芥子油苷代谢网络的组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芥子油苷是一类含氮、含硫的次生代谢产物,因其在植物与环境相互关系中重要作用而备受瞩目。芥子油苷合成途径在过去二十多年间已经被研究得十分清楚。为了探索芥子油苷代谢与其他代谢途径及生理活动之间的关联,一方面利用生物信息学技术分析了与芥子油苷合成途径相关的代谢网络,另一方面通过代谢组学和蛋白质组学手段分析了代谢组和蛋白质组对脂肪族芥子油苷代谢紊乱的响应,以此解析与芥子油苷代谢相关的代谢途径。综合两方面的结果来看,芥子油苷合成涉及到植物从整体水平上对代谢途径的协同控制。芥子油苷代谢不仅仅是初生代谢的延伸,其整个代谢途径与细胞内信号以及其他物质代谢途径有着紧密的联系。
     我们使用具有庞大数据库和强大计算功能的生物信息学软件(AraNet, GeneMania和ATTED-Ⅱ),分析了与芥子油苷代谢相关的代谢网络,包括与植物防御、次生代谢、氨基酸代谢、转运、激素代谢、蛋白质代谢、核苷酸代谢、碳水化合物代谢、信号转导、翻译、细胞壁、生长发育、脂类代谢相关的诸多生理过程。为了验证该模型,我们一方面通过候选基因突变体的基因芯片数据分析芥子油苷基因的表达差异,另一方面选择候选基因分析了突变体和过量表达植株中芥子油苷变化。这两种验证策略表明,我们使用三种软件分析芥子油苷代谢网络、寻找候选基因的方法是有效可行的。在此基础之上,利用该代谢网络模型,我们可以产生更多高质量的假说,并利用实验加以验证。这种生物信息学构建模型的方法很大程度上提高了科学研究的效率。
     我们采用包括超高效液相色谱-飞行时间质谱法和气相色谱与质谱联用的非目标代谢物分析技术,分析了代谢组对脂肪族芥子油苷紊乱的响应,以此更为全面地了解芥子油苷代谢网络。氨基酸、碳水化合物、脂类、辅助因子、核酸、多肽、激素代谢物以及次生代谢物等73种化合物含量显著变化。通过互补型蛋白质组学技术,鉴定了215种差异表达蛋白质。功能类群分析表明,差异蛋白质广泛地参与各类生理活动,如与代谢相关,蛋白质结合因子,能量代谢相关,植物防御相关,蛋白质折叠与降解,运输相关,与环境互作相关,蛋白质合成。
Glucosinolate are group of secondary metabolites containing nitrogen and sulfur. Since its roles in plant-envorinment interactions, a lot of attentions have been paid for its metabolism. Last two decades have seen great progresses in glucosinolate biosynthesis. Nowdays, almost all genes in glucosinolate biosynthesis pathway have been identificated. To undersatand plant molecular connections between glucosinilate metabolism and other metabolism pathways/bioprocesses, we employed bioinformatic tools to analyze molecular network of glucosinolate biosynthesis on one hand. On the other hand, we used metabolimcs and proteimics approaches to inverstigate the metabolome and proteome changes response to perturbation of glucosinolate biosynthesis. The results from two parts show, glucosinolate biosynthesis involves the whole plant metabolism which regulates different metabolism pathways. Glucosinolate metabolism is not only a metabolism pathway which extand from primary metabolism, but is also tightly related to cellular signaling and other metabolism pathways.
     Bioinformatic tools (AraNet, GeneMania and ATTED-II)with large database and efficient algorithm were used for analyze the metabolism network related to glucosinolate biosynthesis. Our results show that the metabolism network includes stress and defence, secondary metabolism, amino acid metabolism, transport, hormone metabolism, protein metabolism, nucleotide metabolism, carbohydrate metabolism, signal transduction, translation, cell well, development and lipid metabolism. In order to validate the network, on one hand, microarray data of candidate mutants were used for profile glucosinolate biosynthesis genes expression. On the other hand, candidate genemutant and overexpression plants were used for futher glucosinolate analysis. Validation results showed,using bioinformatic tools for analysis glucosinolate metabolism network is a powerful way to discovery of new candidate genes and connections between glucosinolate pathway and other pathways. Creation of an in silico network of glucosinolate biosynthesis will allow the generation of many testable hypotheses and ultimately enable predicative biology.
     Meanwhile, we employed nontargeted metabolite analysis performed by ultrahigh-performance liquid chromatography/tandem mass spectrometry and gas chromatography/mass spectrometry to inverstigate metabolome responsed to glucosinolate perturbation.We were able to identify73metabolites display significant changes in levels, which are clustered into eight functional groups, i.e. amino acids, carbohydrate, lipid, cofactors, nucleotide, peptide, hormone, and secondary metabolites. Two complementary proteomic approaches2D-DIGE and iTRAQ were employed to investigate global protein changes in response to glucosinolate perturbation. Both2D-DIGE and iTRAQ identified215differentially expressed proteins, which were overrepresented into eight groups, i.e. metabolism, protein binding, enery, defense, protein fate, transport, interaction with the environment, and protein synthesis.
