小麦抗白粉病新基因的发现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦白粉病是严重影响小麦生产的重要病害之一。利用抗病品种是防治该病最为经济、有效和环境安全的方法。与抗病基因紧密连锁的分子标记不仅便利抗病基因鉴定和作图,而且可以在育种中进行抗病品系的标记辅助选择。标记辅助选择极大地提高基因累加效率,加速育种进程。小麦野生近缘种属蕴藏着丰富的抗性资源,是小麦抗白粉病基因的重要来源。本研究的主要目的是对从小麦野生近缘种转移到普通小麦中的抗小麦白粉病基因进行鉴定、微卫星标记和作图,并用鉴定的微卫星标记对一些高代品系所携带的抗白粉病基因进行检测。研究结果将为小麦抗白粉病育种提供新的抗病基因,并为这些抗病基因快速、有效和合理的利用奠定基础。
     用离体叶段接种方法鉴定了11个四倍体小麦-山羊草双二倍体、波斯小麦PS5、硬粒小麦DR147、5份山羊草、杂交高代材料Am9/莱州953~*~2 F_5和(DR147/Ae14)//莱州953~*~2 F_4对20个具有不同毒力白粉菌株的抗谱。通过与含有已知抗病基因品种或品系的对该20个菌株反应模式比较和系谱分析,推测Am9/莱州953~*~2 F_5含有Pm4b,波斯小麦PS5含有Pm4b与一个未知抗病基因组合;(DR147/Ae14)//莱州953~*~2 F_4和硬粒小麦DR147含有Pm4a和一个未知抗病基因组合;尾状山羊草Ae14和小伞山羊草Y39含有新的抗白粉病基因。
     在由双二倍体Am4和普通小麦百农3217杂交衍生的BC_2F_2群体中鉴定了一个显性抗白粉病基因。该基来源于Am4的四倍体小麦亲本波斯小麦PS5,与微卫星标记Xgwm356的遗传距离为10.2cM。基于标记Xgwm356在小麦染色体上的位置,该基因被定位在小麦染色体2AL。由于该基因与Pm4b一样来源于波斯小麦,并位于Pm4b所在的小麦2AL染色体上相同区域,可能与Pm4b是同一个基因,也可能是与其紧密连锁新基因,因此,暂定名为PmPS5A。
     在由双二倍体Am9和普通小麦莱州953杂交衍生的BC_3F_2群体中鉴定了一个显性抗白粉病基因。该基因来源于Am9的四倍体小麦亲本波斯小麦PS5。微卫星标记Xwmc317、Xgwm111、Xgwm382和Xgwm526与其连锁。进一步作图结果表明,该基因位于标记Xwmc317和Xgwm526之间,与两个标记的遗传距离分别为1.1cM和18.1cM,标记Xgwm111和Xgwm382位于标记Xwmc317一侧,与该基因的遗传距离分别为2.2cM和4.0cM。基于连锁标记在小麦染色体上的位置,该基因被定位在小麦染色体2BL上。由于该基因不同于定位在小麦2B染色体上的已知抗白粉病基因Pm6和Pm26,应该是一个新的抗病基因,暂定名为PmPS5B,建议定名为Pm32。
     在由双二倍体Am9与普通小麦莱州953杂交衍生的BC_3F_5分离群体中,鉴定了一个新的抗白粉病基因。微卫星标记Xgwm296、Xgwm257和Xgwm319与该基因共分离。Xgwm257和Xgwm319为共显性标记,Xgwm29显性标记,3个抗性相关的标记在小伞山羊草Y39上特异扩增,表明该基因来源于Am9的山羊草亲本小伞山羊草Y39,为显性。微卫星标记Xgwm210、Xgwm388a、Xgwm388b和Xgwm526为感病性相关标记,在互斥相与抗病基因连锁。基于连锁标记在小麦染色体上的位置和遗传作图结果,我们认为在本研究群体中小麦2B染色体被小伞山羊草2U染色体代换,但2U染色体和2B染色体间也发生低频率的重组。根据交换株的微卫星分析结果,推测该基因位于小伞山羊草染色体2US上。由于该基因是第一个从小伞山羊草向普通小麦中转移的抗白粉病基因,应该是
    
    一个新的抗白粉病基因,暂定名为PmY39,建议定名为Pm33。
     在由高大山羊草Y150和莱丹D%3杂交衍生的*Qn群体中鉴定了一个显
    性抗小麦白粉病基因。微卫星标记Xu m32工Xwmc382和Xwmc397在转入的
    高大山羊草染色体上特性扩增,与抗病基因的遗传距离分别为2.6cM、3.3cM和
    8刀cM。另外,微卫星标记 Xum46g、XpW30js和K一加98为感病性相关标记,
    在互斥相与抗病基因的连锁距离均为2石CM。综合与抗病基因连锁的抗性相关
    标记和感病性标记,构建了该基因和与其连锁标记的遗传连锁图。基于连锁的
    微卫星标记在小麦染色体的位置和作图结果,在BCZFS群体中小麦6D染色体
    可能被高大山羊草6S染色体代换,但6S染色体和6D染色体间也发生低频率
    的小片段易位。根据交换株的微卫星标记分析结果,推测该基因位于高大山羊
    草6S染色体长臂末端。该基因为新的抗白粉病基因,暂定名为PmyI50,建议
    定名为Pm34。
     在由硬粒小麦DR147-尾状山羊草Ael4合成的双二借体与普通小麦品种莱
    州953杂交衍生的*Q比群体中鉴定了一个显性抗小麦白粉病基因。该基因来
    源于硬粒小麦DR147。微卫星标记地rrm.xll和拒;mtn-H与该基因紧密连锁,遗
    传距离分别为5.9 CM和 4.gCM。根据己发表的小麦微卫星图谱和对中国春缺-
    四体DNA扩增结果,该基因被定位在小麦ZA染色体的长臂末端。由于该基因
    位于ZAL染色体上邻近基因Pm4位点的区域,可能是与Pm4位点连锁的新基因,
    或是Pm4位点的一个等位基因。该基因暂定名为PmDR147。
     利用分别与抗小麦白粉病基因 PmPSJA、PmPSM和 PmY39连锁的微卫星
    标记对由波斯小麦PSS和小伞山羊草Y39衍生抗白粉病的高代品系进行抗白粉
    病基因检测。在检测的88个抗病品系中,有26个品系检测到PmPAN,38?
