葡聚糖酶基因、高分子量谷蛋白优质亚基基因转化小麦的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过基因枪法和花粉管通道法,将β-1,3-葡聚糖酶基因导入到品质较好、产量较高,但抗病性差的龙辐3和龙辐10中;将HMW-GS 5+10基因导入到品质较好、产量较高的东农7742、龙辐10和龙辐8及产量较高、适应性广、抗逆性强,但品质差的新克旱九中。目的是选育出高产、抗病、质佳的转基因小麦新品系(品种)。
     主要研究结果如下:
     对12个基因型的幼胚进行培养效果研究。结果表明,分化率和培养力均存在基因型差异,而各基因型的出愈率差别不大。东农7742、龙辐3和龙6239培养力较高,是较理想的转化试材。三种外植体(幼胚、幼穗和成熟胚)培养效果表明,幼胚、成熟胚的出愈率基本相同,高于幼穗,且差异达极显著。分化率差异较大,高低趋势为幼胚>幼穗>成熟胚,培养力大小为幼胚>成熟胚>幼穗。可见幼胚是较理想的遗传转化外植体,但选择何种外植体作为试材还应考虑试验条件,取材方便与否等因素。
     利用基因枪法将葡聚糖酶基因导入龙辐3和龙辐10,经PCR扩增和RCR-Southern检测,有3株被证实已整合到小麦的基因组中。龙辐3的转化率为0.90%,龙辐10为0.88%。将HMW-GS5+10基因导入东农7742和龙辐10,经PCR检测证明有3株呈阳性,东农7742的转化率为2.63%,龙辐10为1.83%。经PCR检测和PCR-Southern杂交表明转基因龙辐10的T_1代中有3株被证实HMW-GS 5+10基因已整合到小麦基因组中。利用花粉管通道法将葡聚糖酶基因导入到龙辐3和龙辐10中,龙辐3中有3株,龙辐10中有1株经PCR扩增和PCR-Southern检测有与阳性对照相同的杂交带,转化率分别为1.55%和0.53%。另一DNA样本为龙辐10转葡聚糖酶基因形成的品系99K1354,其杂交带与阳性对照相同,证实该品系已将葡聚糖酶基因整合到基因组中。将HMW-GS 5+10基因导入到东农7742、龙辐10和龙辐8中,共获得9株PCR阳性株,经PCR-Southern杂交,这9株均具有与阳性对照相同的杂交带。东农7742、龙辐10、龙辐8的转化率分别为2.27%、2.44%和1.64%,其中21K867是5+10转新克旱九的品系(D_4代),早期世代的选择采用半粒法的PAGE法。
     显微压片观察表明:小麦自然授粉3min花粉尚未萌发,5min已开始萌发形成花粉管,20min时在于房顶部可见一些花粉管,30min时在子房内可观察到花粉管,40min花粉管已进入子房深处,有些已接近胚囊,60min时花粉管已开始有胼胝塞。小麦自然授粉不同时间剪掉柱头后的结实率调查结果表明,小麦自然开花20min就开始结实,40min后结实率比较平缓,因此,可以认为导入时间为小麦自然授粉后30-60min为好。
     卡那霉素和G418均可以做为标记基因NPTⅡ的筛选剂,但G418的筛选效果要优于卡那霉素,G418的毒性较大,在去掉筛选剂的分化阶段,经G418筛选过的愈伤组织仍有一部分褐化、死亡。G418的适宜筛选浓度为25mg/L,卡那霉素为1000mg/L。对花粉通道法获得的Do代种子进行筛选时卡那霉素优于G418,理由是经卡那霉素处理后,芽鞘及叶片白化,易于区分抗性植株。PPT对愈伤组织的毒性较大,使愈伤组织变褐,甚至其毒性在分化阶段仍起作用。
    
    王广金 摘 要 222年n 月
     花粉管通道是一种简便易行,成本低廉的转化手段之一,其主要难点是群体量大,
    筛选困难。本试验进行了花粉管通道法导人目的基因获得DO代种子筛选浓度的研究,并
    确定 PPT、Kan和 G418的适宜筛选浓度分别为 20mgh、1200mg/L和 50mglL。通过 PPT、
    Kn和G4筛选可淘汰大部分非转化植株,使检测工作量大大减少,提高花粉管通道
    法进行小麦转化的效率。
     对转葡聚糖酶基因的品系99K 354进行了抗病性鉴定,其白粉病、赤霉病较受体龙
    辐 10提高 1.2级别,产量提高 3.2%;对转 HMW-GS 5+10基因的品系 2lK867进行了品
    质分析,其沉淀值、稳定时间、延伸性和面积较受体新克旱九有较大提高,产量提高5.5%。
    两个转基因品系除目的基因性状表达外,其它农艺性状也产生了变化,这主要是由于目
    的基因整合位点的随机性及基因间互作造成的。
     对转HMWAIS 5+10基因的单株及转基因品系2lK867进行SDS。PAGE凝胶电泳检
    测,高分子麦谷蛋白亚基组成均具有5亚基和10亚基,从蛋白质水平证实了目的基因的
    表达。转葡聚糖酶基因单株初步抗性鉴定表明,绝大多数转基因植株的白粉病、赤霉病
    抗性较受体有所提高。
B-1, 3-glucanase gene was transferred into cultivars LF3 and LF10 (good quality, high yield but susceptible to disease), and HMW-GS 5+10 genes were delivered into NE7742, LF10 and LF8 (good quality, high yield), and NKH9 (high yield but poor quality) via particle bombardment and pollen tube pathway.
    The culture effect of embryo in 12 genotypes showed that there was genotype difference in frequency of callus differentiation and culture capacity except the frequency of callus initiation. NE7742, LF3 and L6239 would be the proper materials for gene transform because of the high culture capacity. The different culture effect was found in three types of explants (immature embryo, young spike, and mature embryo) used in the study. However, the frequency of callus initiation in immature embryo and mature embryo was almost the same, but higher than young spike. There was difference in frequency of differentiation among three explants, and the immature embryo ranked the first, young spike next, and mature embryo the last, but immature embryo > mature embryo >young spike when comparing on the basis of cultural capacity. Therefore, immature embryo used as explant in gene transfer would be better than young spike and mature embryo.
    The result of B-1, 3-glucanase gene transferred into LF3 and LF10 via particle bombardment showed that three transgenic plants with B-1, 3-glucanaes gene integrated have been obtained and confirmed by PCR and PCR-Southem hybridization. The transfer frequencies of LF10 and LF3 were 0.88% and 0.90%, respectively. Three transgenic plants from NE7742 and LF10 that gene HMW-GS 5+10 delivered into were positive and proved by PCR. And the transferred frequencies were 2.63% in NE7742 and 1.83% in LF10. Three of 1 3 T; plants were positive and confirmed by PCR and PCR-Southem hybridization.
    In gene transformation via pollen tube pathway, B-1, 3-glucanase and HMW-GS 5+10 genes were delivered into LF10, LF3, NE7742, LF8 and XKH9. Five transgenic plants integrated B-1, 3-glucanase gene were obtained and proved by PCR and PCR-Southern hybridization. Four transgenic plants, 3 from LF3 and one from LF10, presented the same hybridization band as positive CK confirmed by PCR and PCR-hybridization. The transferred frequencies were 1.55% in LF3 and 0.53% in LF10. The DNA sample of transgenic line 99K1354 from LF10 was provided with the hybridization band the same as the positive CK. It indicated that gene B-1, 3-glucanase had been integrated into the wheat genome.
    Nine transgenic plants from NE7742, LF10, LF8 and NKH9 transferred via pollen tube pathway were obtained and confirmed by PCR and PCR-Southern. One of them was line 21K867 (D4) from NKH9 which expressed the integrated HMW-GS 5+10 genes. The line was selected by SDS-PAGE with half kernel in its early generations. The transferred frequencies of NE7742, LF10 and LF8 were 2.27%, 2.44% and 1.64%, respectively.
    The pollen did not germinate 3 minutes after self-pollination, and started to germinate and formed pollen tube at 5 min. Pollen tubes could be check on the upper part of ovary at 20
    