     With findings from bioinformatic, metabolomic, and proteomics analysis, we draw conclusions:1. amino acids and chloroplast metabolism are higly correlated to glucosinolate metabolism;2. Cross-talk between glucosinolate biosynthesis and hormone metabolism;3. glucosinolate perturbation causes oxidatitve stress;4. glucosinolate metabolism realated to plant transport system.
引文
[1]Reichelt M, Brown PD, Schneider B, Oldham NJ, Stauber E, Tokuhisa J, et al. Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry.2002;59(6):663-71.
    [2]Tonsor SJ, Alonso-Blanco C, Koornneef M. Gene function beyond the single trait:natural variation, gene effects, and evolutionary ecology in Arabidopsis thaliana. Plant, Cell & Environment.2005;28(1):2-20.
    [3]Grubb CD, Abel S. Glucosinolate metabolism and its control. Trends in Plant Science. 2006;11(2):89-100.
    [4]Smolen G, Bender J. Arabidopsis cytochrome p450 cyp83B1 mutations activate the tryptophan biosynthetic pathway. Genetics.2002;160(1):323-32.
    [5]Fahey JW, Zalcmann AT, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry.2001;56(1):5-51.
    [6]陈亚州,阎秀峰.芥子油苷在植物-生物环境关系中的作用.生态学报,2007,6:2594-2593
    [7]Mithen RF, Dekker M, Verkerk R, Rabot S, Johnson IT. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. Journal of Agricultural and Food Chemistry.2000;80(7):967-84.
    [8]Mikkelsen MD, Petersen BL, Olsen CE, Halkier BA. Biosynthesis and metabolic engineering of glucosinolates. Amino Acids.2002;22(3):279-95.
    [9]Kliebenstein DJ, Lambrix VM, Reichelt M, Gershenzon J, Mitchell-Olds T. Gene duplication in the diversification of secondary metabolism:Tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in arabidopsis. Plant Cell.2001;13(3):681-93.
    [10]Halkier BA, Gershenzon J. Biology and biochemistry of glucosinolates. Annual Review of Plant Biology.2006;57:303-33.
    [11]Kliebenstein DJ, Kroymann J, Mitchell-Olds T. The glucosinolate-myrosinase system in an ecological and evolutionary context. Current Opinion in Plant Biology.2005;8(3):264-71.
    [12]Wittstock U, Halkier BA. Glucosinolate research in the Arabidopsis era. Trends in Plant Science.2002;7(6):263-70.
    [13]Rodman JE. A Taxonomic Analysis of Glucosinolate-Producing Plants,.1. Phenetics. Systematic Botany.1991;16(4):598-618.
    [14]Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry.2003;62(3):471-81.
    [15]Petersen BL, Chen SX, Hansen CH, Olsen CE, Halkier BA. Composition and content of glucosinolates in developing Arabidopsis thaliana. Planta.2002;214(4):562-71.
    [16]Chen S, Andreasson E. Update on glucosinolate metabolism and transport. Plant Physiology and Biochemistry.2001;39(9):743-58.
    [17]17. Bridges M, Jones AME, Bones AM, Hodgson C, Cole R, Bartlet E, et al. Spatial organization of the glucosinolate-myrosinase system in brassica specialist aphids is similar to that of the host plant. Proceedings of the Royal Society B:Biological Sciences. 2002;269(1487):187-91.
    [18]Koroleva OA, Davies A, Deeken R, Thorpe MR, Tomos AD, Hedrich R. Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiology. 2000;124(2):599-608.
    [19]Attieh J, Sparace SA, Saini HS. Purification and properties of multiple isoforms of a novel thiol methyltransferase involved in the production of volatile sulfur compounds from Brassica oleracea. Archives of biochemistry and biophysics.2000;380(2):257-66.
    [20]Attieh J, Djiana R, Koonjul P, Etienne C, Sparace SA, Saini HS. Cloning and functional expression of two plant thiol methyltransferases:a new class of enzymes involved in the biosynthesis of sulfur volatiles. Plant molecular biology.2002;50(3):511-21.
    [21]Andreasson E, Wretblad S, Graner G, Wu X, Zhang J, Dixelius C, et al. The myrosinase-glucosinolate system in the interaction between Leptosphaeria maculans and Brassica napus. Molecular plant pathology.2001;2(5):281-6.
    [22]Kliebenstein DJ. Secondary metabolites and plant/environment interactions:a view through Arabidopsis thaliana tinged glasses. Plant, Cell & Environment. 2004;27(6):675-84.
    [23]Rask L, Andreasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J. Myrosinase:gene family evolution and herbivore defense in Brassicaceae. Plant Molecular Biology. 2000;42(1):93-113.