Powdery mildew, caused by Erysiphe graminis f. sp. tritici, is one of the devastating diseases of wheat (Triticum aestivum L. em Thell.). The use of resistant cultivars is the most economical, effective and environmentally safe way to control this disease. Molecular markers tightly linked to resistance genes not only facilitates the identification and mapping of resistance genes, but also can be used for markers-assisted selection (MAS) of resistant lines in breeding programs. MAS greatly enhances the opportunity for gene pyramiding and expedites the process of breeding for resistance. Wild relatives of wheat have a large of resistance resources, and are a rich gene source for disease resistance. The objectives of the present studies were to identify and tag several powdery mildew resistance genes introgressed into wheat from some wild relatives of wheat using microsatellite markers, and using linked microsatellite markers to detect the powdery mildew resistance genes in many advanced lines derived from thes
    e wild relatives of wheat. The results will provide useful information for rapidly and effectively using the powdery mildew genes.
    The resistance genes in 11 tetraploid wheat-Aegilops amphidiploids, T. carthlicum acc. PS5, T. durum ace. DR147, 4 Aegilops accessions and advanced lines Am9/Laizhou953*2 F5 and (DR147/Ael4) //Laizhou953*2 F4 were analyzed by inoculating detached primary leaf segments with a set of 20 differential powdery mildew isolates. By comparisons of the response pattern of differential wheat cultivars or lines to the 20 isolates and pedigree analysis, we deduced that resistance
    gene Pm4b occurred in line Am9/Laizhou953* FS, and an unknown resistance gene in combination with resistance gene Pm4b occurred in T. carthlicum ace. PS5. Line (DR147/Ael4)//Laizhou953*2 F4 and T. durum aac. DR147 possessed an unknown resistance gene in combination with resistance gene Pm4a. Ae. caudata ace. Ael4 andAe. umbellulata ace. Y39 should carry a novel resistance gene.
    A dominant major gene conferring resistance to powdery mildew of wheat was identified in a BC2F2 population derived from a cross between amphidiploid Am4 and wheat cv. Bainong3217. The gene originated in T. carthlicum ace. PS5, the tetraploid wheat parent of Am4. Microsatellite marker Xgwm356 was identified to be linked to the gene with a genetic distance of 10.2cM. Based on the location of marker Xgwm356 on wheat chromosome, the gene was located on the wheat chromosome 2AL. Because both the gene and documented gene Pm4b originated from T. carthlicum, and was located on region of wheat chromosome 2AL near the gene Pm4b, it maybe either Pm4b, or a new gene linked to Pm4b. Temporarily, the gene was designated as PmPS5A.