    min and entered into ovary at 30 min, and several approached the embryo sac 40 min after self-pollination. After then, sedimentation of callus was found inside pollen tubes 60 min after pollination. The treatment of stigmas excised after self-pollination showed that wheat started seed setting 20 min after self-pollination. And the seed setting rate tend to stable 40 min after self-pollination. Therefore, it seems that the proper transferring time of foreign gene via pollen tube pathway would be around 30-60 min after self-pollination.
    Both Kanamycin and Geneticin (G418) can be used as selective regents of mark gene NPTII. However, the selection effect of Geneticin was better when compared with Kanamycin because of the higher drastic toxicity in Geneticin. Even though Geneticin was removed from media, a part of callus treated with Geneticin turned into brown in color and die in continue culture in vitro afterward. The suitable selective concentration of Geneticin an
引文
1.孔青,小麦外源DNA导入及转化的初步研究。遗传,1993,15(5):19-22,
    2.毛沛、李宗智、卢少源,小麦高分子麦谷蛋白亚基对烘烤品质的效应分析。华北农学报,1995,10(增刊):55-59
    3.王广金,抗小麦根腐病突变体RB500的选育。黑龙江农业科学,1994,No.4 3~5
    4.王广金,抗感小麦品种对赤霉病菌毒素的反应,植物病理学报,1999,29(4):320~325
    5.王广金、李社荣、孙光祖等,小麦赤霉病菌毒素对小麦抗病突变体及其亲本细胞超微结构的影响。植物病理学报,1997,27(3):215~210
    6.王兰岚等,利用激光微束穿刺法将外源DNA导入小麦的研究。遗传学报,1995,21(6):463-467,
    7.王金生编著,分子植物病理学。中国农业出版社,337-358
    8.王海燕,王长海,农杆菌介导法将β-1,3-葡聚糖酶基因导入油菜的研究。中国油料作物学报,2000,22(1):56-60
    9.王颖、余道坚、康林等,应用PCR技术检测饲料中的转基因成分。农业生物技术学报,2002,10(2):180-183
    10.邓万银、林晓影、邵启全,致瘤农杆菌能够转化大麦和小麦。中国科学(B),1989,2:171~175
    11.付道林、王兰岚、蓝海燕等,将抗真菌病基因导入马铃薯的研究。激光生物学报,2000,9(3):28-30
    12.史冬平,转基因植物研究应用与食物安全。小麦遗传育种国际学术讨论全文集,541-544
    13.田苗英、吴茂森、陈彩层等,大麦黄矮病缺失复制酶基因植物表达载体的构建及转基因小麦的获得。中国农业科学,1999,32(5):49-54
    14.田革、卢一凡、刘广田等,小麦HMW-GS×5基因时特异性表达的研究。生物技术通报,1998,1:25-28
    15.刘伟华,几丁质酶(Chitinase)基因转化小麦的研究。博士论文东北农业大学,2000
    16.刘伟华、李文雄、胡尚连等,小麦组织培养和基因枪轰击影响因素探讨。西北植物学报,2002,22(3):602-610
    17.刘伟华、李文雄、胡尚连等,抗病转基因小麦的研究。哈尔滨医科大学学报,2000,34(5):10-12
    18.刘根齐等,外源DNA直接导入小麦及其在育种上的应用。遗传学报,1994,21(6):463-467,
    19.孙光祖,小麦抗根腐病突变体的离体诱变及其抗病机理的研究。中国核科技报告,原子能出版社,1992,6
    
