MYB44对HrpN_(Ea)诱导拟南芥抗虫防卫信号传导的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Harpins是由革兰氏阴性茵产生的一种多效应蛋白质。其中HrpNEa研究比较透彻,早期实验表明外施HrpNEa能诱导植物包括抗虫性在内的多种抗性。研究发现HrpNEa诱导后能抑制拟南芥韧皮部取食昆虫—桃蚜(Myzus persicae)勺繁殖。桃蚜取食拟南芥韧皮部后,能激活乙烯信号通路并且诱导韧皮部防卫反应相关的基因的表达,引发植物韧皮部防卫反应(Phloem-based defenses, PBD)。 PBD能够抵御刺吸式昆虫的取食。韧皮部防卫反应包括韧皮部蛋白的积累、p-1,3-葡聚糖胼胝质的生物合成、筛孔的缩小和筛板的增厚。本论文研究的主要目的是阐明在HrpNEa诱导拟南芥抗虫过程中起作用的转录因子并研究其转录调控机制;解析HrpNEa诱导抗虫时启动的韧皮部防卫机制,寻找韧皮部防卫通路中的作用因子,并研究各因子之间的调控关系。
     1. HrpNEa诱导拟南芥抗虫过程中的转录因子筛选
     Harpin蛋白质可以通过激活乙烯信号通路进而诱导拟南芥的抗虫作用。EIN2,是乙烯信号通路的关键调控因子,在植物的防卫反应中有重要作用。为了研究HrpNEa在诱导拟南芥抗虫中的转录调控机制,我们从拟南芥中挑选了乙烯或者昆虫相关的37个的转录因子,分析这37种转录因子在拟南芥抗虫过程中的作用。RT-PCR方法显示37种转录因子中22种转录因子的编码基因能被乙烯与HrpNEa诱导上调表达,6种下调表达,其余9种没有变化。诱导上调表达基因中AtMYB44上调表达程度最强。根据对37种转录因子突变体的蚜虫繁殖率和趋避实验结果分析,发现与野生型相比HrpNEa处理后9种突变体抗虫能力较强,4种突变体较弱,24种突变体没有显著变化;所有突变体中atmyb44的抗虫能力是最弱的。进一步的研究发现乙烯信号通路的标志基因PDF1.2在突变体atmyb44没有表达,说明这个突变体中乙烯信号通路被阻断,并且atmyb44中EIN2基因没有被诱导表达。以上结果显示AtMYB44在HrpNEa诱导拟南芥抗桃蚜的过程中有调控乙烯信号通路的作用。
     2. AtGSL5与AtMYB44在HrpNEa诱导拟南芥抗虫过程中的作用
     HrpNEa处理拟南芥后可以诱导AtMYB44的表达量增加,提高拟南芥对桃蚜的抗性。在植物受到韧皮部取食昆虫如桃蚜的侵害时,部分葡聚糖合酶基因(GLUCAN SYNTHASE-LIKE,GSL)及其作用产物p-1,3-葡聚糖胼胝质起了重要作用。为了阐明GSL在HrpNEa诱导抗虫中的作用,选用AtGSLl到AtGSL12这12个葡聚糖合酶基因发生突变的37个atgsl突变体为材料。结果发现在37个atgsl突变体的抗虫性普遍比野生型差,其中atgsl5和atgsl6抗虫能力最差。刺探电位图谱技术(electrical penetration graph technique, EPG)的实验结果表明在HrpNEa处理atgsl突变体后atgsl5的抗虫能力是最弱的,这些结果都说明AtGSL5在HrpNEa诱导拟南芥抗虫过程中的重要作用。除北之外,HrpNEa处理野生型植株Clo-0后AtGSL5转录水平增强,胼胝质的积累量增加,但处理突变体atgsl5后没有发现上述的变化。我们还发现在突变体atgsl5和atmyb44中AtGSL5的表达量和胼胝质的积累量都非常低。由此可知AtGSL5和AtMYB44在HrpNEa诱导拟南芥抗桃蚜过程中都起了重要作用。
     3. HrpNEa诱导拟南芥抗桃蚜过程中AtPP2-A1的作用
     HrpNEa能够诱导拟南芥产生抗桃蚜等韧皮部取食昆虫的能力。当植物受到韧皮部取食昆虫侵袭时,就会启动韧皮部防卫反应来抵御侵害。韧皮部蛋白(PP2)是植物韧皮部的重要组成部分之一。通过筛选我们发现拟南芥的30个AtPP2基因中AtPP2-A1的抗虫作用显著。因此,我们将目标放在研究PP2编码基因AtPP2-A1在HrpNEa诱导植物抗虫中的作用机制上。EPG (electrical penetration graph)技术和蚜虫趋避实验结果发现,HrpNEa能诱导拟南芥野生型WT(wild type) Col-0产生抗虫性,在AtPP2-A1突变体atpp2-al上却不能诱导产生抗性。与突变体表现相反,AtPP2-A1过表达植株PP2OETAt (AtPP2-A1-overexpression transgenic Arabidopsis thaliana)表现出更强的抗性。我们对过表达植株PP2OETAt进行了AtPP2-A1定位的检测,发现基因在植株的叶片、花与茎等器官上都有表达。在这些器官上观察到PP2OETAt表现出比野生型更强的抗虫能力。这些结果说明AtPP2-A1在HrpNEa在诱导拟南芥产生抗虫性中具有重要作用。
     4. AtMYB44通过EIN2调控拟南芥对于桃蚜与小菜蛾的抗性
     EIN2是乙烯信号通路中的重要调控因子,同时也在植物的抗虫过程中起作用。拟南芥转录激活因子AtMYB44能够调节EIN2的表达水平。为了研究AtMYB44对EIN2的调节作用与拟南芥抗虫的关系,我们利用了多种植物材料,其中主要有:拟南芥野生型Col-0(wild type, WT).突变体atmyb44、atmyb44的回补体(Complemented atmyb44, Catmyb44)、AtMYB44过表达植株(AtMYB44-Overexpression Transgenic Arabidopsis)和MYB44OTA ein2-1(MYB44OTA与EIN2突变体ein2-1杂交产生)。结果发现AtMYB44在拟南芥抗桃蚜和小菜蛾的过程中起重要作用。不论是MYB44OTA还是蚜虫诱导的Catmyb44都会导致植株体内AtMYB44蛋白的表达量增加,而植株的抗性水平随之增加。在MYB44OTA中AtMYB44与EIN2的结合能力要强于Catmyb44。但在MYB44OTA ein2-1中没有发现AtMYB44与EIN2结合的情况。在上述的几种植物材料中,只有过表达植株MYB44OTA,表现出持续的对于桃蚜等韧皮部取食昆虫的抗性和体内芥子油苷合成相关基因的大量表达。在MYB44OTA ein2-1与ein2-1中不存在芥子油苷合成基因表达和韧皮部防卫反应现象。这就建立了AtMYB44在促进EIN2表达与增强拟南芥抗虫性之间的遗传学关系,推测AtMYB44是通过调节依赖于EIN2的韧皮部防卫反应进而调控拟南芥的抗虫性。
Harpins are multifunctional proteins produced by Gram-negative plant pathogenic bacteria HrpNEa is the first-characterized, well-studied harpin secreted by Erwinia amylovora. Harpins'multiple functions, especially in eliciting plant defense responses, were also elucidated initially by studies using HrpNEa as a paradigm. Early studies demonstrated that the external application of HrpNEa was able to induce resistance in a variety of plant species, and that the induced resistance effectively protected plants from attacks by insect herbivores. In response to the phloem-feeding stress, plants defend themselves by using the phloem-based defense mechanism. This mechanism involves the biosynthesis of β-1,3-glucan callose and subsequent closure of sieve pores and coagulation on sieve plates. Amain purpose of this study was to elucidate the elements which play roles in HrpNEa-induced resistance to M. persicae in Arabidopsis and the relationship among elements.