    A dominant major gene conferring resistance to powdery mildew was identified in a BC3F2 population derived from a cross of amphidiploid Am9 and wheat cv. Laizhou953. The gene originated from T. carthlicum ace. PS5, the tetraploid wheat parent of Am9. Four microsatellite markers Xwmc317, Xgwmlll, Xgwm382 and Xgwm526 were found to be linked to the gene. On a genetic map of the gene and the linked microsatellite markers, the gene was flanked by markers Xwmc317 and
    
    
    Xgwm526 at 1.1 cM and 18.1cM, respectively. Markers Xgwmlll and Xgwm382 were mapped on the same side as marker Xwmc317, and linked to the gene with genetic distance of 2.2cM and 4.0cM, respectively. Based on the chromosome location of the linked micro satellite markers in wheat, the gene was located on wheat chromosome 2BL. The gene was different from the gene Pm6 and Pm26 located on wheat chromosome 2B, it should be a novel powdery mildew resistance gene. Temporarily, the gene was designated as PmPSSB. It is proposed that the gene is designated as Pm32.
    A new gene conditioning resistance to wheat powdery mildew was identified in a BCsFs population derived from a cross of amphidiploid Am9 and wheat cv. "Laizhou953". Microsatellite markers Xgwm296, Xgwm257, and Xgwm319 were identified to cosegregate with the gene. Markers Xgwm257 and Xgwm319 were resistant codom
引文
1.陈尚安,董玉琛,周荣华,王剑雄.小麦野生近缘植物抗病性鉴定.中国农业科学,1990,23(1):54-59.
    2.陈尚安,董玉琛,许树军,周荣华,李秀全,王剑雄.波斯小麦-粗山羊草双二倍体Am3抗白粉病特性的基因定位.中国农业科学,1990,23(4):17-21.
    3.陈松柏,蔡一林,周荣华,贾继增.小麦抗白粉病基因Pm4的STS标记.西南农业大学学报,2002,24:231-234.
    4.董玉琛,许树军,周荣华.小麦-山羊草双二倍体的合成与利用.胡含,王恒力(主编)植物细胞工程与育种.北京:北京工业大学出版社,1990,178-183.
    5.董玉琛,郑殿升.中国小麦遗传资源.北京:中国农业出版社,2000.
    6.董玉琛.小麦的基因源.麦类作物学报,2000,20(3):78-81.
    7.段霞瑜,盛宝钦,周益林,向齐君.小麦白粉病菌生理小种的鉴定与病菌毒性的监测.植物病理学报,1998,25(1):31-36.
    8.段霞瑜,向齐君,周益林,盛宝钦,赵忠银,四个小麦农家品种所携抗白粉病菌基因的等位性测定.植物病理学报,2001,31(3,增刊):32-35.
    9.贾继增,Miller T E,Reader S E,等,小麦抗白粉病基因Pm12的RFLP标记.中国科学(B辑),1993,23(6):589-594.
    10.贾继增,周荣华,张辉,Gale M D.小麦抗白粉病基因Pm13的分子标记.生物技术与作物种质资源研究学术讨论会论文摘要集.1996,北京
    11.贾继增,分子标记种质资源鉴定和分子育种.中国农业科学,1996.29(4):1-10.
    12.景蕊莲,昌小平.SSR标记在小麦种质资源研究中的应用.作物品种资源,1999,(2):17-20.
    13.高睦枪,刘冬成,郭小丽,张爱民.我国部分冬小麦新品种(系)SSR标记遗传差异的研究.农业生物技术学报.2001,9(1):49-54.
    14.孔令让,董玉琛.粗山羊草随抗白粉病基因的遗传多样性的研究.作物学报,1997,23(7):176-180.
    15.孔令让,董玉琛,贾继增.小麦-粗山羊草双二倍体抗白粉病基因定位及其遗传转移.植物保护学报,1999,26(2):116-120.
    16.孔令让,董玉琛.四倍体小麦-粗山羊草双二倍体抗病新种质的创制.西北植物学报,1999,19:196-199.
    17.孔秀英,周荣华,董玉琛,贾继增.尾状山羊草与硬粒小麦普通小麦的杂交及外源染色体检测。植物学报,1999,41(11):1164-1168.