    
    20.孙光祖,利用体细胞无性系变异选育小麦抗赤霉病新品系的研究。中国核科技报告,原子能出版社,1997,10
    21.孙光祖、陈义纯、张月学等,辐射诱变与离体培养相结合选育小麦抗赤霉病突变体的初步研究。核农学通报,1993,14(5):205-209
    22.孙德全,利用花粉管通道导入平阳霉素对小麦诱变效果的研究。核农学通报,1997,18(1):8~10
    23.安利佳、迟彦,β-1,3-葡聚糖酶基因与核糖体失活蛋白融合基因的制备及表达载体的构建。生物技术,2001,11(3):8-10
    24.成卓敏、何小源,大麦黄矮病毒外壳蛋白基因合成及用花粉管通道法获得小麦转基因植株。自然科学进展——国家重点实验室通讯,1993,3(6):560-564,
    25.朱立煌、徐吉巨、陈英等,用分子标记定位一个未知的抗稻瘟病基因。中国科学(B辑),1994,24:1048-1052
    26.朱金宝、刘广田,小麦籽粒高、低分子量谷蛋白亚基及其与品质关系的研究。中国农业科学,1996,29(1):34-39
    27.朱金宝、刘广田、张树榛,基因型和环境对小麦烘烤品质的影响。作物学报,1995,21(6):679-684
    28.朱新产、廖祥儒、付增光,导入外源DNA对小麦基因表达的影响。西北植物学报,1999,19(4):41-45
    29.许梓荣,李卫芬等,Aspergillus niger FS6中β-1,3-1,4-葡聚糖酶cDNA片段的克隆及序列测定。科技通报,2001,17(6):3-5
    30.何龙飞、韦善清、卢升安等,转SCK基因水稻后代农艺性状变异的研究。广西农业生物科学,2002,21(2):73~77
    31.吴琴生、姚国顺、麦克 琼斯等,用微弹轰击法将GUS基因导入小麦的完整细胞。生物工程学报,1992,8(4):339-341
    32.张延滨、肖志敏、辛文利等,小麦2+12和5+10亚基等基因系间面粉品质差异的研究。作物学报,2002,28(6):1-4
    33.张宏纪,相同HMW-GS组分小麦品质差异原因及提高品质方法的研究。博士论文,东北农业大学,2002
    34.张春嵋、吴祖建、林奇英等,植物抗病基因的研究进展。生物技术通报,1999,1:22-27
    35.张晓东,小麦高分子量谷蛋白优良亚基基因导入及其在转基因小麦中的表达。博士论文,中国农业大学,2000
    36.张晓东,高压氦气基因枪轰击小麦花药、幼穗、幼胚和胚性愈伤组织将除草剂Basta抗性基因与小麦HMW谷蛋白亚基基因导入小麦获得转基因植株。中国生物工程学会第二界学术讨论会论文集,1997,pp.85
    37.张晓东、李冬梅、徐文英等,用基因枪法将除草剂Basta抗性基因与小麦HMW谷蛋白亚基基因导入小麦获得转基因植株。华北农学报,1997,12(1):133-136
    38.张晓东、李冬梅、徐文英等,利用基因枪法将HMW谷蛋白亚基基因与除草剂Basta抗性基因导入小麦不同外植体获得转基因植株。遗传(增刊),1998,20:18-23
    
    
    39.李小娟、李楠等,构建高效表达β-1,3-葡聚糖酶基因的单子叶表达载体。华南热带农业大学学报,2001,7(3)
    40.李忠杰、孙光祖、王广金等,辐射外源DNA导入小麦诱变效果初报。核科学与技术(英文)1996,7(2)126~128
    41.李忠杰、孙光祖、王广金等,辐射外源DNA导入小麦诱变效果的研究——D_3代变异及遗传分析。核农学报,1997,18(5):201-204
    42.杜良成等,稻瘟菌诱导的水稻几丁质酶、β-1,3-葡聚糖酶活性及分布。植物生理学报,1992,18(1)29-36
    43.杨书礼、曾君祉、吴有强等,抗除草剂基因和荧光素酶基因在小麦愈伤组织中的稳定表达。遗传学报,1993,35(11):825-830
    44.陆燕、马传喜,小麦品种麦谷蛋白亚基的遗传变异分析。安徽农业大学学报,2000,27(2):126-130
    45.陈三凤、刘德虑、李季伦,植物几丁质酶结构、基因及表达。生物工程进展,1998,18(2) 33-36
    46.陈春洪、张秀文、柯遐义,应用电激法将外源基因导入小麦的研究。广西农业科学,1993,5:11~13
    47.陈梁鸿、王新望、张晓东等,抗除草剂草甘膦EPSP_s基因在小麦中的转化。遗传学报,1999,26(3):239-243,
    48.周文麟、倪建福、王亚馥等,外源C_4作物DNA导入小麦的研究。作物学报,1992,18(6):418-423
    49.周光宇,从生物化学角度探讨远源杂交的理论。中国农业科学,1978,2:16-20
    50.周光宇、龚蓁蓁、王自芬,远源杂交的分子基础——DNA片段杂交假设的一个论证。遗传学报,1979,6(4):405-413
    51.郑用琏等,小麦与褐斑病之间的分子互作。华中农业大学学报,1994,13(4):332-338
    52.郑康乐,Kochert G,钱惠荣等,应用DNA标记定位水稻抗病基因。植物病理学报,1995,25:307-313
    53.胡忠、杨增明、王钧,天麻球茎中一种抗真菌蛋白的分离和部分特性。云南植物研究,1988,10:373-380
    54.茹岩岩、晏月明,小麦谷蛋白亚基基因的PCR鉴定及其在品质改良中的应用。生物工程进展,2001,21(2)58-61
    55.赵友梅、王淑俭,高分子量麦谷蛋白亚基SDS-PAGE图谱在小麦品质研究中的应用。作物学报,1990,16(3):208~217
    56.赵会贤、薛秀庄,麦谷蛋白亚基Glu-1和Glu-3位点基因等位变异对小麦品质特性的影响。作物学报,1997,23(6):646-653
    57.赵和、卢少源、李宗智,小麦高分子量麦谷蛋白亚基遗传变异及其与品质和其它农艺性状关系的研究。作物学报,1994,20(1):67-75
    58.赵和、卢少源、李宗智、小麦高分子量麦谷蛋白亚基遗传变异及与其它农艺性状的关系。河北农业大学学报,1993,16(1):8-12
    