    [24]Giamoustaris A, Mithen R. The Effect of Modifying the Glucosinolate Content of Leaves of Oilseed Rape (Brassica-Napus Ssp Oleifera) on Its Interaction with Specialist and Generalist Pests. Annals of Applied Biology.1995;126(2):347-63.
    [25]Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, et al. Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(14):4859-64.
    [26]Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein DJ, Gershenzon J. The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell.2001;13(12):2793-807.
    [27]Kroymann J, Donnerhacke S, Schnabelrauch D, Mitchell-Olds T. Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. Proceedings of the National Academy of Sciences of the United States of America.2003;100:14587-92.
    [28]Mewis I, Appel HM, Hom A, Raina R, Schultz JC. Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiology.2005;138(2):1149-62.
    [29]Burow M, Muller R, Gershenzon J, Wittstock U. Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. Journal of Chemical Ecology.2006;32(11):2333-49.
    [30]Barth C, Jander G. Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant Journal.2006;46(4):549-62.
    [31]Bradburne RP, Mithen R. Glucosinolate genetics and the attraction of the aphid parasitoid Diaeretiella rapae to Brassica. Proceedings of the Royal Society B:Biological Sciences. 2000;267(1438):89-95.
    [32]Mewis I, Ulrichs C, Schnitzler WH. The role of glucosinolates and their hydrolysis products in oviposition and host-plant finding by cabbage webworm, Hellula undalis. Entomologia Experimentalis et Applicata.2002;105(2):129-39.
    [33]Mewis I, Tokuhisa JG, Schultz JC, Appel HM, Ulrichs C, Gershenzon J. Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry.2006;67(22):2450-62.
    [34]Heidel AJ, Clauss MJ, Kroymann J, Savolainen O, Mitchell-Olds T. Natural variation in MAM within and between populations of Arabidopsis lyrata determines glucosinolate phenotype. Genetics.2006; 173(3):1629-36.
    [35]Bennett RN, Wallsgrove RM. Secondary Metabolites in Plant Defense-Mechanisms. New Phytologist.1994; 127(4):617-33.
    [36]36. Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J. Disarming the mustard oil bomb. Proceedings of the National Academy of Sciences of the United States of America.2002;99(17):11223-8.
    [37]Bartlet E, Kiddle G, Williams I, Wallsgrove R. Wound-induced increases in the glucosinolate content of oilseed rape and their effect on subsequent herbivory by a crucifer specialist. Entomologia Experimentalis et Applicata.1999;91(1):163-7.
    [38]38. Li Q, Eigenbrode SD, Stringham GR, Thiagarajah MR. Feeding and growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities. Journal of Chemical Ecology. 2000;26(10):2401-19.
    [39]Mitchell-Olds T, Pedersen D. The molecular basis of quantitative genetic variation in central and secondary metabolism in Arabidopsis. Genetics.1998;149(2):739-47.
    [40]Kliebenstein DJ, Figuth A, Mitchell-Olds T. Genetic architecture of plastic methyl jasmonate responses in Arabidopsis thaliana. Genetics.2002;161(4):1685-96.
    [41]Stranger BE, Mitchell-Olds T. Nucleotide variation at the myrosinase-encoding locus, TGG1, and quantitative myrosinase enzyme activity variation in Arabidopsis thaliana. Molecular Ecology.2005;14(1):295-309.
    [42]Kroymann J, Donnerhacke S, Schnabelrauch D, Mitchell-Olds T. Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. Proceedings of the National Academy of Sciences of the United States of America.2003;100 Suppl 2:14587-92.
    [43]Van Poecke RMP, Posthumus MA, Dicke M. Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula:Chemical, behavioral, and gene-expression analysis. Journal of Chemical Ecology. 2001;27(10):1911-28.
    [44]Jones AM, Winge P, Bones AM, Cole R, Rossiter JT. Characterization and evolution of a myrosinase from the cabbage aphid Brevicoryne brassicae. Insect Biochemistry and Molecular Biology.2002;32(3):275-84.
    [45]Pontoppidan B, Ekbom B, Eriksson S, Meijer J. Purification and characterization of myrosinase from the cabbage aphid (Brevicoryne brassicae), a brassica herbivore. European Journal of Biochemistry.2001;268(4):1041-8.
    [46]Pieterse CMJ, van Wees SCM, van Pelt JA, Knoester M, Laan R, Gerrits N, et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell. 1998;10(9):1571-80.
    [47]Traw MB, Kim J, Enright S, Cipollini DF, Bergelson J. Negative cross-talk between salicylate-and jasmonate-mediated pathways in the Wassilewskija ecotype of Arabidopsis thaliana. Molecular Ecology.2003;12(5):1125-35.
    [48]Wittstock U, Gershenzon J. Constitutive plant toxins and their role in defense against herbivores and pathogens. Current Opinion in Plant Biology.2002;5(4):300-7.
    [49]Mengiste T, Chen X, Salmeron J, Dietrich R. The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell.2003; 15(11):2551-65.