     1. Thirty-seven transcription factor genes differentially respond to a harpin protein and affect resistance to the green peach aphid in Arabidopsis
     The harpin protein HrpNEa induces Arabidopsis resistance to the green peach aphid by activating the ethylene signaling pathway and by recruiting EIN2, an essential regulator of ethylene signaling, into defense response in the plant. Here we investigated37ethylene-inducible Arabidopsis transcription factor genes for effects on the activation of ethylene signaling and insect defense. Twenty-eight of the37genes responded to both ethylene and HrpNEa, either promoted or inhibited in transcription, and18genes were promoted not only by ethylene but also by HrpNEa. In response to HrpNEa,22genes increased in transcription levels with AtMYB44being the most inducible, six genes had decreased transcript levels, and nine remained unchanged. When Arabidopsis mutants defected at the37genes were surveyed,24mutants were similar to the wild-type plant while four mutants were more resistant and nine mutants were more susceptible than wild type to aphid infestation. Comparing aphid-susceptible mutants showed a greater susceptibility in atmybl5, atmyb38, and atmyb44, which were generated previously by T-DNA insertion into the exon region of AtMYB15and the promoter regions of AtMYB38and AtMYB44. The atmyb44mutant was most susceptible to aphid infestation and most compromised in induced resistance. Resistance accompanied the expression of PDF1.2, an ethylene signaling marker gene that requires EIN2for transcription, in wild type but not in atmyb15, atmyb38, and atmyb44, suggesting a disruption of ethylene signaling in the mutants. However, only atmyb44incurred an abrogation in induced EIN2expression, suggesting a close relationship between AtMYB44and EIN2.
     2. HrpNEa-induced deterrent effects on phloem feeding of the green peach aphid myzus persicae requires ATGSL5and ATMYB44genes in arabidopsis thaliana
     In Arabidopsis thaliana(Arabidopsis) treated with the harpin protein HrpNEa, resistance to the green peach aphid Myzus persicae, a generalist phloem-feeding insect, develops with induced expression of the AtMYB44gene. Special GLUCAN SYNTHASE-LIKE (GSL) genes and β-1,3-glucan callose play an important role in plant defense responses to attacks by phloem-feeding insects. Here we report that AtGLS5and AtMYB44are both required for HrpNEa-induced repression of M. persicae feeding from the phloem of Arabidopsis leaves. In24-hour successive surveys on large-scale aphid populations, the proportion of feeding aphids was much smaller in HrpNEa-treated plants than in control plants, and aphids preferred to feed from37atgsl mutants tested rather than the wild-type plant. The atgsl mutants were generated previously by mutagenesis in twelve identified AtGSL genes (AtGSLl through AtGSL12); in the24-hour survey, both atgsl5and atgsl6performed to tolerate aphid feeding while atgsl5was the most tolerant. Consistently, atgsl5was also most inhibitive to the deterrent effect of HrpNEa on the phloem-feeding activity of aphids monitored by the electrical penetration graph technique. Theses results suggested an important role of the AtGSL5gene in the effect of HrpNEa. In response to HrpNEa, AtGSL5expression and callose deposition were induced in the wild-type plant but not in atgsl5. In response to HrpNEa, moreover, the AtMYB44gene known as required for repression of aphid reproduction on the plant was also required for repression of the phloem-feeding activity. Little amounts of the AtGSL5transcript and callose deposition were detected in the atmyb44mutant as in atgsl5. Both mutants performed similarly in tolerating the
     phloem-feeding activity and impairing the deterrent effect of HrpNEa, suggesting that AtGSL5and AtMYB44both contributed to the effect.
