eds) Bread wheat improvement and production. FAO Plant Production and Protection Series No.30
    160.Penner GA.1998. An AFLP based genome map of wheat(Triticum aestivum). Plant & Animal Genome VIConference. San Diego CA:P163
    161.Pestsova E, Salina E, Borner A, Korzun V, Maystrenko OI, Roder MS.2000a. Microsatellites confirm the authenticity of inter-varietal chromosome substitution lines of wheat (Triticum aestivum L.). Theor. Appl. Genet.101:In press
    162.Plaschke J, Ganal MW, Roder MS.1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91: 1001-1007
    163.Poysa VW.1984. The genetic control of low temperature, iceencasement, and flooding tolerances by chromosomes 5A,5B, and 5D in wheat. Cereal research communications 12:135-141
    164.Poysa VW.1984. The genetic control of low temperature, iceencasement, and flooding tolerances by chromosomes 5A,5B, and 5D in wheat. Cereal Res Commun 12:135-141
    165.Prasad M, Varshney R K, Kumar A, et al.1999. A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theor Appl Genet 99:341-345
    166.Qiu FZ, Zheng YL, Zhang ZL, Xu SZ.2007. Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Annals of Botany,99: 1067-1081
    167.Quarrie SA, Gulli M, Calestani C, et al.1994 Location of a gene regulation drought-induced abscisic acid production on the long arm of chromosome 5A of wheat.Theor. Appl. Genet.89:794-800
    168.Rachel Brenchley, Manuel Spannagl, Matthias Pfeifer et al.2012. Analysis of the breadwheat genome using whole-genome shotgun sequencing. Nature 491: 705-710
    169.Ramsay L, Macaulay M, Cardie L, Morgante M, Ivanissevich S, Maestri E, Powell W, Waugh R.1999. Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J.17: 415-425
    170.Ramya R, Chaubal A, Kulkarni K, Gupta L, Kadoo N, Dhaliwal HS, Chhuneja P. Lagu M, Gupta V.2010. QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat(Triticum aestivum L.). J Appl Genet 51(4): 421-429
    171.Roder MS, Plaschke J, Konig SU, Borner A, Sorrells ME, Tanksley SD, Ganal MW.1995. Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246:327-333
    172.Roder MS, Korzun V, Wendehake J, Plaschke J, Tixier MH, Leroy P, Ganal MW. 1998. A microsatellite map of wheat. Genetics 149:2007-2023.
    173.Rostoks N, Borevitz JO, Hedley PE, Russell J, Mudie S, Morris J, Cardle L, Marshall DF, Waugh R.2005. Single-feature polymorphism discovery in the barley transcriptome. Genome Biology 6
    174.Samad A, Meisner CA, Saifuzzaman M, Van Ginkel M.2001. Waterlogging tolerance. In Application of Physiology in wheat breeding, Eds., Reynolds, M.P., J.I. Ortiz-Monasterio and A. McNab, CIMMYT, Mexico, pp:136-144.
    175.Sayre K, Van Ginkel DM, Rajaram S, Ortiz-Monasterio.1994. Tolerance to waterlogging losses in spring bread wheat:Effect of time of onset on expression. Annu Wheat Newsl 40:165-171
    176.Semagn K, Bjornstad A, Skinnes H, MarΦy AG, Tarkegne Y, William M.2006. Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49:545-555
    177.Setter TL, Burgess P, Waters I, Kuo J.1999. Genetic Diversity of barley and wheat for waterlogging tolerance in Western Australia. In 9th Australian Barley technical symposium. Melbourne, Australia Pp:2.17.1-2.17.7
    178.Settler TL and Waters I.2003. Reviews of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil 253:1-34
    179.Shaked H, Kashkush K, Ozkan H, Feldman M.2001. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749-1759
    180.Shindo C, Tsujimoto H, Sasakuma T.2003. Segregation analysis of heading traits in hexaploid wheat utilizing recombinant inbred lines. Heredity 90:56-63
    181.Snape J W, Butterworth K, Whitechurch E, Worland A J.2001. Waiting for fine times:genetics of flowering time in wheat. Euphytica 119:185-190
    182.Sourdille P, Snape JW Cadalen T, Charmet G, Nakata N. Bernard S, Bernard M (2000) Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome Jun; 43(3):487-494
    183.Sourdille P, Tixier MH, Charmet G, Gay G, Cadalen T, Bernard S, Bernard M. 2000. Location of genes involved in ear compactness in wheat (Triticum aestivum) by means of molecular markers. Mol Breed 6:247-255
    184.Sourdille P, Cadalen T, Guyomarc'h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M.2003. An update of the Courtot×Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530-538
    185.Somers DJ, Isaac P, Edwards K.2004. A high-density microsatellite consensus map for bread wheat(Triticum aestivum L.). Theoretical and Applied Genetics 109:1105-1114