    [50]Huitema E, Vleeshouwers VGAA, Francis DM, Kamoun S. Active defence responses associated with non-host resistance of Arabidopsis thaliana to the oomycete pathogen Phytophthora infestans. Molecular Plant Pathology.2003;4(6):487-500.
    [51]Kunkel BN, Brooks DM. Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology.2002;5(4):325-31.
    [52]Li J, Brader G, Kariola T, Palva ET. WRKY70 modulates the selection of signaling pathways in plant defense. Plant Journal.2006;46(3):477-91.
    [53]Tierens KFMJ, Thomma BPH, Brouwer M, Schmidt J, Kistner K, Porzel A, et al. Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of arabidopsis tomicrobial pathogens. Plant Physiology.2001;125(4):1688-99.
    [54]Manici LM, Lazzeri L, Baruzzi G, Leoni O, Galletti S, Palmieri S. Suppressive activity of some glucosinolate enzyme degradation products on Pythium irregulare and Rhizoctonia solani in sterile soil. Pest Management Science.2000;56(10):921-6.
    [55]Zeng RS, Mallik AU, Setliff E. Growth stimulation of ectomycorrhizal fungi by root exudates of Brassicaceae plants:Role of degraded compounds of indole glucosinolates. Journal of Chemical Ecology.2003;29(6):1337-55.
    [56]Ishimoto H, Fukushi Y, Yoshida T, Tahara S. Rhizopus and Fusarium are selected as dominant fungal genera in rhizospheres of Brassicaceae. Journal of Chemical Ecology. 2000;26(10):2387-99.
    [57]Brader G, Mikkelsen MD, Halkier BA, Palva ET. Altering glucosinolate profiles modulates disease resistance in plants. Plant Journal.2006;46(5):758-67.
    [58]Stotz HU, Pittendrigh BR, Kroymann J, Weniger K, Fritsche J, Bauke A, et al. Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth. Plant Physiology. 2000;124(3):1007-17.
    [59]Kazan K, Manners JM. Jasmonate signaling:Toward an integrated view. Plant Physiology. 2008;146(4):1459-68.
    [60]McSteen P, Zhao Y. Plant hormones and signaling:Common themes and new developments. Developmental Cell.2008;14(4):467-73.
    [61]Lorenzo O, Solano R. Molecular players regulating the jasmonate signalling network. Current Opinion in Plant Biology.2005;8(5):532-40.
    [62]Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ, et al. NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell.2003;15(3):760-70.
    [63]Brader G, Tas E, Palva ET. Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora. Plant Physiology.2001;126(2):849-60.
    [64]Mikkelsen MD, Petersen BL, Glawischnig E, Jensen AB, Andreasson E, Halkier BA. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiology.2003;131(1):298-308.
    [65]65. Kloek AP, Verbsky ML, Sharma SB, Schoelz JE, Vogel J, Klessig DF, et al. Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coil) mutation occurs through two distinct mechanisms. Plant Journal. 2001;26(5):509-22.
    [66]Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, et al. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell. 2000;103(7):1111-20.
    [67]Rayapuram C, Baldwin IT. Increased SA in NPR1-silenced plants antagonizes JA and JA-dependent direct and indirect defenses in herbivore-attacked Nicotiana attenuata in nature. Plant Journal.2007;52(4):700-15.
    [68]Kahl J, Siemens DH, Aerts RJ, Gabler R, Kuhnemann F, Preston CA, et al. Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Planta.2000;210(2):336-42.
    [69]Shoji T, Nakajima K, Hashimoto T. Ethylene suppresses jasmonate-induced gene expression in nicotine biosynthesis. Plant and Cell Physiology.2000;41(9):1072-6.
    [70]Endt DV, Kijne JW, Memelink J. Transcription factors controlling plant secondary metabolism:what regulates the regulators? Phytochemistry.2002;61(2):107-14.
    [71]71. Malitsky S, Blum E, Less H, Venger I, Elbaz M, Morin S, et al. The Transcript and Metabolite Networks Affected by the Two Clades of Arabidopsis Glucosinolate Biosynthesis Regulators. Plant Physiology.2008; 148(4):2021-49. doi:DOI 10.1104/pp.108.124784.
    [72]Celenza JL, Quiel JA, Smolen GA, Merrikh H, Silvestro AR, Normanly J, et al. The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiology.2005;137(1):253-62.
    [73]Gigolashvili T, Berger B, Mock HP, Muller C, Weisshaar B, Fluegge UI. The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant Journal.2007;50(5):886-901.
    [74]Gigolashvili T, Yatusevich R, Berger B, Muller C, Flugge UI. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant Journal.2007;51(2):247-61.
    [75]Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, et al. Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proceedings of the National Academy of Sciences of the United States of America.2007;104(15):6478-83.
    [76]Hemm MR, Ruegger MO, Chapple C. The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell.2003; 15(1):179-94.
    [77]vanderKooij TAW, DeKok LJ, Haneklaus S, Schnug E. Uptake and metabolism of sulphur dioxide by Arabidopsis thaliana.New Phytologist.1997;135(1):101-7.