     3. Harpin-induced expression and transgenic overexpression of the phloem protein gene ATPP2-A1in arabidopsis repress phloem feeding of the green peach aphid myzus persicae
     Treatment of plants with HrpNEa, a protein of harpin group produced by Gram-negative plant pathogenic bacteria, induces plant resistance to insect herbivores, including the green peach aphid Myzus persicae, a generalist phloem-feeding insect. Under attacks by phloem-feeding insects, plants defend themselves using the phloem-based defense mechanism, which is supposed to involve the phloem protein2(PP2), one of the most abundant proteins in the phloem sap. The purpose of this study was to obtain genetic evidence for the function of the Arabidopsis thaliana (Arabidopsis) PP2-encoding gene AtPP2-Al in resistance to M. persicae when the plant was treated with HrpNEa and after the plant was transformed with AtPP2-Al.The electrical penetration graph technique was used to visualize the phloem-feeding activities of apterous agamic M. persicae females on leaves of Arabidopsis plants treated with HrpNEa and an inactive protein control, respectively. A repression of phloem feeding was induced by HrpNEa in wild-type (WT) Arabidopsis but not in atpp2-al/E/142, the plant mutant that had a defect in the AtPP2-Al gene, the most HrpNEa-responsive of30AtPP2genes. In PP2OETAt (AtPP2-Al-overexpression transgenic Arabidopsis thaliana) plants, abundant amounts of the AtPP2-A1gene transcript were detected in different organs, including leaves, stems, calyces, and petals. All these organs had a deterrent effect on the phloem-feeding activity compared with the same organs of the transgenic control plant. When a large-scale aphid population was monitored for24hours, there was a significant decrease in the number of aphids that colonized leaves of HrpNEa-treated WT and PP2OETAt plants, respectively, compared with control plants.The repression in phloem-feeding activities of M. persicae as a result of AtPP2-Al overexpression, and as a deterrent effect of HrpNEa treatment in WT Arabidopsis rather than the atpp2-alVE/142mutant suggest that AtPP2-Al plays a role in plant resistance to the insect, particularly at the phloem-feeding stage. The accompanied change of aphid population in leaf colonies suggests that the function of AtPP2-Al is related to colonization of the plant.
     4. AtMYB44regulates resistance to the green peach aphid and diamondback moth by activating EIN2-affected defenses in arabidopsis
     Recently we show that the transactivator AtMYB44regulates transcription of EIN2, a gene essential for ethylene signaling and insect resistance, in Arabidopsis thaliana (Arabidopsis). To link the transactivation with insect resistance, we investigated the wild-type and atmyb44mutant plants, genetically Complemented atmyb44(Catmyb44), and AtMYB44-Overexpression Transgenic Arabidopsis (MYB44OTA). We found that AtMYB44played a critical role in Arabidopsis resistance to the phloem-feeding generalist green peach aphid and leaf-chewing generalist caterpillar diamondback moth. Resistance levels were consistent with amounts of the AtMYB44protein either induced by insect infestations in Catmyb44or constitutively produced in MYB44OTA. In both cases, AtMYB44bound the EIN2promoter coincidently with EIN2expression at a greater extent in MYB44OTA than in Catmyb44. Both events, however, did not occur in the hybrid MYB44OTA ein2-1, generated by crossing MYB44OTA and EIN2-deficient Arabidopsis mutant ein2-1. In the different plant genotypes, only MYB44OTA constitutively displayed phloem-based defenses specific to phloem-feeding insects and robust expression of genes involved in biosynthesis of glucosinolates known to be the deterrent of both phloem-feeding and leaf-chewing insects. Phloem-based defenses and glucosinolate-related gene expression were not detected in ein2-1and MYB44OTA ein2-1. These results establish a genetic connection between the regulatory role of AtMYB44in EIN2expression and development of Arabidopsis resistance to insects.
引文
1. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi S K (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63-78.
    2. Agarwal M, Hao Y, Kapoor A, Dong C H, Fujii H, Zheng X, Zhu J K (2006). A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J. Biol. Chem.281:37636-37645.
    3. Alonso J M, Hirayama T, Roman G, Nourizadeh S, Ecker J R (1999). EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148-2152.
    4. Alonso J M, Stepanova A N, Leisse T J, Kim C J, Chen H, Shinn P, Stevenson D K, Zimmerman J, Barajas P, Cheuk R (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653-657.
    5. Andi S, Taguchi F, Toyoda K, Shiraishi T, Ichinose Y (2001). Effect of methyl jasmonate on harpin-induced hypersensitive cell death, generation of hydrogen peroxide and expression of PAL mRNA in tobacco suspension cultured BY-2 cells. Plant Cell Physiol.42:446-449.
    6. Baker C J, Orlandi E W, Mock N W (1993). Harpin, an elicitor of hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiol.102:1341-1344.
    7. Bartlet E, Kiddle G, Williams I, Wallsgrove R M (1999). Wound-induced increases in the glucosinolate content of oilseed rape and their effect on subsequent herbivory by a crucifer specialist. Entomol. Exp. Appl.91:163-167.
    8. Beneteau J, Renard D, Marche L, Douville E, Lavenant L, Rahbe Y, Dupont D, Vilaine F, Dinant S (2010). Binding properties of the N-acetylglucosamine and high-mannose N-glycan PP2-A1 phloem lectin in Arabidopsis. Plant Physiol.153:1345-1361.
    9. Boccara M, Schwartz W, Guiot E, Vidal G, Paepe R D, Dubois A, Boccara A C (2007). Early chloroplastic alterations analysed by optical coherence tomography during a harpin-induced hypersensitive response. Plant J.50:338-346.