    
    59.郝转芳,李润植,抗真菌蛋白基因的应用,世界农业,(8):38-39
    60.唐祚舜、李庆材、田文忠,基因枪法转基因水稻后代农艺性状的表现。中国农业科学,2001,34(6):581~586
    61.夏光敏等,抗大麦黄矮病毒转基因小麦可育植株的获得。细胞生物学杂志,1995,增刊1:10
    62.郭殿京、傅荣昭、李文彬等,小麦中外源基因瞬间表达调空研究及兔防御素(NP-1)基因的转化。遗传学报,1999,26(2):168-173
    63.高必达,转几丁质酶基因防植物病害研究、进展、问题与展望。生物工程进展,1999,19(2):21~28
    64.崔海瑞、王中华、舒庆尧等,转基因克螟稻杂交后代农艺性状的研究。中国水稻科学,2001,15(2):101~106
    65.曹颖,基因枪法抗除草剂转基因小麦的研究。硕士论文,东北农业大学,1999
    66.梁光商,水稻生态学,北京:农业出版社,1983
    67.梁荣奇、张义荣、尤明山等,利用高分子量谷蛋白亚基的特异PCR标记辅助选育优质面包小麦。农业生物技术学报,2001,8(4):322-325
    68.梁辉,郑近等,用基因枪法获得抗白粉病转芪合酶基因小麦。中国科学,1999,24(44):32-34
    69.梁辉、赵铁汉、李良材等,影响基因枪法转化小麦幼胚的几个因素的研究。遗传学报,1998,25(5):443-448
    70.黄寿松、谢伯泰、张望恩等,注射外源DNA转化小麦的研究。西北植物学报,1987,7(3):177-183
    71.龚蓁蓁、沈慰芳、周光宇等,受粉后外源DNA导入植物技术——DNA通过花粉管通道进入胚囊。中国科学(B),1988,6:611-614
    72.曾君祉、王东江、吴有强等,用花粉管途径获得小麦转基因植株。中国科学(B),1993,23(3):257-262
    73.曾君祉、吴有强、王东江等,花粉管通道(或运载)法转化的植株后代遗传表现及转化机理的探讨。科学通报,1998,43(6):561-566
    74.曾道孝等,优质面包小麦新品种选育回顾与展望。作物杂志,1994,3:8-9
    75.舒群芳、孙勇如,抗真菌植物基因工程策略和进展。植物学报,1997,39(1)91-96
    76.韩彬,低分子量谷蛋白亚基与醇溶蛋白的关系及其对小麦烘烤品质的影响。中国农业科学,1991,24(4):19-25
    77.蓝海燕、田颖川等,表达β-1,3-葡聚糖酶及几丁质酶基因的转基因烟草及其抗真菌病的研究。遗传学报,2000,27(1):37-45
    78.蓝海燕、张丽华,表达β-1,3-1,3-葡聚糖酶及几丁质酶基因的转基因烟草及其抗真菌病的研究。遗传学报,2000,1
    79.蔡应繁、叶鹏盛、张利等,β-1,3-葡聚糖酶及其在植物抗真菌病基因工程中的应用。西南农业学报,2001,14(2)79-81
    
    
    80.黎宝军、赵开军等,转几丁质酶基因和β-1,3-葡聚糖酶基因烟草的研究。湖南农业大学学报(自然科学版),2002,28(3)
    81. Altpeter F, et al. Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nat Biotechnol. 1996, 14(9):1155- 1159
    82. Anderson OD, et al. Nucleotide sequences of two high-molecular weight glutenin genes from the D-genome of a hexaploid bread wheat, Cheyenne. Nucleic Acids Research, 1989, 17(1), 461-462.
    83. Baker SM, White EE, A chalcone synthasel stilbene synthase DNA probe for conifers. Theor. Appl. Genet. 1996, 92:827-831
    84. Barro F, et al. Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nat Biotechnol. 1997,15(12)1295-1299
    85. Becker D, Brettschneider R, Lorz H, Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. The plant J, 1994, 5:299-307
    86. Bekes F, Gras PW, Gupta RB, Mixing Properties as a measure of reversible reduction and oxidation of doughs. Cereal Chem. 1994, 71:44-50
    87. Blechl AE, et al. Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat. Nat. Biotechnol.,1996, 14(7):875-879
    88. Boller T, Induction of hydrolase as a defense reaction against pathogens [A]. In: key JL, kosuge T (eds), cells and Molecular Biology of Plant Stress [M]. Alan R Liss, New York. 1985, pp. 247-262
    89. Branlanrd G. Blanc AL, Glutenins of bread and durum wheat cultivars in France, Agronomic (Paris) 1985, 5(6):467-478
    90. Branlard G, Dardevet M, Diversity, of grain protein and bread wheat quality. Ⅰ. Correlation between gliadin bands and flour quality characteristics, J. Cereal Sci. 1985, 3:329-343
    91. Branlard G, Dardevet M, Diversity, of grain protein and bread wheat quality. Ⅱ. Correlation between high molecular weight subunits of glutenin and flour quality characteristics. J. Cereal Sci. 1985, 3:345-354
    92. Branlard G, Pierre J, Rousset M, Selection indices for quality evaluation in wheat breeding. Theor. Appl. Genet, 1992, 84:57-64
    93. Campbell WP et al. Statistical correlation between quality attributes and grain protein composition for 71 hexaploid wheat used as breeding parents, Cereal. Chem. 1987, 64(4):293-299
    94. Canihos Y, etc. In vitro effect of a bacterial β-1, 3-glucanase expressed in streptomyces livdans on Bremia actucae. Journal of Turkish Phytopathology, 1995, 24:3, 15-120.
    95. Cao Jun, Duan Xiaolan et al. Regeneration of herbicide resistant transgenic rice plants following microprojectile mediated transformation of suspension culture cells. Plant Cell Reports, 1992, 11:586-591
    