    [78]Nikiforova V, Freitag J, Kempa S, Adamik M, Hesse H, Hoefgen R. Transcriptome analysis of sulfur depletion in Arabidopsis thaliana:interlacing of biosynthetic pathways provides response specificity. Plant Journal.2003;33(4):633-50.
    [79]Levy M, Wang QM, Kaspi R, Parrella MP, Abel S. Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant Journal.2005;43(1):79-96.
    [80]Skirycz A, Reichelt M, Burow M, Birkemeyer C, Rolcik J, Kopka J, et al. DOF transcription factor AtDofl.1(OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant Journal.2006;47(1):10-24.
    [81]Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K, Takahashi H. Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell. 2006;18(11):3235-51.
    [82]Kim JH, Durrett TP, Last RL, Jander G. Characterization of the Arabidopsis TU8 glucosinolate mutation, an allele of TERMINAL FLOWER2. Plant Molecular Biology. 2004;54(5):671-82.
    [83]Bennett AE, Bever JD, Bowers MD. Arbuscular mycorrhizal fungal species suppress inducible plant responses and alter defensive strategies following herbivory. Oecologia. 2009; 160(4):771-9.
    [84]Mutwil M, Ruprecht C, Giorgi FM, Bringmann M, Usadel B, Persson S. Transcriptional Wiring of Cell Wall-Related Genes in Arabidopsis. Molecular Plant.2009;2(5):1015-24.
    [85]Schuster J, Knill T, Reichelt M, Gershenzon J, Binder S. BRANCHED-CHAIN AMINOTRANSFERASE4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis. Plant Cell.2006;18(10):2664-79.
    [86]Knill T, Schuster J, Reichelt M, Gershenzon J, Binder S. Arabidopsis branched-chain aminotransferase 3 functions in both amino acid and glucosinolate biosynthesis. Plant Physiology.2008;146(3):1028-39.
    [87]Gigolashvili T, Berger B, Flugge UI. Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3-MYB transcription factors in Arabidopsis thaliana. Phytochemistry Reviews.2009;8(1):3-13.
    [88]Kroymann J, Textor S, Tokuhisa JG, Falk KL, Bartram S, Gershenzon J, et al. A gene controlling variation in arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiology.2001; 127(3):1077-88.
    [89]Sawada Y, Toyooka K, Kuwahara A, Sakata A, Nagano M, Saito K, et al. Arabidopsis Bile Acid:Sodium symporter Family Protein 5 is Involved in Methionine-Derived Glucosinolate Biosynthesis. Plant and Cell Physiology.2009;50(9):1579-86.
    [90]He Y, Chen B, Pang QY, Strul JM, Chen SX. Functional specification of Arabidopsis isopropylmalate isomerases in glucosinolate and leucine biosynthesis. Plant and Cell Physiology.2010;51(9):1480-7.
    [91]He Y, Mawhinney TP, Preuss ML, Schroeder AC, Chen B, Abraham L, et al. A redox-active isopropylmalate dehydrogenase functions in the biosynthesis of glucosinolates and leucine in Arabidopsis. Plant Journal.2009;60(4):679-90.
    [92]Wittstock U, Halkier BA. Cytochrome P450CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. Journal of Biological Chemistry.2000;275(19):14659-66.
    [93]Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA. Cytochrome P450CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. Journal of Biological Chemistry. 2000;275(43):33712-7.
    [94]Chen SX, Glawischnig E, Jorgensen K, Naur P, Jorgensen B, Olsen CE, et al. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant Journal.2003;33(5):923-37.
    [95]Bak S, Feyereisen R. The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiology.2001;127(1):108-18.
    [96]Yan XF, Chen SX. Regulation of plant glucosinolate metabolism. Planta. 2007;226(6):1343-52.
    [97]Sonderby IE, Geu-Flores F, Halkier BA. Biosynthesis of glucosinolates--gene discovery and beyond. Trends in Plant Science.2010;15(5):283-90.
    [98]Gigolashvili T, Engqvist M, Yatusevich R, Muller C, Flugge UI. HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytologist.2008;177(3):627-42.
    [99]Gachon CMM, Langlois-Meurinne M, Henry Y, Saindrenan P. Transcriptional co-regulation of secondary metabolism enzymes in Arabidopsis:functional and evolutionary implications. Plant Molecular Biology.2005;58(2):229-45.
    [100]Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, et al.Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem.2005;280(27):25590-5.
    [101]Geu-Flores F, Nielsen MT, Nafisi M, Moldrup ME, Olsen CE, Motawia MS, et al. Glucosinolate engineering identifies a gamma-glutamyl peptidase. Nature Chemical Biology.2009;5(8):575-7.
    [102]Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM. Glucosinolate Metabolites Required for an Arabidopsis Innate Immune Response. Science.2009;323(5910):95-101.