    10. Boevink P, Cruz S, Hawes C, Harris N, Oparka K J (1996). Virus-mediated delivery of the green fluorescent protein to the endoplasmic reticulum of plant cells. Plant J.10:935-941.
    11. Bradford M (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72:248-254.
    12. Camehl I, Sherameti I, Venus Y, Bethke G, Varma A, Lee J, Oelmuller R (2010). Ethylene signalling and ethylene-targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis between the endophytic fungus Piriformospora indica and Arabidopsis thaliana. New Phytol.185:1062-1073.
    13. Chang C, Shocker J A (1999). The ethylene-response pathway:signal perception to gene regulation. Curr. Opin. Plant Biol.2:352-358.
    14. Chen H, Xue L, Chintamanani S, Germain H, Lin H, Cui H, Cai R, Zuo J, Tang X, Li X, Guo H, Zhou J M (2009). ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis. Plant Cell 21:2527-2540.
    15. Chen L, Qian J, Qu S P, Long J Y, Yin Q, Zhang C L, Wu X J, Sun F, Wu T Q, Hayes M, Beer S V, Dong H S (2008). Identification of specific fragments of HpaGXoooc, a harpin from Xanthomonas oryzae pv. oryzicola, that induce disease resistance and enhance growth in plants. Phytopathology 98:781-791.
    16. Chen X Y, Kim J Y (2009). Callose synthesis in higher plants. Plant Signal. Behav.4: 489-492.
    17. Chen X Y, Liu L, Lee E K, Han X, Rim Y, Chu H, Kim S W, Sack F, Kim J Y (2009). The Arabidopsis callose synthase gene, GSL8, is required for cytokinesis and cell patterning. Plant Physiol.150:105-113.
    18. Chen Y H, Yang X Y, He K, Liu M H, Li J G, Gao Z F, Lin Z Q, Zhang Y F, Wang X X, Qiu X M, Shen Y P, Zhang L, Deng X H, Luo J C, Deng X W, Chen Z L, Gu H Y, Qu L J (2006). The MYB transcription factor superfamily of Arabidopsis:expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol. Biol.60:107-124.
    19. Cheng H, Song S, Xiao L, Soo HM, Cheng Z, Xie D, Peng J (2009). Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet.5:e 1000440.
    20. Consonni C, Bednarek P, Humphry M, Francocci F, Ferrari S, Harzen A, van Themaat E V, Panstruga R (2009). Tryptophan-derived metabolites are required for antifungal defence in the Arabidopsis thaliana mlo2 mutant. Plant Physiol.152:1544-1561.
    21. Cui L, Miao J, Furuya T (2007). PfGCN5 mediated histone H3 acetylati on plays a key role in gene expression in Plasmodium falciparum. Eukaryot Cell 6:1219-1227.
    22. De Vos M, Jander G (2009). Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant Cell Environ.32:1548-1560.
    23. De Vos M, Van Oosten V R, Van Poecke R M P, Van Pelt J A, Pozo M J, Mueller M J, Buchala A J, Metraux J P, Van Loon L C, Dicke M, Pieterse C M J (2005). Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant-Microbe Interact.18:923-927.
    24. Desikan R, Hancock J T, Ichimura K, Shinozaki K, Neill S J (2001). Harpin induced activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol.126: 1579-1587.
    25. Diethard T, Christine P (1989). A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98:81-85.
    26. Dinant S, Clark A M, Zhu Y, Vilaine F, Palauqui J C, Kusiak C, Thompson G A (2003). Diversity of the superfamily of phloem lectins (phloem protein 2) in angiosperms. Plant Physiol.131:114-128.
    27. Dong H P, Peng J L, Bao Z L, Meng X D, Bonasera J M, Chen G Y, Beer S V, Dong H S (2004). Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol.136:3628-3638.
    28. Dong H P, Yu H Q, Bao Z L, Guo X J, Peng J L, Yao Z, Chen G Y, Dong H S (2005). The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta 221:313-327.
    29. Dong H S, Delaney T P, Bauer D W, Beer S V (1999). Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J.20:207-215.
    30. Dong H, Peng J, Bao Z, Meng X, Bonasera J M, Chen G, Beer S V, Dong H 2004). Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol.136:3628-3638.
    31. Dong X Y, Hong Z L, Chatterjee J, Kim S, Verma D P (2008).Expression of callose synthase genes and its connection with Nprl signaling pathway during pathogen infection. Planta 229: 87-98.
    32. Dong X, Hong Z, Sivaramakrishnan M, Mahfouz M, Verma D P (2005). Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. Plant J.42:315-328.
    33. Douglas A E (2006). Phloem-sap feeding by animals:problems and solutions. J. Exp. Bot.57: 747-754.
    34. El-Wakeil N E, Volkmar C, Sallam A A. (2010). Jasmonic acid induces resistance to economically important insect pests in winter wheat. Pest Manag. Sci.66:549-554.
    35. Enns L C, Kanaoka M M, Torii K U, Comai L, Okada K, Cleland R E (2005). Two callose synthases, GSL1 and GSL5, play an essential and redundant role in plant and pollen development and in fertility. Plant Mol. Biol.58:333-349.
    36. Fahey J W, Zalcmann AT, Talalay P (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5-51.
    37. Fan W, Dong X (2002). In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14:1377-1389.
    38. Feng J X, Liu D, Pan Y, Gong W, Ma L G, Luo J C, Deng X W, Zhu Y X (2005). An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family. Plant Mol. Biol.59:853-868.
    39. Galan J E, Collmer A (1999). Type Ⅲ secretion machines:bacterial devices for protein delivery into host cells. Science 284:1322-1328.
    40. Gebuhr T C, Kovalev G I, Bultman S (2003). The role of Brgl:a catalytic subunit of mammalian chromat in remodeling complexes in T cell development. J. Exp. Med.198: 1937-1949.