    
    96. Chan MT, et al, Agrobacterium-mediated production of transgenic rice plants expressing a chimerical alpha-amylase promoter/beta-glucuronidase gene. Plant Mol Biol Jun, 1993.22(3):491-506.
    97. Chen WP, Gu X, Liang GH et al. Introduction and constitutive expression of a rice chitinase gene in bread wheat using biolistic bombardment and the bar gene as a selectable marker. Theor Appl Genet, 1998,97:1296-1306
    98. Cheng M, Fry JE. Pang S, et al. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol, 1997, 115:971-980
    99. Chibbar RN, et al, Transient expression of marker genes in immature zygotic embryos of spring wheat (Triticum aestivum) through microprojectile bombardment. Genome, 1991.34:435-460,
    100. Christopher JL. John AR, Eric RW et al. Emerging strategies for enhancing crop resistance to microbial pathogens. Bio/Technology,, 1992. 10:1436-1445
    101. Cohen-Kupiec-Rachel; Broglie-Karen-E Molecular characterization of a novel beta-1, 3-exoglucanase related to mycoparasitism of Trichoderma harzianum Gene-Amsterdanm. Jan. 21. 1999, 226(2):147-154
    102. Creseey PJ et al. Statistical correlations between quality attributes and grain-protein composition for advanced lines of crossbred wheat, Cereal. Chem, 1987,64(4)299-301
    103. Damidaux R, Austran JC, Feillet P, Gliadin electrophoresis and measurements of gluten viscoelasticity in Durum wheat, Cereal Food World, 1980.25:754-756
    104. Darbinyan NS, Popov YG. Mochul SAV, Construction and analysis of transgenic plants of Nicotiana tabacum L. expressing the bacterial gene for beta-1 3-endoglucanase. Genetika-Moskva, 1996, 32:2, 197-203
    105. De Block M, Herrera-Estrellu L, Van Montagu M et al. Expression of foreign genes in regenerated plants and their progeny. EMBO J. 1984,3:1681-1689
    106. De Wit PJGM, Molecular characterization of gene-for-gene system in plant fungus interaction and the application of avirulence genes in control of plant pathogen, Ann Rev Phytopathol, 1992.30:391-418
    107. Diaz I, et al. Optimization of conditions for DNA uptake and transient GUS expression in protoplasts for different tissue of wheat and barley. Plant Sci. 1994, 96:179-157
    108. Doan DNP, et al. Post translational processing of barley beta glucan endohydrolases in the baculovirus-insect cell expression syterm. DNA and cell Biology, 1993.12:1 97-105
    109. EndoY, Tsurugi K, Ebert RY. The mechanism of action of barley toxin: A type 1 ribosome-inactivating protein with RNA Nglycosidase activity. Biochim Biophy Acta. 1988,954:224-226
    110. Forde J, et al. The nucleotide sequence of a HMW glutenin subunit gene located on chromosome 1A of Wheat. Nucleic Acids Res. 1985,13:6817-6832.
    
    
    111. Galili G, et al. Structural homology of endosperm high molecular weight glutenin subunits of common wheat. Theor Appl. Genet. 1985, 70:634-642
    112. Grimsly N, Hohn T, Davies JW, et al. Agrobacterium mediated delivery of infectious maize Streak virus into maize plants. Nature, 1987, 325:1977-1979
    113. Gupa R.B, Mac Ritchie FA, Rapid one-step one-dimensional SDS-PAGE procedure for analysis of subunit composition of glutenin in wheat. J. Cereal Sci, 1991, 14:203-208
    114. Gupta RB, et al. Cumulative effect to fallelic variation LMW and HMW glutenin subunits on dough properties in the progeny of two bread wheat. Theor. Appl. Genet. 1989, 77:57-64
    115. Gupta RB, Shepherd KW, Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutenin, Ⅰ. Variation and genetic control of the subunits in hexapod wheat, Theor. Appl. Genet. 1990, 80:65-74
    116. Gupta RB, Shepherd KW, Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutenin, 2. Genetic control of the subunits in species related to wheat, Theor. Appl. Genet, 1990, 80:183-187
    117. Gupta RB, Popineau Y, Lefebvre J, et al. Biochemical basis of flour properties in bread wheat. Ⅱ Changes in polymeric protein formation and dough/gluten properties associated with the loss of low MW of high MW glutenin subunits. J Cereal Sci, 1995, 21:103-116
    118. Gupta RB, et al. Two step one dimensional SDS-PAGE analysis of LMW subunits of glutenin. 1. Variation and genetics control of the subunits in hexaploid wheat. Theor. Appl. Genet. 1990, 80:65-74
    119. Gupta RB, et al. Two step one dimensional SDS-PAGE analysis of LMW subunits of glutenin. 2. Genetic control of the subunits in species related to wheat. Theor. Appl. Genet. 1990,80:183-187
    120. Gupta RB, MacRitchie F, Biochemical basis of flour properties in bread wheat. I Effects of variation in quality and size distribution of polymeric protein. J. Cereal Sci, 1993, 17:23-41
    121. Hahlbrock K, Gfisebach H, Enzymic controls in the biosynthesis of lignin and fiavonoids. Ann Rev Plant Physiol, 1979.30:105-130
    122. Hain R, Reif HJ, Krause E, et al. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature, 1993. 361:153-156
    123. Hain R, Bieseler B, et al. Expression of a stilbene synthase gene in Nictiana tabacum result in synthesis of the phytoalexin resveratrol. Plant Mol. Biol. 1990, 15:325-335
    124. Halford NP, et al. Identification of a transposon-like insertion in a Glu-1 allele of wheat. Mol. Gen. Genet. 1987, 209:326-332
    125. Harm-Kyungsik, et al. Fungal pathogens secrete an inhibitor protein that distinguishesisoforms of Plant pathogenesis-related endo-β-1,3-glucanases. Plant Journal 1997, 11:2, 169-179.
    