    186.Song QJ, Shi JR., Singh S, Fickus E, et al.2005. Development and mapping of microsatellite (SSR) markers in wheat Theor Appl Genet,110:550-560
    187.Suenaga K, Khairallah M, William HM, Hoisington DA.2005. A new intervarietal linkage map and its application for quantitative trait locus analysis of "gigas" features in bread wheat. Genome 48:65-75
    188.Sutka J and Snape JW.1989. Location of a gene for frostresistance on chromosome 5 A of wheat. Euphytica 42:41-44
    189.Sziics P, Skinner JS, Karsai I, Cuesta-Marcos A, Haggard KG, Corey AE, Chen THH, Hayes PM.2007. Validation of the VRN-H2/VRN-H1 epistatic model in barley reveals that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity. Mol. Genet. Genomics 277:249-261
    190.Taeb, M., Koebner R.M.D., Forster B.P.1993. Genetic variation for waterlogging tolerance in the Triticeae and the chromosomal location of genes conferring waterlogging tolerance in Thinopyrum elongatum. Genome 36:825-830
    191.Talbert LE, Smith LY, Blake NK.1998. More than one origin of hexaploid wheat is indicated by sequence comparison of low-copy DNA. Genome 41:402-407
    192.Tanksley SD.1993. Mapping polygenes. Annual Review of Genetics 27:205-233
    193.Thomson CJ, Colmer TD, Watkin ELJ, Greenway H.1992. Tolerance of wheat. (Triticum aestivum cv. Gamenya and Kite) and triticale(Triticosecale cv. Muir) to waterlogging. New phytologist 120:335-344
    194.Toth B, Galiba G, Feher E, Sutka J, Snape JW.2003. Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theoretical and Applied Genetics 107(3):509-514
    195.Trethowan RM, Mujeeb-Kazi A.2008. Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 48: 1255-1265
    196.United States Department of Agriculture.2012. USDA World Agricultural Supply and Demand Estimates. Report No. WASDE-511; http: //usda01.librarv.cornell.edu/usda/current/wasde/wasde-10-11-2012.pdf
    197.Van Deynze A E., Dubcovsky J, Gill KS, Nelson JC, Sorrells ME, Dvofak J, Gill BS, Lagudah ES, McCouch SR, Appels R.1995. Molecular-genetic maps for group 1 chromosomes of triticeae species and their relation to chromosomes in rice and oat. Genome 38:45-59
    198.van Ooijen JW.2004. MapQTL(?)5, software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen, The Netherlands
    199.Van Slageren MW (1994) Wild wheats:a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricultural University, Wageningen
    200.Van Os, H., Stem, P., Visser, R.G.F. and Van Eck, H.J. (2005a) RECORD:a novel method for ordering loci on a genetic linkage map. Theoretical and Applied Genetics 112,30-40
    201.VanOs H, Stam P, Visser RGF, Van Eck H.2005b. SMOOTH:a statisticalmethod for successful removal of genotyping errors from high-density genetic linkage data. Theoretical and Applied Genetics 112:187-194
    202.Van Deynze AE, Dubcovsky J, Gill KS, et al.1995. Molecular-genetic maps for group 1 chromosomes of triticeae species and their relation to chromosomes in rice and oat. Genome,38:45-59
    203.Vardi A.1973. Introgression between different ploidy levels in the wheat group. In:Sears ER, Sears LMS (eds) Proceedings of 4th international wheat genetics symposium. University Missouri Press, Columbia, USA, pp 131-141
    204.Varshney RK,Marcel TC,Ramsay L, Russell J, Roder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A.2007. A high density barley microsatellite consensus map with 775 SSR loci. Theoretical and Applied Genetics 114: 1091-1103
    205.Verbyla AP, Cullis BR, Thompson R.2007. The analysis of QTL by simultaneous use of the full linkage map. Theoretical and Applied Genetics 116:95-111
    206.Vijayalakshmi K, Fritz AK, Paulsen GM, et al.2010. Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. 10.1007/s 11032-009-9366-8
    207.Vos P, Hogers R, Beleeker M, Reijans M, Van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M.1995. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Research 23:4407-4414
    208.Wang CM, Zhang YP, Han DJ, et al.2008. SSR and STS markers for wheat stripe rust resistance gene Yr26. Euphytica159:359-366
    209.Wang DL, Zhu J, Li ZK, et al.1999. Mapping QTLs with epistatic effects and QTL xenvironment interaction by mixed linear model approaches.99:1255-1264
    210.Wang L, Cui F, Ding AM, Li J, Wang JP, Zhao CH, Li XF, Feng DS, Wang HG. 2012.Length of internode and spike:how do they contribute to plant height of wheat at an individual QTL level?. Cereal Res Commun 40 (1):1-12