    41. Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000). Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12: 1117-1126.
    42. Gong W, Shen Y P, Ma L G, Pan Y, Du Y L, Wang D H, Yang J Y, Hu L D, Liu X F, Dong C X, Ma L, Chen Y H, Yang X Y, Gao Y, Zhu D M, Tan X L, Mu J Y, Zhang D B, Liu Y L, Dinesh-Kumar S P, Li Y, Wang X P, Gu H Y, Qu L J, Bai S N, Lu Y T, Li J Y, Zhao J D, Zuo J R, Huang H, Deng X W, Zhu Y X (2004). Genome-wide ORFeome cloning and analysis of Arabidopsis transcription factor genes. Plant Physiology 135:773-782.
    43. Gou Z H, Zhang S P, Dong H S (2009). Effects of HrpNEa on inducing Aphid repellency on Cucumis melo. Acta Agric. Boreali-Sinica 24:188-192.
    44. Grefen C, Stadele K, Ruzicka K, Obrdlik P, Harter K, Horak J (2007). Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Mol. Plant 1:308-320.
    45. Guo H, Ecker J R (2004). The ethylene signaling pathway:new insights. Curr. Opin. Plant Biol. 7:40-49.
    46. Guzman P, Ecker J R (1990). Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513-523.
    47. Hall B, Shakeel S, Schaller G E (2007). Ethylene receptors:ethylene perception and signal transduction. J. Plant Growth Regul.26:118-130.
    48. Hause B, Stenzei I, Miersch O, Maucher H, Kramei I R, Ziegi E, Wasternack C (2000). Tissue—specific oxylipin signa—ture of tomato flowers:allene oxide cyclase is highly expressed in distinct flower organs and vascular bundles. Plant J.24:113-126.
    49. He S Y, Huang H C, Collmer A (1993). Pseudomonas syringae pv. syringae harpinpss:A protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73: 1255-1266.
    50. Hong Z, Delauney A J, Verma D P (2001). A cell plate-specific callose synthase and its interaction with phragmoplastin. Plant Cell 13:755-768.
    51. Hopkins R J, Griffiths D W, Birch A, McKinlay R G (1998). Influence of increasing herbivore pressure on modification of glucosinolate content of Swedes (Brassica napus ssp rapifera). J. Chem. Ecol.24:2003-2019.
    52. Horsman S, Moorhouse M J, de Jager V C, van der Spek P, Grosveld F, Strouboulis J, Katsantoni E Z. (2006). TF target mapper:a BLAST search tool for the identification of transcription factor target genes. BMC Bioinformatics 7:120.
    53. Howe J A (2001). Cyclopentenone signals for plant defense:remodeling the jasmonate acid response.Proc. Natl. Acad. Sci. USA.98:12317-12319.
    54. Hoyos A E, Stanley C M, He S Y, Pike S, Pu X A, Novacky A (1996). The interaction of harpinpss with plant cell walls. Mol. Plant-Microbe Interact.9:608-618.
    55. Hua J, Meyerowitz E (1998). Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261-271.
    56. Huang L J, Chen X Y, Rim Y, Han X, Cho W K, Kim S W, Kim J Y (2008). Arabidopsis glucan synthase-like 10 functions in male gametogenesis. J. Plant Physiol.166:344-352.
    57. Inga M, Heidi M A, Amanda H, Ramesh R, Jack C S (2005). Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol.138:1149-1162.
    58. Jacobs A K, Lipka V, Burton R A, Panstruga R, Strizhov N, Schulze-Lefert P, Fincher G B (2003). An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell 15:2503-2513.
    59. Jae HK, Georg J (2007). Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. The Plant Journal 49:1008-1019.
    60. Jang Y S, Sohn S I, Wang M H (2006). The hrpN gene of Erwinia amylovora stimulates tobacco growth and enhances resistance to Botrytis cinerea. Planta 223:449-456.
    61. Jefferson R A, Burgess S M (1986). Hirsh D:β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc. Natl. Acad. Sci. USA 83:8447-8451.
    62. Jefferson R A, Kavanagh TA, Bevan M W (1987). GUS fusions:β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J.6:3901-3907.
    63. Jung C, Lyou S H, Yeu S, Kim M A, Rhee S, Kim M, Lee J S, Choi Y D, Cheong J J (2007). Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. Plant Cell Rep.26:1053-1063.
    64. Jung C, Seo J S, Han S W, Koo Y J, Kim C H, Song S I, Nahm B H, Choi Y D, Cheong J J (2008). Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol.146:623-635.
    65. Jung C, Shim J S, Seo J S, Lee H Y, Kim C H, Choi Y D, Cheong J J (2010). Non-specific phytohormonal induction of AtMYB44 and suppression of jasmonate-responsive gene activation in Arabidopsis thaliana. Mol. Cells 29:1-10.
    66. Jung C, Shim J S, Seo J S, Lee H Y, Kim C H, Choi Y D, Cheong J J (2010). Non-specific phytohormonal induction of AtMYB44 and suppression of jasmonate-responsive gene activation in Arabidopsis thaliana. Mol. Cells 29:71-76.
    67. Jurgen E, Sunita G C, Nathalie M, Dana S A, Gen-Ichiro A, Jorg B (2008). Comparative transcriptome analysis of Arabidopsis thaliana infestedby diamond back moth (Plutella xylostella) larvae reveals signatures of stress response, secondary metabolism, and signaling. BMC Genomics 9:154.
    68. Kaliff M, Staal J, Myrenas M, Dixelius C (2007).ABA is required for Leptosphaeria maculans resistance via ABI1- and ABI4-dependent signalling; Mol. Plant-Microbe Interact.20: 335-345.
    69. Kehr J (2006). Phloem sap proteins:their identities and potential roles in the interaction between plants and phloem-feeding insects. J. Exp. Bot.57:761-774.