    
    126. He DG, Mouradov A, Yang YM, et al. Transformation of wheat (Triticum aestivum L) through electroporation of protoplasts. Plant Cell Report, 1994, 14:192-196
    127. Herbers K; Flint HJ; Sonnewald U, Apoplastic expression of the xylanase and beta (1-3, 1-4) glucanase domains of the xynD gene from Ruminococcus flavefaciens leads to functional polypeptides in transgenic tobacco plants. Molecular-Breeding. 1996, 2: 1, 81-87
    128. Herra-Esfrella L,.Van den Brock G, Maenaut R, et al. Light-Inducible and chloroplast-associated expression of a chimeric gene into Nicotiana tabacum using a Ti plasmid vector. 1984, Nature, 310:115-120
    129. Hess D. et al. Transformation experiments by pipetting. Agrobacterium into the spikelets of wheat (Triticum aestivum L.). Plant Sci. 1990,72:233-244
    130. Hiei Y, et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J . 1994, 6(2)271-82
    131. Hiei Y. et al. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol. Sep, 1997,35(1-2):205-18.
    132. Horsch RB, et al. A simple and general method for transferring genes into plants, Science, 1985.227:1229-1231
    133. Horsch RB, Fraley RT, Rogers SG. et al. Inheritance of functional foreign genes in plants. Science 1984.223:496-498
    134. Iglesias VA. et al. Transient expression of visible marker genes in meristem cells of wheat embryos after ballistic microtagetting. Planta. 1994,192:84-91
    135. Inukai T. Nelson RJ, Zeijgler RS. et al. Allelism of blast resistance genes in near isogenic lines of rice. Phytopathol, 1994. 84:1278-1283
    136. Ishida Y, et al. High efficiency transformation of maize (Zea mays L.)mediated by Agrobacterium tumefaciens. Nat Biotectmol. 1996.14(6):745-50
    137. Jackson EA. Hdt LM, Payne PI, Characteration of high molecular weight gliadin and low-molecular-weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and the chromosomal location of their controlling genes. Theor. Appl. Genet, 1983.66:29-37
    138. Johal GS, Briggs SP. Reductade activity encoded by the HMI disease resistance gene in maize. Science. 1992. 258:985-987
    139. Johannes HB. Moonen, et al. Use of The SDS-Sedimentation test and SDS-Polyacrylamidegel electrophoresis for Screening breeders samples of wheat for bread-making quality, Euphytica, 1982, (31):677-690
    140. Johansson E. Svensson G, Tsegaye S, Genotype and environment effects on bread making quality of Swedish-grown wheat cultivars containing high-molecular weight glutenin subunits 2+12 or 5+10. Acta Agriculture Scandinavica. Section, B, Soil and plant science 2000, 49(4):225-233
    
    
    141. Jonsen LG, et al. Transgenic barley expressing a protein-engineered, thermostable (1, 3-1, 4)- β-glucanase during germination. Proceedings of the National Academy of Sciences of the United states of America, 1996, 93:8, 3487-3491
    142. Kasarda DD, Tao HP, Evans PK, Sequencing of protein from a single spot of a 2-Dgel pattern: N-terminal sequence of a major wheat LMV-glutenin subunit. Journal of Experimental Botany, 1988, 39:899-906
    143. Keen NT, Gene-for-gene complementarity in plant-pathogen interactions. Ann Rev Genet, 1990. 24:447-463
    144. Kloti A, et al. Te transfer by electroporation into intact scutellar cells of wheat embryos. Plant Cell Reports. 1993, 12:671-675
    145. Koziel MG, Beland JL, Bowman C, et al. Field performance of elite transgenic maize plant expressing an insecticide protein derived from Bacillus truringiensis. Bio/Technology, 1993, 11:194-200
    146. Kreis, M, Shewry PR, Unusual features of seed protein structure and evolution. Bio-Essays, 1989, 10:201-207
    147. Kreis M, Forde BG, Molecular evolution of the seed storage protein of barley, rye and wheat, J. Molecular Biology, 1985, 183:499-502
    148. Lafiandra D, dovidio R, Porceddu E, New data supporting HMV-GS 5 as determinant of quality differences among the pairs 5+10 VS 2+12, J. Cereal Sci. 1993, 18:197-205
    149. Lawrence GJ Shepherd, KW, Inheritance of glutenin protein subunits of wheat, Theor. Appl. Genet, 1980, 60:333-337
    150. Lawrence GJ, et al. Dough quality of biotypes of eleven Australian wheat cultivars that differ in high-molecular-weight glutenin subunit composition, J. Cereal Sci, 1987, 6:99-101
    151. Lawrence GJ, The high-molecule-weight glutenin subunit composition of Australia wheat cultivars, Aust J. Agric. Res, 1986, 37:125-133
    152. Lawrence GJ Payne PI, Detection by gel electrophoresis of digomers formed by the association of high molecular weight glutenin protein subunits of wheat endosperm. Experimental Botany, 1983.34:254-267
    153. Lawton K, Ward E, Payne G, et al. Acidic and basic classⅢ chitinase mRNA accumulation in response to TMV infection of tobacco. Plant Mol Biol, 1992, 19:735-743
    154. Leah R, Tommerup H, Svenclsen IB, et al. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem. 1991, 266:1564-1570
    155. Leckband G, Lorz H, Transformation and expression of a stilbene synthase gene of Vinis Vintfera L. in barley and wheat for increased fungal resistance. Theor Appl Genet, 1998, 96:1004-1012
    
    
    156. Leung H, Borromeo ES, Bermardo MA, Genetic analysis of virulence in the rice blast fungus Magnaporthe grisea. Phytopathology, 1988.78:1227-1233
    157. Logermann J Jach G, Tommerup H etal. Expression of a barley ribosome-inactivating protein Jeads to increased fungal protection in transgenic tobacco plants. Bio/Technology. 1992, 10:305-308
    158. Lonsdale D,et al. Transient expression of exogenous DNA in intact, viable wheat embryos following partical bombardment. J. Exp. Bot. 1990, 41 (230): 1161-1165
    159. Lukow OM, Payne PI, Thachuk R, The HMW glutenin subunit composition of Canadian wheat cultivars and their association with bread-making quality, J, Sci Food Agric, 1989, 46:451-460
    160. Lynch PT, Jones J, et al. The phenotypic characterization of R_2 generation rice plant under field and glass house condition. Euphytica, 1995, 85:395-401
    161. Mac Ritchie F, Evaluation of contributions from wheat protein fractions to dough mixing and breadmaking. Journal of Cereal Science 6(1987)259-268.
    162. Makarska E, The attempt to connect the glutenin composition with evaluation of the baking quality of winter triticale grains. Polish. J. Food and Nutrition Science. 2000, 9(3):21-24
    163. Marson PA. et al. Analysis of stable events of transformation in wheat via PEG-mediated DNA uptake into protoplasts. Plant Sci. 1993,93:85-94
    164. Martin RR. Genetic engineering of potatoes. American Potato Journal, 1994. 71:5, 347-358.
    165. Matuz J. Markovics E, Acs E, Study of relationships between the technological quality characters of flour of winter wheat cultivars. Novenytermeles, 1999,48(3):243-253
    166. Mauch F. et al. Antifungal hydrolase in pea tissue Ⅰ. purification and characterization of two chitinases and two β-1, 3-glucanases differentially regulated during development and in response to fungal infection. Plant Physiol. 1988, 87:325-333
    167. Mauch F, Hadwiger LA, Boller T. Ethylene: Symptom, Not signal for the induction of chitinase and β-1. 3-glucanase in pea pod by pathogens and elicitor. Plant Physiol, 1984, 76:607-611
    168. Mauch F, et al. Antifungal hydrolases in pea tissue Ⅱ. Inhibition of fungal growth by combination of chitinase and β-1, 3-glucanase. Plant Physiol. 1988, 88:936-942
    169. Mauch. Felix. Etc. Antifungal Hydralases in pea tissues. Plant Physiol., 1998, 88, 936-942.
    170. McCormac, et al,The use of visual marker genes as cell-specific reporters of Agrobacterium-mediated T-DNA delivery to wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Euphytica, 1998, v.99. n, 1, p. 17
    171. Meins FJr etc. The biology of plants transformed with chimeric class Ⅰ chitinase and β-1, 3-glucanase genes [M]. Workshop on engineering plants against pest and pathogens. 11-13 1993 Madrid, Spain. Edited by Bruening. G, 1993.27.
    