    [103]Hansen BG, Kerwin RE, Ober JA, Lambrix VM, Mitchell-Olds T, Gershenzon J, et al. A Novel 2-Oxoacid-Dependent Dioxygenase Involved in the Formation of the Goiterogenic 2-Hydroxybut-3-enyl Glucosinolate and Generalist Insect Resistance in Arabidopsis. Plant Physiology.2008;148(4):2096-108.
    [104]Lee I, Ambaru B, Thakkar P, Marcotte EM, Rhee SY. Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana. Nature Biotechnology.2010;28(2):149-U14. doi:Doi 10.1038/Nbt.1603.
    [105]Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, et al. The GeneMANIA prediction server:biological network integration for gene prioritization and predicting gene function. Nucleic Acids Research.2010;38:W214-W20.
    [106]Obayashi T, Kinoshita K. Coexpression landscape in ATTED-Ⅱ:usage of gene list and gene network for various types of pathways. Journal of Plant Research.2010;123(3):311-9.
    [107]de Kraker JW, Gershenzon J. From Amino Acid to Glucosinolate Biosynthesis:Protein Sequence Changes in the Evolution of Methylthioalkylmalate Synthase in Arabidopsis. Plant Cell.2011;23(1):38-53.
    [108]Klein M, Reichelt M, Gershenzon J, Papenbrock J. The three desulfoglucosinolate sulfotransferase proteins in Arabidopsis have different substrate specificities and are differentially expressed. FEBS Journal.2006;273(1):122-36.
    [109]Li J, Hansen BG, Ober JA, Kliebenstein DJ, Halkier BA. Subclade of Flavin-Monooxygenases Involved in Aliphatic Glucosinolate Biosynthesis. Plant Physiology.2008; 148(3):1721-33.
    [110]Zhao YD, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, et al. Trp-dependent auxin biosynthesis in Arabidopsis:involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes & Development.2002;16(23):3100-12.
    [111]Wentzell AM, Rowe HC, Hansen BG, Ticconi C, Halkier BA, Kliebenstein DJ. Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways. PLoS Genetics.2007;3(9):1687-701.
    [112]Grubb CD, Zipp BJ, Ludwig-Muller J, Masuno MN, Molinski TF, Abel S. Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant Journal.2004;40(6):893-908.
    [113]Mikkelsen MD, Naur P, Halkier BA. Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant Journal.2004;37(5):770-7.
    [114]Schena M, Shalon D, Davis RW, Brown PO. Quantitative Monitoring of Gene-Expression Patterns with a Complementary-DNA Microarray. Science. 1995;270(5235):467-70.
    [115]Li SM, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, et al. A map of the interactome network of the metazoan C-elegans. Science.2004;303(5657):540-3.
    [116]Broom BM, Rinsurongkawong W, Pusztai L, Do KA. Building networks with microarray data. Methods in Molecular Biology.2010;620:315-43.
    [117]Wolfe CJ, Kohane IS, Butte AJ. Systematic survey reveals general applicability of "guilt-by-association" within gene coexpression networks. BMC Bioinformatics.2005;6. doi:Artn 227
    [118]Lehner B, Lee I. Network-guided genetic screening:building, testing and using gene networks to predict gene function. Briefings in Ffunctional Genomics & Proteomics. 2008;7(3):217-27.
    [119]Morant M, Ekstrom C, Ulvskov P, Kristensen C, Rudemo M, Olsen CE, et al. Metabolomic, Transcriptional, Hormonal, and Signaling Cross-Talk in Superroot2. Molecular Plant.2010;3(1):192-211.
    [120]Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, et al. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell. 2007;19(7):2225-45.
    [121]Schuhegger R, Nafisi M, Mansourova M, Petersen BL, Olsen CE, Svatos A, et al. CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. Plant Physiology. 2006;141(4):1248-54.
    [122]Mugford SG, Yoshimoto N, Reichelt M, Wirtz M, Hill L, Mugford ST, et al. Disruption of Adenosine-5'-Phosphosulfate Kinase in Arabidopsis Reduces Levels of Sulfated Secondary Metabolites. Plant Cell.2009;21(3):910-27.
    [123]Consonni C, Bednarek P, Humphry M, Francocci F, Ferrari S, Harzen A, et al. Tryptophan-Derived Metabolites Are Required for Antifungal Defense in the Arabidopsis mlo2 Mutant. Plant Physiology.2010;152(3):1544-61.
    [124]Tsuchisaka A, Yu GX, Jin HL, Alonso JM, Ecker JR, Zhang XM, et al. A Combinatorial Interplay Among the 1-Aminocyclopropane-1-Carboxylate Isoforms Regulates Ethylene Biosynthesis in Arabidopsis thaliana. Genetics.2009;183(3):979-1003.
    [125]Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, et al. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases:key enzymes in ABA catabolism. The EMBO journal.2004;23(7):1647-56.