    70. Kempema L A, Cui X, Holzer F M, Walling L L (2007). Arabidopsis transcriptome changes in response to phloem-feeding silver leaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol.143:849-865.
    71. Kendrick M D, Chang C (2008). Ethylene signaling:New levels of complexity and regulation. Curr. Opin. Plant Biol.11:479-485.
    72. Kim J F, Beer, S V (2000). hrp genes and harpins of Erwinia amylovora:A decade of discovery. In Fire Blight and Its Causative Agent, Erwinia amylovora. Edited by:Vanneste JL. Wallingford UK:CAB International Press141-162.
    73. Kirik V, Kolle K, Misera S, Baumlein H (1998). Two novel MYB homologues with changed expression in late embryogenesis-defective Arabidopsis mutants. Plant Mol. Biol.37:819-827.
    74. Klingler J, Creasy R, Gao L, Nair R M, Calix A S, Jacob H S, Edwards O R, Singh K B (2005). Aphid resistance in Medicago trunculata involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiol.137:1445-1455.
    75. Kotelnikova E A, Makev V J, Gelf M S (2005). Evolution of transcription factor DNA binding sites. Gene 347:255-263.
    76. Kranz H D, Denekamp M, Greco R, Jin H, Leyva A, Meissner R C, Petroni K, Urzainqui A, Bevan M, Martin C (1998). Towards functional characterization of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J.16:263-276.
    77. Kusnierczyk A, Winge P, Jorstad T S, Troczynska J, Rossiter J T, Bones A M (2008). Towards global understanding of plant defence against aphids-timing and dynamics of early Arabidopsis defence responses to cabbage aphid(Brevicoryne brassicae) attack. Plant Cell and Environ.31:1097-1115.
    78. Kwack M S, Eui Nam Kim E N, Lee H, Kim J-W, Chun S-C, Kim K D (2005). Digital image analysis to measure lesion area of cucumber anthracnose by Colletotrichum orbiculare. J. Gen. Plant Pathol.71:418-421.
    79. Lee J, Klessig D F, Nurnberger T (2001). A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellar calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 13:1079-1093
    80. Li B, Shi Q, Fang J, Pan X (2004). Techniques of diseases, insect pests and weeds control and their efficacy in bio-rational rice production (in Chinese with English abstract). J. Appl. Ecol. 15:111-115
    81. Li H, Wong W S, Zhu L, Guo HW, Ecker J, Li N (2009). Phosphoproteomic analysis of ethylene-regulated protein phosphorylation in etiolated seedlings of Arabidopsis mutant ein2 using two-dimensional separations coupled with a hybrid quadrupole time-of-flight mass spectrometer. Proteomics 9:1646-1661.
    82. Liu F Q, Liu H X, Jia Q, Wu X J, Guo X J, Zhang S J, Song F, Dong H S (2006). The internal glycine-rich motif and cysteine suppress several effects of the HpaGxooc protein in plants. Phytopathology 96:1052-1059.
    83. Liu R, Chen L, Jia Z, Lii B, Shi H, Dong H (2011). Transcription factor Atmyb44 regulates induced expression of the Ethylene Insensitive2 gene in Arabidopsis responding to a harpin protein. MPMI 24:377-389.
    84. Liu R, Lu B, Wang X, Zhang C, Zhang S, Qian J, Chen L, Shi H, Dong H (2010). Thirty-seven transcription factor genes differentially respond to a harpin protein and affect resistance to the green peach aphid in Arabidopsis. J Biosci.35:435-450.
    85. Livak K J, Schmittgen T D (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods 25:402-408.
    86. Louis J, Leung Q, Pegadaraju V, Reese J, Shah J (2010). PAD4-dependent antibiosis contributes to the ssi2-conferred hyper-resistance to the green peach aphid. Mol. Plant-Microbe Interact.23:618-627.
    87. Lii B, Sun W, Zhang S, Zhang C, Qian J, Wang X, Gao R, Dong H (2011). HrpNEa-induced deterrent effect on phloem feeding of the green peach aphid Myzus persicae requires AtGSL5 and AtMYB44 genes in Arabidopsis thaliana. J Biosci.36:123-137.
    88. Marc A H, Marc J (2003). Mart inWerbThe Basic Helix-Loop-Helix Transcription Factor Family in Plants:A Genome-Wide Study of Protein Structure and Functional Diversity. Mol. Biol.Evol.20:735-747.
    89. McConn M, Greelmann R A, Bell E, Mullet J E, Browse J (1997). Jasmonate is essential for insect defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 94:5473-5477.
    90. Miao W G, Wang X B, Li M, Song C F, Wang Y, Hu D W, Wang J S (2010). Genetic transformation of cotton with a harpin-encoding gene hpaxoo confers an enhanced defense response against different pathogens through a priming mechanism. BMC Plant Biol.10:67.
    91. Moran P J, Thompson G A (2001). Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol.125:1074-1085.
    92. Mutti N S, Louis J, Pappan L K, Pappan K, Begum K, Chen M, Park Y, Dittmer N, Marshall J, Reese J C, Reeck G R (2008). A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proc. Nat. Acad Sci. USA 105: 9965-9969.
    93. Nicholson S J, Hartson S D, Puterka G J (2012). Proteomic analysis of secreted saliva from Russian Wheat Aphid (Diuraphis noxia Kurd.) biotypes that differ in virulence to wheat. J. Proteomics 75:2252-2268.
    94. Nishimura M T, Stein M, Hou B, Vogel J P, Edwards H, Somerville S C (2003). oss of a callose synthase results in salicylic acid-dependent disease resistance; Science 301:969-972.
    95. Panchuk I I, Zentgraf U, Moran P J, Thompson G A (2001). Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol.125:1074-1085.