    
    172. Melchers LS, Sela-Buurlage MB, Vloemans SA, et al. 1993. Extracellular targeting of the vacuolar proteins AP24, chitinase and β-1, 3-glucanase in transgenic plants. Plant Mol Biol, 21:583-593
    173. Metakovsky EV, et al. Blocks of gliadin components in winter wheat detected by one-dimensional polyacrylamide gel electrophoresis, Theor, Appl. Genet, 1984, 67:559-568
    174. Metakovsky EV, Annicchiarico P, Relationship between gliadin alleles and dough strength in Italian bread wheat Cultivars. J. Cereal Sci, 1997, 25:229-236
    175. Metakovsky EV, Novselskaya AY, Gliadin allel identification in common wheat: Ⅰ. Methodological aspects of the analysis of gliadin pattern by one-dimensional polyacrylamide gel electrophoresis. J. Genet Breed, 1991, 45:317-324
    176. Michelmore RW, Hott TW. Hullbert SH, Thedowney mildews. Adv Plant Pathol, 1998. 6:53-79
    177. Moffat AS, Improving plant disease resistance. Science, 1992, 257:482-483
    178. Mooney PA, Goodium PA, Dennis ES, et al. 1991. Agrobacterium tumefaciens-gene transfer into wheat tissues. Plant Cell Tissue Organ Cult, 25:209-218
    179. Nakaya K, Omata K, Okahashi I, et al. Amino acid sequence and disultide bridges of an antifungal protein isolated from Aspergillus gegantens. Eur J Biochem, 1990. 193:31-38
    180. Neuhaus, et al. High-Level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Mol. Biol, 1991, 16:141-151
    181. Orth RA, Bushuk WA, Comparative study of the proteins of wheat of diverse baking qualities. Cereal Chem 1972, 49:268-275
    182. Ortiz JPA, et al. Hygromycin resistance as an efficient selectable marker for wheat stable transformation. Plant Cell Reports. 1996, 15:877-881
    183. Paszkowski J, shillito RD, saul M, et al. Direct gene transfer to plant. EMBO J. 1984, 3:2717-2722
    184. Payen PI, Holt LM, Law C N, Structural and genetically studies on the high, molecular weight subunits of wheat glutenin part Ⅰ, allelic variation in subunits among varieties of wheat (Tritium aestivium). Theor. Appl. Genet, 1981,60:229-236
    185. Payne PI, et al. Allelic variation of glutein subunits and glidian and its effect in bread-making quality in wheat: analysis of F5 progeny from Chinese Spring (Hopr 1A), J. Cereal Sci., 1987, 6:103-118
    186. Payne PI, et al. Structural and genetically studies on the high-molecular-weight subunits of wheat glutenin, Theor. Appl. Genet,. 1982, 63:129-138
    187. Payne PI, et al. Correlation between the Inheritance of certain high-molecular-wheat subunits of glutenin and bread-making quality, in progenies of six crosses of bread wheat, J. Sci. Food Agric, 1981, 32:51-60
    
    
    188. Payne PI, Lawrence GS, Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1 and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res. 1983, 11:29-25
    189. Payne PI, et al. Control by homologous group 1 chromosomes of the high molecular weight subunits of glutenin, a major protein of wheat endosperm. Theor. Appl. Genet. 1980, 58:13-120
    190. Payne PI, et al. Subunit composition of wheat glutenin proteins, isolated by gel filtration in a dissociating medium. Planta. 1979, 145:83-88
    191. Popineau Y, Cornec M, lefebvre J, Machylo B, Influence of high MW glutenin subunits on glutenin polymer and rheolegical properties of gluten and gluten subfractions of nearisogenic lines of wheat Sicco. J. Cereal. Sci. 1994, 19:231-241
    192. Raiber S, Schroder G, Schroder J, Molecular and enzymatic characterization of two stibene synthases from eastern white pine. FEBS Lett, 1995.361:299-302
    193. Reddy P, Appels R, Analysis of a genomic DNA segment carrying the wheat high-molecular-weight (HMW) glutenin Bx17 subunit and its use as an RELP marker. Theor. Appl. Genet, 1993, 85:616-624
    194. Rhee MD-vande etc. Analysis of Regulatory, elements involved in stress induced and organ-specific expression of tobacco acidic and basic β-1, 3-glucanase genes [J]. Plant Molecular Biology. 1993, 21:3.451-461.
    195. Schlumbaum A, mauch E vogeliu et al. Plant chitinase are potent inhibitors of fungal growth. Nature. 1986, 324(27)365-367
    196. Sela-Buurlage MB et al. Only specific tobacco (Nicotiana tobacum) chitinase and β-1. 3-glucanases exhibit antifungal activity. Plant Physiol. 1993. 101 :857-863
    197. Shani N, et al. Mechanisms of assembly of wheat high molecular weight glutenin inferred from expression of wild-type and mutant subunits in transgenic tobacco. J. Biol. Chem. 1994. 269:5924-5930
    198. Shewry PR, et al. The classification and nomenclature of wheat gluten proteins: a reassessment. J. Cereal Sci. 1986, 4:97-106
    199. Shewry PR Halford. NG and Tatham, AS. The high molecular weight subunits of wheat glutenin. J. Cereal Sci. 1992. 15:105-120
    200. Shewry PR, et al, Chromosomal location of the structural genes for the Mr75,000 γ-secalins in secale montanum Guss: evidence for a translocation involving chromosomes 2R and 6R in cultivated rye (Secale cereal). Heredity. 1985, 54:381-383
    201. Shewry PR. et al, The purification and N-terminal amino acid sequence analysis of the high molecular weight gluten polypeptides of wheat. Biochem. Biophy, Acta. 1984, 788:23-34
    