    18.李洪杰,李义文,张艳敏,李辉,郭北海,王子宁,温之雨,刘志勇,朱至清,贾旭.组织培养创造抗白粉病小麦-簇毛麦染色体易位及分子标记辅助选择.遗传学报,2000,27(7):608-613.
    19.李隆业,黄元江.小麦白粉病已知抗性基因的效应及评价.中国农业科学.1990,23(3):20-26.
    20.李庆,叶华智.小麦近缘植物对禾缢管蚜的抗性研究.中国农业科学,2002,35:719-723.
    21.梁辉,郑近,段霞瑜,盛宝钦,贾双娥,李义文,唐顺学,欧阳俊闻,李家洋,李良材,田文忠,贾旭.用基因枪法获得抗白粉病转芪合酶基因小麦.科学通报,1999,44:2644-2648.
    
    
    22.刘金元,刘大钧,陈佩度,齐莉莉,程顺和,高德荣,吴荣林.分子标记辅助育种尝试-与小麦抗白粉病基因Pm2及Pm4a紧密连锁RFLP标记在小麦抗白粉病育种中的应用.南京农业大学学报,1997,20(2):1-5.
    23.刘金元,刘大钧,陶文静,李万隆,陈佩度.小麦抗白粉病基因Pm4a的RFLP标记转化为STS标记的研究.农业生物技术学报,1999,7(2):113-116.
    24.刘金元,陶文静,刘大钧,陈佩度,李万隆,向齐军,段霞瑜.小麦-簇毛麦易位系6VS/6AL中6VS的遗传传递及其所携带Pm21基因的遗传稳定性分析.植物学报,1999,41:1058-1060.
    25.刘金元,陶文静,刘大钧,陈佩度.与小麦白粉病抗性基因Pm2紧密连锁RAPD标记的筛选研究.遗传学报,2000,27(2):139-145.
    26.刘金元,陶文静,段霞瑜,向齐君,刘大钧,陈佩度.分子标记辅助鉴定小麦抗白粉病品种(系)所含Pm基因.植物病理学报,2000,30(2):133-139.
    27.刘金元,刘大钧.小麦白粉病抗性基因研究进展.植物病理学报,2000,30(4):289-295.
    28.刘景芳,张增艳,陈孝,刘曼西,谢皓,辛志勇.小麦抗白粉病基因Pm13及Pm4累加体的分子标记辅助选择.植物病理学报,2002,32(4):296-300.
    29.刘君丽,司乃国,解会敏,黄林.2002.小麦白粉病化学防治现状及发展方向.农药,41(4):15-16.
    30.刘万才,邵振润.1998.我国小麦白粉病大区流行的气候因素分析.植保技术与推广,18(1):3-5.
    31.刘志勇,孙其信,李洪杰,倪中福,杨作民,唐伯让,杨爱东,贾旭.小麦抗白粉病基因Pm21的分子鉴定和标记辅助选择.遗传学报,1999,26(6):673-682.
    32.马渐新,周荣华,董玉琛,贾继增,簇毛麦6V染色体的遗传稳定性及其在配子中的传递。遗传学报,1999,26(4):384-390.
    33.马渐新,周荣华,董玉琛,贾继增.来自长穗偃麦草(Lophopyrum elongatum)的抗小麦条锈病基因的定位.科学通报,1999,44(1):65-69.
    34.齐莉莉,陈佩度,刘大钧,周波,张守中,盛宝钦,向齐君,段霞瑜,周益林.小麦白粉病新抗源-基因Pm21.作物学报,1995,21(3):257-261.
    35.盛宝钦.小麦白粉病.吴全安(主编),粮食作物种质资源抗病虫鉴定方法。北京:农业出版社,1991,p13-15.
    36.盛宝钦,段霞瑜,周益林.已知含抗白粉病基因小麦品种的鉴定及评价.北京农业科学.1993,11(1):33-36.
    37.盛宝钦,段霞瑜,周益林.栽培防病措施对防治小麦白粉病的重要作用.植物保护学报,1998,25(3):218-222.
    38.司权民,张新心,段霞瑜,盛宝钦.小麦白粉病菌生理小种鉴定.中国农业科学,1987,20(5):64-70.
    39.司权民,张新心,段霞瑜,盛宝钦,周益林.小麦抗白粉病品种的基因分析与归类研究.植物病理学报,1992,22(4):349-355.