    96. Pareja M, Qvarfordt E, Webster B, Mayon P, Pickett J, Birkett M, Glinwood R. (2012). Herbivory by a phloem-feeding insect inhibits floral volatile production. PLoS One 7(2).:e31971.
    97. Pegadaraju V, Louis J, Singh V, Reese J C, Bautor J, Feys B J, Cook G, Parker J E, Shah J (2007). Phloem-based resistance to green peach aphid is controlled by Arabidopsis PHYTOALEXIN DEFICIENT4 without its signaling partner ENHANCED DISEASE SUSCEPTIBILITY1. Plant J.52:332-341.
    98. Peng J L, Bao Z L, Dong H S, Ren H Y, Wang J S (2004). Expression of harpinXoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathol.94: 1048-1055.
    99. Peng J L, Dong H S, Dong H P, Delaney T P, Bonasera B M, Beer S V (2003). Harpin-elicited hypersensitive cell death and pathogen resistance requires the NDR1 and EDS1 genes. Physiol. Mol. Plant Pathol.62:317-326.
    100. Penninckx I A, Thomma B P, Buchala A, Metraux J P, Broekaert W F (1998). Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103-2113.
    101. Pitzschke A, Djamei A, Teige M, Hirt H (2009). VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression. Proc. Natl. Acad. Sci. USA 106:18414-18419.
    102. Pollard D G (1972). Plant penetration by feeding aphids (Hemiptera, Aphidoidea) A review. Bul. Entomol. Res.62:631-714.
    103. Powell G, Tosh CR, Hardie J (2006). Host plant selection by aphids:behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol.51:309-330.
    104. Qiao H, Chang K N, Yazaki J, Ecker J R (2009). Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev. 23:512-521.
    105. Qu L J, Zhu Y X (2006). Transcription factor families in Arabidopsis:major progress and outstanding issues for future research. Curr. Opin. Plant Biol.9:544-549.
    106. Read S M, Northcote D H (1983). Subunit structure and interactions of the phloem proteins of Cucurbita maxima (pumpkin). Eur. J. Biochem.134:561-569.
    107. Reboutier D, Frankart C, Briand J, Biligui B, Laroche S, Rona J P, Barny M A, Bouteau F (2007). The HrpNEa harpin from Erwinia amylovora triggers differential responses on the nonhost Arabidopsis thaliana cells and on the host apple cells. Mol. Plant Microbe Interact.20: 94-100
    108. Ren H, Gu G, Long J, Qian J, Wu T, Song T, Zhang S, Chen Z, Dong H (2006). Combinative effects of a bacterial type-Ⅲ effector and a biocontrol bacterium on rice growth and disease resistance. J. Biosci.31:617-627.
    109. Ren X Y, Liu F, Bao Z L, Zhang C L, Wu X J, Chen L, Liu R X, Dong H S (2008). Root growth of Arabidopsis thaliana is regulated by ethylene and abscisic acid signaling interaction in response to HrpNEa, a bacterial protein of harpin group. Plant Mol. Biol. Rep.26:225-240.
    110.Reuber T L, Plotnikova J M, Dewdney J, Rogers E E, Wood W, Ausubel F M (1998).Correlation of defense gene induction defects with powdery mildew susceptibility in Arabidopsis enhanced disease susceptibility mutants. Plant J.16:473-485.
    111. Saheed S A, Cierlik I, Larsson K A, Delp G, Bradley G, Jonsson L M, Botha C E (2009). Stronger induction of callose deposition in barley by Russian wheat aphid than bird cherry-oat aphid is not associated with differences in callose synthase or β-1,3-glucanase transcript abundance. Physiol. Plant 135:150-161.
    112. Schaller G E, Bleecker A B (1995). Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270:1809-1811.
    113. Schaller G E, Ladd A N, Lanahan M B, Spanbauer J M, Bleecker A B (1995). The ethylene response mediator ETR1 from Arabidopsis forms a disulfide-linked dimmer. J. Biol. Chem.270: 12526-12530.
    114. Serpa V, Vernal J, Lamattina L, Grotewold E, Cassia R, Terenzi H (2007). Inhibition of AtMYB2 DNA-binding by nitric oxide involves cysteine S-nitrosylation. Biochem. Biophys, Res. Commun.361:1048-1053.
    115. Shin R, Burch A Y, Huppert K A, Tiwari S B, Murphy A S, Guilfoyle T J, Schachtman D P (2007). The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell 19:2440-2453.
    116. Stintzi A. Weber H, Reymond P, Browse J, Farmer E E (2002). Plant defense in the absence of jasmonic acid:the role of cyclopean tenones. Prot. Natl. Atad. Sti. USA 98:12837-12842.
    117. Stone B A, Clarke A E (1992). Chemistry and physiology of higher plant 1,3-β-glucans (callose). In Chemistry and biology of 1,3-β-glucans Edited by:Stone BA, Clarke AE. Bundoora Australia:La Trobe University Press:365-429.
    118. Stracke R, Werber M, Weisshaar B (2001). The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol.4:447-456.
    119. Strobel R N, Gopalan J S, Kuc J A, He S Y (1996). Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae HrpZpss protein. Plant J.9:431-439.
    120. Sun L J, Ren H Y, Liu R X, Li B Y, Wu T Q, Sun F, Liu H M, Wang X M, Dong H S (2010). An h-type thioredoxin functions in tobacco defense responses to two species of viruses and an abiotic oxidative stress. Mol. Plant-Microbe Interact.23:1470-1485.
    121. Thompson G A, Goggin F L(2006). Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J. Exp. Bot.,57:755-766.
    122. Tjallingii F (2006). Salivary secretions by aphids interacting with proteins of phloem wound responses. J. Exp. Bot.57:739-745.