    
    202. Shimamoto K, Terada R, Izawa T, et al. Fertile transgenic rice plants regenerated from transformed protoplast. Nature. 1989, 338:274-276
    203. Shimoni Y, et al. A recombinant protein of two high molecular weight glutenins alters gluten polymer formation in transgenic wheat. J Biol Chem. 1997,13,272(24): 15488-95
    204. Shwy PR, Halford NG, Tatham AS, High molecular weight subunits of wheat glutenin (critical review), J. Cereal Scien., 1992, 15:105-120
    205. Simmonds J, et al. Regeneration of Triticum aestivum apical explants after microinjection of germ line progenitor cells with DNA. Psysiologia Plantarum, 1992, 85:197-206
    206. Singh AK, Jain GL, Effect of sowing time, irrigation and nitrogen on grain yield and quality of durum wheat. Indian, J. Agricultural Sciences, 2000, 70(8):532-533
    207. Singh NK, Shepherd KW, The structure and genetic control of a new class of disulphide-linked proteins in wheat endosperm, Theor. App, 1985, Genet. 71:79-92
    208. Singh NK, Shepherd KW, Linkage mapping of genes controlling endosperm storage proteins in wheat, Theor. Appl. Genet, 1988, 75:628-665
    209. Staskawicz BJ, Ausubel FM, Barker BJ, et al. Molecular genetics of plant disease resistance. Science, 1995, 268:661-667
    210. Stirpe F, Barbieri L, Batteili MG, et al. Ribosome-inactivating proteins from plants: Present status and future prospects. Bio/Technology. 1992, 10:405-412
    211. Sugiyama T, et al. A wheat HMV glutenin gene reveals a highly repeated structure. Nucleic Acids Research, 1995, 13(24):8729-8738
    212. Thompson RD, et al. Nucleotide sequence of a gene from chromosome 1D of wheat encoding a HMV-glutenin subunit. Nucleic Acids Research, 1985, 13:6893-6896
    213. Toriyana K, Arimoto Y, Uchimiya H, Hinata K, Transgenic rice plants after direct gene transfer into protoplast. Bio/Technology, 1998, 6:1072-1074
    214. Van Kan JAL, van den Ackerveken GFJM, de Wit PJGM, Cloning and characterization of cDNA of avirulence gene avr9 of the fungal pathogen Cladosporium fulvum, causal agent of tomato leaf mold. Mol Plant-Microb Inter, 1991, 4:52-59
    215. Vanetter HD, Matthews DE, Matthews PS, Phytoalexin detoxifiction. Importance for pathogenicity and practical implications. Ann Rev Phytopathol, 1989.27:143-164
    216. Vasil V, et al. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogeneic callus. Bio/Technology, 1992, 10:667-674
    217. Vasil IK, et al. Molecular improvement of cereal. Plant Mol. Biol. 1994,25:925-937
    218. Vasil IK, et al. Somatic embryogenesis in cereals and grasses. IN: Va riability in Plant regeneration from tissue culture. Earle E and Demarly (Eds) Praeger Press, New York, 1982, pp3-21
    219. Vasil V, et al. Rapid Production of transgenic wheat obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technol, 1993,11(12):1553-1558
    
    
    220. Vasil V, et al. Stably transformed callus lines from microprojectile bombardment of cell suspension cultures of wheat. Bio/Technology. 1991,9:743-747
    221. Vigers AJ, Roberts WK, selitrennikoff CP, A new family of plant antifungal proteins. Mol Plant-Microb Inter, 1991.4:315-323
    222. Wang GL. Mackill DJ. Bonman JM. et al. RFLP mapping of genes conferring complete and partial resistance to blast in adurably resistant rice cultivars. Genetics, 1994, 136:1421-1434
    223. Wang YC. et al. Transient expression of foreign genes in rice, wheat and soybean cells following particle bombardment. Plant Mol. Biol.11 1988,433-439
    224. Weeks JT, et al. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Plant Physiology, 1993,102:1077-1084
    225. Werner WE. Adalsteins AE, kasarda DD. Composition of high-molecular-weight glutenin subunit dimmers formed by partial reduction of residue glutenin. Cereal chemisty. 1992.69:535-541
    226. Wessels JGH, Sietsma JH, Fungal cell wall: A Survey, In tannerw, Loewus FA(eds) [A], Encyclopedia of plant physid, New Series, Voll 3B. Springger-Verlag, New York 1981, pp352-394
    227. Yoshikawa M, Tsuda M. Takeuchi Y. Resistance to fugal disease in transgenic tobacco plants expressing the phytoalexin elicitor-releasing factor, beta-1 3-glucanase from sovbean. Naturwissenschaften. 1993.80:9.417-420
    228. Yoshioka H. etc. Suppression of the activation of chitinase and β-1, 3-glucanase in pea epicotyls by orthovanadate and a suppressor from myxosphoerella pinodes [J]. Annals of the phytopathological society of Japan. 1992, 58:3, 405-410
    229. Yu ZH, Mackill DJ, Bonman JM, et al. Molecular mapping of a bacterial blight resistance gene on chromosome 8 in rice. Rice Genet. Newlett, 1996, 11:142-144
    230. Yu ZH, Mackill DJ, Bonman JM. et al. Tagging gene for blast resistance in rice via linkage to RFLP markers. Theor. Appl. Genet. 1991, 81:417-476
    231. Zhu Q, et al. Enhanced protection against fungal attack by constitutive coexpression of chitinase and glucanase gene in transgenic tobacco. Bio/Techology, 1994, 12:807-812