    [126]Millar AA, Jacobsen JV, Ross JJ, Helliwell CA, Poole AT, Scofield G, et al. Seed dormancy and ABA metabolism in Arabidopsis and barley:the role of ABA 8'-hydroxylase. Plant Journal.2006;45(6):942-54.
    [127]Okamoto M, Tatematsu K, Matsui A, Morosawa T, Ishida J, Tanaka M, et al. Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant Journal.2010;62(1):39-51.
    [128]Wang L, Tsuda K, Sato M, Cohen JD, Katagiri F, Glazebrook J. Arabidopsis CaM Binding Protein CBP60g Contributes to MAMP-Induced SA Accumulation and Is Involved in Disease Resistance against Pseudomonas syringae. PLoS Pathogens. 2009;5(2).
    [129]De Vos M, Van Oosten VR, Van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, et al. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Molecular Plant-Microbe Interactions.2005;18(9):923-37.
    [130]Visvalingam S, Honsi TG, Bones AM. Sulphate and micronutrients can modulate the expression levels of myrosinases in Sinapis alba plants. Physiol Plantarum. 1998;104(1):30-7.
    [131]Woodward AW, Bartel B. Auxin:Regulation, action, and interaction. Annals of botany-London.2005;95(5):707-35.
    [132]Delarue M, Prinsen E, Van Onckelen H, Caboche M, Bellini C. Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis. Plant Journal.1998;14(5):603-11.
    [133]Cohen JD, Slovin JP, Hendrickson AM. Two genetically discrete pathways convert tryptophan to auxin:more redundancy in auxin biosynthesis. Trends in Plant Science. 2003;8(5):197-9.
    [134]Kendrew SG. YUCCA:a flavin monooxygenase in auxin biosynthesis. Trends in Biochemical Sciences.2001;26(4):218.
    [135]Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, et al. The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450CYP83B1, a modulator of auxin homeostasis. Proceedings of the National Academy of Sciences of the United States of America.2000;97(26):14819-24.
    [136]Seo M, Akaba S, Oritani T, Delarue M, Bellini C, Caboche M, et al. Higher activity of an aldehyde oxidase in the auxin-overproducing superrootl mutant of Arabidopsis thaliana. Plant Physiology.1998;116(2):687-693.
    [137]Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M, Sandberg G, et al. Bus, a bushy arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell.2001;13(2):351-67.
    [138]Tantikanjana T, Mikkelsen MD, Hussain M, Halkier BA, Sundaresan V. Functional analysis of the tandem-duplicated P450 genes SPS/BUS/CYP79F1 and CYP79F2 in glucosinolate biosynthesis and plant development by Ds transposition-generated double mutants. Plant Physiology.2004;135(2):840-8.
    [139]Tantikanjana T, Yong JWH, Letham DS, Griffith M, Hussain M, Ljung K, et al. Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene. Genes & Development.2001;15(12):1577-88.
    [140]Clough SJ, Bent AF. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal.1998;16(6):735-43.
    [141]Oliver MJ, Guo LN, Alexander DC, Ryals JA, Wone BWM, Cushman JC. A Sister Group Contrast Using Untargeted Global Metabolomic Analysis Delineates the Biochemical Regulation Underlying Desiccation Tolerance in Sporobolus stapfianus. Plant Cell.2011;23(4):1231-48.
    [142]Zhu MM, Dai SJ, McClung S, Yan XF, Chen SX. Functional Differentiation of Brassica napus Guard Cells and Mesophyll Cells Revealed by Comparative Proteomics. Molecular & Cellular Proteomics.2009;8(4):752-66.
    [143]143. Ferret-Bernard S, Castro-Borges W, Dowle AA, Sanin DE, Cook PC, Turner JD, et al. Plasma membrane proteomes of differentially matured dendritic cells identified by LC-MS/MS combined with iTRAQ labelling. Journal of Proteomics. 2012;75(3):938-48.
    [144]Aoyama T, Chua NH. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant Journal.1997;11(3):605-12.
    [145]Chiwocha SDS, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M, Ross ARS, et al. A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry:an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant Journal. 2003;35(3):405-17.
    [146]Cipollini DF, Sipe ML. Jasmonic acid treatment and mammalian herbivory differentially affect chemical defenses and growth of wild mustard (Brassica kaber). Chemoecology.2001;11(3):137-43.
    [147]Mudd SH, Datko AH. The S-Methylmethionine Cycle in Lemna-Paucicostata. Plant Physiology.1990;93(2):623-30.
    [148]Tegeder M, Rentsch D. Uptake and Partitioning of Amino Acids and Peptides. Mol Plant.2010;3(6):997-1011. doi:Doi 10.1093/Mp/Ssq047.
    [149]Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM. Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics.2009;9(9):2419-31.
    [150]Owiti J, Grossmann J, Gehrig P, Dessimoz C, Laloi C, Hansen MB, et al. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration. Plant Journal.2011;67(1):145-56.
    [151]Zhou YS, Chen WN. iTRAQ-coupled 2-D LC-MS/MS analysis of cytoplasmic protein profile in Escherichia coli incubated with apidaecin IB. J Proteomics.2011;75(2):511-6.