    40.孙雁,王云月,何月秋,范静华,陈建斌,朱有勇.云南稻种抗病基因同源序列类似性分析.中国农业科学,2002,35:502-507.
    41.陶家凤,沈言章,秦家忠,秦芸.1982.小麦的种和品种对白粉病抗性的初步研究.植物病理学报,12(2):7-14.
    42.陶文静,刘金元,刘大均,陈佩度.普通小麦-提莫非维小麦白粉病抗性渐渗系中渗入片段的准确鉴定.植物学报,1999a,41(1):941-946.
    
    
    43.陶文静,刘金元,刘大均,陈佩度.与抗小麦白粉病基因Pm6紧密连锁的分子标记筛选.遗传学报,1999b,26(6):649-656.
    44.王立新,苏爱莲,徐民新,王绣琴,Ueng P P,贾继增.小麦品种复壮30抗白粉病基因RAPD标记的研究.农业生物技术学报,2000,8(4):373-376.
    45.王瑞,刘愿英,Zeller F J,Hsam S L K.一些小麦白粉病抗源抗性基因鉴定分析.西北植物学报,2000,20(3):333-339.
    46.王新望,王丽军,段霞瑜,周文娟,盛宝钦,朱立煌,张文俊.2001.普通小麦中来自黑麦的抗白粉病Pm20基因的抗谱分析和AFLP定位.科学通报,46:666-669.
    47.王心宇,陈佩度,张守忠.小麦白粉病抗性基因的聚合及其分子标记辅助选择.遗传学报,2001,28:640-646.
    48.辛志勇,徐惠君,陈孝,林志珊,周广和,钱幼亭,成卓敏,Larkin P J,Banks P,Appels R,Clarke B,Brettell R I S.应用生物技术向小麦导入黄矮病抗性的研究.中国科学,B辑,1991,(1):36-42.
    49.向齐君,盛宝钦,段霞瑜,周益林.小麦白粉病抗源材料的有效抗病基因分析.华北农学报,1996,11(4):43-47.
    50.向齐君,盛宝钦,段霞瑜,周益林.1996.若干小麦抗白粉病品系的有效抗病基因的测定.作物学报,22:741-744.
    51.解超杰,倪中福,孙其信,杨作民,刘保申,魏艳玲.利用小麦微卫星标记定位一个来自野生二粒小麦的抗白粉病基因.遗传学报,2001,28:1034-1039.
    52.熊恩惠,薄元家,朱伟,肖庆璞,吴志风.小麦近缘种属及其衍生种对白粉病的抗性利用评价.中国农业科学,1986,19(5):32-37.
    53.徐惠君,辛志勇,刘四新等.组织培养与普通小麦异源易位系的选育.遗传学报,1996,23:376-381.
    54.许树军,董玉琛,陈尚安,周荣华,李秀全,李立会.小麦与山羊草双二倍体抗病性的研究与利用.作物学报,1990,16(2):106-111.
    55.杨作民,唐伯让,沈克全,夏先春.小麦育种的战略问题--锈病、白粉病第二线抗源的建立和利用.作物学报,1994,20:385-394.
    56.杨足君,李光蓉,任正隆.簇毛麦抗白粉病基因向四川小麦转移的分子标记育种研究.四川农业大学学报,2000,18(3):193-196.
    57.张学勇.普通小麦异源易位系的产生及利用.遗传,1991,13(5):39-44.
    58.张增艳,陈孝,张超,辛志勇,陈新民.分子标记选择小麦抗白粉病基因Pm4b、Pm13和Pm21聚合体.中国农业科学,2002,35:789-793.
    59.张忠山,王锡锋,刘红彦,何家泌.黄淮麦区18个小麦品种抗白粉病基因推导.中国农业科学,1991,24(6):39-44.
    60.周益林,Casulli F,Pasquini M,段霞瑜.意大利硬粒小麦和面包小麦推广品种对白粉病的抗性.麦类作物学报,2001,21(2):76-80.
    61.周益林,段霞瑜,陈刚,盛宝钦,张莹.40个小麦优良品种资源的抗白粉病基因推导.植物病理学报,2002,32(4):301-305.
    62.周益林,段霞瑜,盛宝钦.植物白粉病的化学防治进展.农药学报,2001,3(2):12-18.