    211.Wang RX, Hai L, Zhang XY, You GX, Yan CS, Xiao SH.2009. QTL mapping for grain filling rate and yield-related traits in RTLs of the Chinese winter wheat population Heshangmai 9 Yu8679. Theor Appl Genet 118:313-325
    212.Welsh JR, Keim DL, Pirasteh B, Richards RD.1973. Genetic control of photoperiod response inwheat. In:Sears ER & S Sears LM (Eds.), Proc 4th IntWheat Genet Symp, pp:879-884. Agricultural Experimental Station, University ofMissouri, Columbia, USA
    213.Wen YX, Zhu J.2005. Multivariable conditional analysis for complex trait and its components. Acta Genet Sin 32:289-296
    214.Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A.2004. Diversity Arrays Technology (DArt) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915-9920
    215.Wilhelm EP, Turner AS, Laurie DA.2009. Photoperiod insensitive Ppd-Ala mutations in tetraploid wheat (Triticum durum Desf.). Theor Appl Genet.118, 285-294
    216.Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV.1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18:6531-6535
    217.Witkowski E, Waga J, Witkowska K, et al.2008. Association between frost tolerance and the alleles of high molecular weight glutenin subunits present in Polish winter wheats. Euphytica,159:377-384
    218.Wittenberg AHJ, van der Lee T, Cayla C, Kilian A, Visser RGF, Schouten HJ. 2005. Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Mol Genet Genomics 274:30-39
    219.Worland AJ, orner AB, Korzun V, Li WM, Petrov S, Sayers SJ.1998. The influence of photoperiod genes on the adaptability of European winter wheat. Euphytica 100:385-394
    220.Wu J, Jenkins J, Zhu J, McCarty J, Watson C.2003. Monte Carlo simulations on marker grouping and ordering. Theoretical and Applied Genetics 107:568-573
    221.Wu XS, Wang ZH, Chang XP, Jing RL.2010. Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes. J Exp Bot 61:2923-2937
    222.Xia L, Peng K, Yang S, Wenzl P, de Vicente C, Fregene M, Kilian A.2005. DArT for high-throughput genotyping of cassava (Manihot esculenta) and its wild relatives. Theor Appl Genet 110:1092-1098
    223.Xiang ZG, Zhang LQ, Ning SZ, Zheng YL, Liu DC (2009) Evaluation of Aegilops tauschii for heading date and its gene location in a re-synthesized hexaploid wheat. Agric Sci China 8:1-7
    224.Xing YZ, Tan YF, Hua JP, Sun XL and Xu CG.2002. Characterization of themain effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theoretical and Applied Genetics 105: 248-257
    225.Xue SL, Zhang ZZ, Lin F, et al.2008. A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181-189
    226.Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J.2006. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. nat. Acad. Sci. USA 103:19581-19586
    227.Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J.2003. Positional cloning of the wheat vernalization gene VRN1. Proc. nat. Acad. Sci. USA 100:6263-6268,
    228.Yandell BS, Mehta T, Banerjee S, Shriner D, Venkataraman R,Moon JY, Neely WW, Wu H, von Smith R Yi N.2007 R/qtlbim:QTL with Bayesian Interval Mapping in experimental crosses. Bioinformatics 23:641-643
    229.Yang J, Sears RG, Gill BS, et al.2002. Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica 126:275-282
    230.Yang WY, Liu DC, Li J, Zhang LQ, Wei HT, Hu XR, Zheng YL, He ZH, Zou YC. 2009. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China J. Genet. Genomics 36:539-546
    231.Yen C, Yang JL, Liu XD.1983. The distribution of Aegilops tauschii Cosson in China and with reference to the origin of the Chinese common wheat. In: Sakamoto S (ed) Proceedings of the 6th international wheat genetics symposium, Kyoto University, Japan, pp 55-58
    232.Yu JK, Dake TM, Singh S, Benscher D, Li W, Gill B, Sorrells ME.2004. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47:805-818
    233.Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Saghai Maroof MA. 1997. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proceedings of the National Academy of Sciences of the United States of America 94:9226-9231
    234.Zapata TC, Silva CP, Acevedo HE.2004. Grain yield and assimilate partitioning in wheat isogenic plant height lines. Agric. Tec.64(2):139-155
    235.Zanetti S, Winzeler M, Feuillet C, et al.2001. Genetic analysis of bread-making quality in wheat and spelt. Plant Breed 120:13-19.