    [152]Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, et al. The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Research.2004;32(18):5539-45.
    [153]Shen B, Li CJ, Tarczynski MC. High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionine synthetase 3 gene. Plant Journal.2002;29(3):371-80.
    [154]Bartel B, Fink GR. Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America.1994;91(14):6649-53.
    [155]Bartling D, Seedorf M, Schmidt RC, Weiler EW. Molecular characterization of two cloned nitrilases from Arabidopsis thaliana:key enzymes in biosynthesis of the plant hormone indole-3-acetic acid. Proceedings of the National Academy of Sciences of the United States of America.1994;91(13):6021-5.
    [156]Normanly J, Bartel B. Redundancy as a way of life-IAA metabolism. Current Opinion in Plant Biology.1999;2(3):207-13.
    [157]Normanly J, Grisafi P, Fink GR, Bartel B. Arabidopsis mutants resistant to the auxin effects of indole-3-acetonitrile are defective in the nitrilase encoded by the NIT1 gene. Plant Cell.1997;9(10):1781-90.
    [158]Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, et al. Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant mMolecular Biology.2002;49(3-4):249-72.
    [159]Browse J. Jasmonate Passes Muster:A Receptor and Targets for the Defense Hormone. Annual Review of Plant Physiology.2009;60:183-205.
    [160]He YH, Gan SS. A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis. Plant Cell.2002;14(4):805-15.
    [161]Peng LW, Shikanai T. Supercomplex Formation with Photosystem I Is Required for the Stabilization of the Chloroplast NADH Dehydrogenase-Like Complex in Arabidopsis. Plant Physiology.2011; 155(4):1629-39.
    [162]de Bianchi S, Dall'Osto L, Tognon G, Morosinotto T, Bassi R. Minor antenna proteins CP24 and CP26 affect the interactions between photosystem II Subunits and the electron transport rate in grana membranes of Arabidopsis. Plant Cell.2008;20(4):1012-28.
    [163]Chen GY, Yong ZH, Liao Y, Zhang DY, Chen Y, Zhang HB, et al. Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation. Plant and Cell Physiology.2005;46(7):1036-45.
    [164]Martin T, Oswald O, Graham IA. Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon:nitrogen availability. Plant Physiology.2002;128(2):472-81.
    [165]Araya T, Noguchi K, Terashima I. Effect of nitrogen nutrition on the carbohydrate repression of photosynthesis in leaves of Phaseolus vulgaris L. Journal of Plant Research. 2010;123(3):371-9.
    [166]Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, et al. A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. Journal of Cell Biology.2005;168(5):801-12.
    [167]Schneider A, Hausler RE, Kolukisaoglu U, Kunze R, van der Graaff E, Schwacke R, et al. An Arabidopsis thaliana knock-out mutant of the chloroplast triose phosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mobilisation is abolished. Plant Journal.2002;32(5):685-99.
    [168]Lundmark M, Cavaco AM, Trevanion S, Hurry V. Carbon partitioning and export in transgenic Arabidopsis thaliana with altered capacity for sucrose synthesis grown at low temperature:a role for metabolite transporters. Plant Cell Environ.2006;29(9):1703-14.
    [169]Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieu V, Bruley C, Garin J, et al. A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol Cell Proteomics.2007;6(3):394-412.
    [170]Lee SM, Hoang MHT, Han HJ, Kim HS, Lee K, Kim KE, et al. Pathogen inducible voltage-dependent anion channel (AtVDAC) isoforms are localized to mitochondria membrane in Arabidopsis. Molecular Cell.2009;27(3):321-7.
    [171]Panchuk Ⅱ, Zentgraf U, Volkov RA. Expression of the Apx gene family during leaf senescence of Arabidopsis thaliana. Planta.2005;222(5):926-32.
    [172]Davletova S, Rizhsky L, Liang HJ, Zhong SQ, Oliver DJ, Coutu J, et al. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell.2005;17(1):268-81.
    [173]Narendra S, Venkataramani S, Shen GX, Wang J, Pasapula V, Lin Y, et al. The Arabidopsis ascorbate peroxidase 3 is a peroxisomal membrane-bound antioxidant enzyme and is dispensable for Arabidopsis growth and development. Journal of Experimental Botany.2006;57(12):3033-42.
    [174]Giacomelli L, Masi A, Ripoll DR, Lee MJ, van Wijk KJ. Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases shows accelerated light-induced necrosis when levels of cellular ascorbate are low. Plant Molecular Biology. 2007;65(5):627-44.
    [175]Vadassery J, Tripathi S, Prasad R, Varma A, Oelmuller R. Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. J Plant Physiology. 2009;166(12):1263-74.
    [176]Benitez-Alfonso Y, Cilia M, Roman AS, Thomas C, Maule A, Hearn S, et al. Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. Proceedings of the National Academy of Sciences of the United States of America.2009;106(9):3615-20.