    63. Aghaee-Sarbarzeh M, Harjit-Singh, Dhaliwal H S. A microsatellite marker linked to leaf rust resistance transferred from Aegilops triuncialis into hexaploid wheat. Plant Breeding, 2001, 120:259-261.
    
    
    64. Akagi H, Yokozeki Y, Inagaki A, Nakamura A, Fujimura T. A co-dominant DNA marker closely linked to the rice nuclear restorer gene, Rf-1, identified with inter-SSR fingerprinting. Genome, 1996, 39:1205-1209.
    65. Akkaya M S, Bhagwat A A, Cregan P B. Length polymorphism of simple sequence repeat DNA in soybean. Genetics, 1992, 132:1131-1139.
    66. Akkaya M S, Bhagwat A A, Cregan P B. Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Sci, 1995, 35:1439-1445.
    67. Ammiraju J S S, Dholakia B B, Santra D K, Singh H, Lagu M D, Tamhankar S A, Dhaliwal H S, Rao V S, Gupta V S, Ranjekar P K. Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theor Appl Genet, 2001, 102:726-732.
    68. Areshchenkova T, Ganal M W. Long tomato microsatellites are predominantly associated with centromeric regions. Genome, 1999, 42:536-544.
    69. Arumunagathan K, Earle E D. Nuclear DNA content of some important plant species. Plant Mol Biol, 1991, 9:208-218.
    70. Ayala L, Henry M, González-de-León D, van Ginkel M, Mujeeb-Kazi A, Keller B, Khairallah M. A diagnostic molecular marker allowing the study of Th. Intermedium-derived resistance to BYDV in bread wheat segregating populations.Theor Appl Genet, 2001, 102:942-949.
    71. Bariana H S, Brown G N, Ahmed N U, Khatkar S, Conner R L, Wellings C R, Haley S, Sharp P J, Laroche A. Characterisation of Triticum vavilovii-derived stripe rust resistance using genetic, cytogenetic and molecular analyses and its marker-assisted selection. Theor Appl Genet, 2002, 104:315-320.
    72. Bartos P, Valkoum J, Kosner J, Slovencikova V. Rust resistance of some European wheat cultivars from rye. In: Sears E R, Sears L M S (eds). Proc 4th Int Wheat Genet Symp. 1973, p 145-146. Univ of Missouri, Columbia, USA.
    73. Basam J, Gresshoff P M. DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Bio/Technology, 1991, 9: 553-557.
    74. Becker J, Heun M. Mapping of digested and undigested random amplified microsatellite polymorphisms in barley. Genome, 1995, 38:991-998.
    75. Bell C J, Ecker J R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics, 1994, 19:137-144.
    76. Bennett F G. Resistance to powdery mildew in wheat: a review of its use in agriulture and breeding programmes. Plant Pathology, 1984, 33:279-300.
    77. Biagetti M, Vitellozzi F, Ceoloni C. 1999. Physical mapping of wheat-Aegilops longissima breakpoints in mildew-resistant recombinant lines using FISH with highly repeated and low-copy DNA probes. Genome, 42:1013-1019.
    78. Blake T K, Kadyrzhanova D, Shepherd K W, Islam A K M R, Langridge P L, McDonald C L, Erpelding J, Larson S, Blake N K, Talbert L E. STS-PCR markers appropriate for wheat-barley introgression. Theor Appl Genet, 1996, 93:836-832.
    79. Bliffeld M, Mundy J, Potrykus I, Ftterer J. Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor. Appl. Genet. 1999, 98:1079-1086.
    80. Bohn M, Utz H F, Melchinger A E. Genetic similarities among winter wheat
    
    cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Science, 1999, 39:228-237.
    81. Bmer A, Rder M S, Unger O, Meinel A. The detection and molecular mapping of a major gene for non-specific adult-plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Theor Appl Genet, 2000, 100:1095-1099.
    82. Botstein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkdage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32: 314-331.
    83. Bougot Y, Lemoine J, Pavoine M T, Barloy D, Doussinault G. Identification of a microsatellite marker associated with Pm3 resistance alleles to powdery mildew in wheat. Plant Breeding, 121:325-330.
    84. Bowen K L, Everts K L, Leath S. Reduction in yield of winter wheat in North Carolina due to powdery mildew and leaf rust. Phyopathology, 1991, 81:503-511.
    85. Briggle L W. Three loci in wheat involving resistance to Erysiphe graminis tritici. Crop Sci, 1966,6:461-465.
    86. Briggle L W. Near-isogenic lines of wheat with genes for resistance to Erysiphe graminis tritici. Crop Sci, 1969, 6:70-72.