    236.Zeng ZB.1993. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972-10976
    237.Zeng ZB.1994. Precision mapping of quantitative trait loci. Genetics 136: 1457-1468
    238.Zeng ZB, Kao CH, Basten CJ 1999. Estimating genetic arehitecture of quantitative traits.Gent Res 74:279-289
    239.Zhang LY, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Zhang AM.2010. Distribution in genome of Quantitative trait loci (QTL) for yield and yield-related traits in common wheat (Triticum aestivum L.). J Integr Plant Biol 52(11): 996-1007
    240.Zhang K, Tian J, Zhao, Liu B, Chen GF.2009. Detection of quantitative trait loci for heading date based on the doubled haploid progeny of two elite Chinese wheat cultivars. April 135(3):257-265
    241.Zhang KP, Tian JC, Zhao L, Wang SS.2008a. Mapping QTLs with epistatic effects and QTL 9 environment interactions for plant height using a doubled haploid population in cultivated wheat. J Genet Genomics 35:119-127
    242.Zhang KP, Zhao L, Hai Y, Chen GF, Tian JC (2008b) QTL mapping for adult-plant resistance to powdery mildew, lodging resistance and internode length below spike in wheat. Acta Agron Sin 34:1350-1357
    243.Zhang LQ, Liu DC, Yan ZH, et al.2004. Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Science in China Ser. C Life Sciences 47:6553-561
    244.Zhou MX, Li HB, Mendham NJ.2007. Combining ability of waterlogging tolerance in barley (Hordeum vulgare L.). Crop Science 47:278-284
    245.Zhuang JY, Fan YY, Rao ZM, Wu JL, Xia YW, Zheng KL.2002. Analysis of additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theoretical and Applied Genetics 105:1137-1145
    246. Sun et al. Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat[J].TAG Theoretical and Applied Genetics,2009, 120(5):1041-1051
    247.Zhu J.1992. Mixed model approaches for estimating genetic variance and covariance. J Biomath 7:1-11
    248.Zhao, Zhang et al, A comparison of grain protein content QTLs and flour protein content QTLs across environments in cultivated wheat[J]. Euphytica,2010, 174:325-335
    249.Zhu J.1995. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics 141:1633-163
    250.何中虎,兰彩霞,陈新民,邹裕春,庄巧生,夏先春.2011.小麦条锈病和白粉病成株抗性研究进展与展望.中国农业科学44(11):2193-2215
    251.李振岐,曾士迈.2002.中国小麦锈病,中国农业出版社
    252.孔令让, 董玉琛.1998.粗山羊草(Aegilops tauschii)有效利用的研究进展.山东农业大学学报,29(4):543-548
    253.毛双林.小麦重要性状QTL元分析及光合功能与耐湿性QTL定位[博士学位论文].四川农业大学.2007
    254.颜济,杨俊良.1999.小麦生物系统学 第一卷 小麦-山羊草复合群.北京:中国农业出版社,pp102-104
    255.杨武云,余毅,胡晓蓉,杨家秀,颜济,杨俊良,郑有良.1999.节节麦及其在小麦生物技术育种中的研究与应用.西南农业学报,12:19-25
    256.张连全.小麦异源六倍化过程及其在遗传育种中的应用.[博士学位论文].四川农业大学.2007
    257.朱军.运用混合线性模型定位复杂数量性状基因的方法.浙江大学学报(自然科学版),1999,33(3):327-335