    123. Tjallingii W F (1987). Electrical recording of stylet penetration activities; in Aphids:Their Biology, Natural Enemies and Control (ed.) Minks A K and Harrewijn P (Elsevier Amsterdam): 95-108.
    124. Tjallingii W F, Esch T H (1993). Fine-structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiol. Entomol.18:317-328.
    125. Tjallingii W F (1987). Electrical recording of stylet penetration activities. In Aphids:Their Biology, Natural Enemies and Control, Vol 2B Edited by:Minks AK, Harrewijn P. Elsevier Amsterdam:95-108.
    126. Toller A, Brownfield L, Neu C, Twell D, Schulze-Lefert P (2008). Dual function of Arabidopsis Glucan Synthase-Like genes GSL8 and GSL10 in male gametophyte development and plant growth. Plant J.54:911-923.
    127. Urao T, Kazuko YS, Urao S, Shinozaki K (1993). An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5:1529-1539.
    128. van der Zwet T, Beer S V (1999). Fire Blight-Its Nature, Prevention and Control:A Practical Guide to Integrated Disease Management. Agriculture Information Bulletin (U.S. Department of Agriculture). No.631
    129. Verma D P S, Hong Z (2001). Plant callose synthase complexes.Plant Mol. Biol.47:693-701.
    130. Villada E S, Gonzalez E G, L6pez-Ses6 A I, Castiel A F, G6mez-Guillam6n M L (2009). Hypersensitive response to Aphis gossypii Glover in melon genotypes carrying the Vat gene. J. Exp. Bot.60:3269-3277.
    131. Volkov R A (2005). Expression of the Apx gene family during leaf senescence of Arabidopsis thaliana. Planta 222:926-932.
    132. Volkov R A, Panchuk I I, Schoffl F (2003). Heat-stress-dependency and developmental modulation of gene expression:the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. J. Exp. Bot.54:2343-2349.
    133. Wang K L, Li H, Ecker J R (2002). Ethylene biosynthesis and signaling networks. Plant Cell 14:S131-S151.
    134. Wang X, Kong H, Ma H (2009). F-box proteins regulate ethylene signaling and more. Genes Dev.23:391-396.
    135. Wawrzynska A, Rodibaugh N L, Innes R W (2010). Synergistic activation of defense responses in Arabidopsis by simultaneous loss of the GSL5 callose synthase and the EDR1 protein kinase. Mol. Plant-Microbe Interact.23:578-584.
    136. Wei Z M, Laby R J, Zumoff C H, Bauer D W, He S Y, Collmer A, Beer S V (1992). Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85-88.
    137. Wei Z M, Beer S (1996). Harpin from Erwinia amylovora induces plant resistance. Acta. Hortic. 11:223-225.
    138. Will T, van Bel A J (2008). Induction as well as suppression:How aphid saliva may exert opposite effects on plant defense. Plant Signal. Behav.3:427-430.
    139. Will T,van Bel A J (2006). Physical and chemical interactions between aphids and plants. J. Exp. Bot.57:729-737.
    140. Wu T, Guo A, Zhao Y, Wang X, Wang Y, Zhao D, Li X, Ren H, Dong H (2010). Ectopic expression of the rice lumazine synthase gene contributes to defense responses in transgenic tobacco. Phytopathology 100:573-581.
    141. Wu X, Wu T, Long J, Yin Q, Zhang Y, Chen L, Liu R, Gao T, Dong H (2007). Productivity and biochemical properties of green tea in response to the intact molecule and functional fragments of HpaGXooc. a harpin protein from the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. Oryzicola. J. Biosci.32:1119-1131.
    142. Xie B, Wang X, Hong Z (2009). Precocious pollen germination in Arabidopsis plants with altered callose deposition during microsporogenesis. Planta 231:809-823.
    143. Xie D X, Chen Z (2000). Harpin-induced hypersensitive cell death is associated with altered mitochondrial functions in tobacco cells. Mol. Plant-Microbe. Interact.13:183-190.
    144. Yoo S, Cho Y, Tena G, Xiong Y, Sheen J (2008). Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signaling. Nature 451:789-795.
    145. Zhang C L, Bao Z L, Liang Y, Yang X, Wu X J, Hong X Y, Dong H S (2007). Abscisic acid mediates Arabidopsis drought tolerance induced by HrpNEa in the absence of ethylene signaling. Plant Mol. Biol. Rep.25:98-114.
    146. Zhang C, Shi H, Chen L, Wang X, Lu B, Zhang S, Liang Y, Liu R, Qian J, Sun W, You Z, Dong H (2011). Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae. BMC Plant biology 11:11.
    147. Zhang S J, Yang X, Sun M W, Sun F, Deng S, Dong H (2009). Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana.J. Integr. Plant Biol.51:167-174.
    148. Zheng H, Rowland O, Kunst L (2005). Disruptions of the Arabidopsis enoyl-CoA eeductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17:1467-1481
    149. Zitter T A, Beer S V (1998). Harpin for insect control. Phytopathology 88:S104-S105.
    150.贾贞,马银山,毛学文,兰小平(2005)植物的虫害反应与抗虫机制研进展.河西学院学报21:52-55.
    151.闻伟刚(2001).水稻黄单胞菌过敏性反应激发子的研究.博士学位论文,南京农业大学
    152.杨金水.(2002).基因组学.北京:高等教育出版社:78-80.
    153.杨致荣,王兴春,李西明,杨长登(2004).高等植物转录因子的研究进展.遗传26:403-408.
    154.张娜,尹继刚,孙高超,陈启君(2009).真核生物转录因子及其研究方法进展.动物医学进展30:75-79.
    155.朱家红,彭世清(2006).茉莉酸及其信号传导研究进展.西北植物学报26:2166-2172.