    87. Bryan G J, Collins A J, Stephenson P, Orry A, Smith J B, Gale M D. Isolation and characterisation of microsatellites from hexaploid bread wheat. Theor Appli Genet, 1997, 94:557-563.
    88. Cao W, Hughes G R, Ma H, Dong Z. Identification of molecular markers for resistance o Septoria nodorum blotch in durum wheat. Theor Appl Genet, 2001, 102:551-554.
    89. Caranta C, Thabuis A, Palloix A. Development of a CAPS marker for the Pvy4 locus: a tool for pyramiding polyvirus resistance genes in pepper. Genome, 1999, 42:1111-1116.
    90. Cenci A, D'Ovidio R, Tanzarella O A, Ceoloni C, Porceddu E. 1999. Identification of molecular markers linked to Pm 13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor Appl Genet, 98:448-454.
    91. Cenci A, D'Ovidio R, Tanzarella O A, Ceoloni C, Pasquini M, Porceddu E. Genetic analysis of the Aegilops longissima 3S chromosome carrying the Pm13 resistance gene. Euphytica, 2003, 130:177-183.
    92. Ceoloni C, Del Signore G; Ercoli L, Donini P. 1992. Locating the alien chromatin segment in common wheat-Aegilops longissima mildew resistant transfers. Hereditas, 116:239-245.
    93. Ceoloni C, Biagetti M, Ciaffi M, Forte P, Pasquiri M. 1996. Wheat chromosome engineering at the 4x level: the potential of different alien gene transfers into durum. Euphytica, 89:87-97.
    94. Chae Y, Fischbeck G. Genetic analysis of powdery mildew resistance in wheat cultivar Diplomat. Z PlanzenzUchtg, 1979, 83:279-300.
    95. Chagué V, Fahima T, Dahan A, Sun G L, Korol A B, Ronin Y I, Grama A, Rder M S, Nevo E. Isolation of microsatellite and RAPD markers flanking the Yr15 gene of wheat using NILs and bulked segregant analysis. Genome, 1999,
    
    42:1050-1056.
    96. Chantret N, Pavoine M T, Doussinault G. The race-specific resistance gene to powdery mildew, MIRE, has a residual effect on adult plant resistance of winter line RE714. Phytopathology, 1999, 89:533-539.
    97. Chantret N, Sourdille P, Roder M, Tavaud M, Bernard M, Doussinault G. Location and mapping of the powdery mildew resistance gene MIRE and detection of a resistance QTL by bulked segregant analysis (BSA) with microsatellites in wheat. Theor Appl Genet, 2000, 100:1217-1224.
    98. Chantret N, Mingeot D,Sourdille P, Bernard M, Jacquemin J M, Doussinault G. A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat. Theor Appl Genet, 2001, 103:962-971.
    99. Chen H B, Martin J M, Lavin M, Talbert L E. Genetic diversity in hard red spring wheat based on srquence-tagged-site PCR markers. Crop Sci, 1994, 34:1629-1632.
    100. Chen J M, Gustafson J P. Physical mapping of restriction fragment lengthpolymorphisms (RFLPs) in homoeologous group 7 chromosomes of wheat by in situ hybridzation. Heredity, 1995, 75:225-233.
    101. Chen X M, Line R F, Leung H. Genome scanning for resistance——gene analogs in flee, barley, and wheat by high-resolution electrophoresis. Theor Appl Genet 1998, 97: 345-355.
    102. Cho S, Sharp P J, Worland A J, Warham E J, Koebner R M D, Gale M D. RFLP-based genetic maps of wheat homoeologous group-7 chromosomes. Theor Appl Genet, 1989, 78:495-504.
    103. Cho Y G; McCouch S R, Kuiper M, Kang M R, Pot J, Groenen J T M, Eun M Y. Integrated map of AFLP, SSLP and RFLP markers using a recombination inbred population office (Oryza sativa L.). Theor Appl Genet, 1998, 97:370-380.
    104. Chung Y S, Griffey C A. Powdery mildew resistance in winter wheat. Ⅰ. Gene number and mode of inheritance. Crop Science, 1995, 35:378-382.
    105. Collins F S, Guyer M S, Chakravarti A. Variations on a theme: Cataloging human DNA sequence variation. Science, 1997, 278:1580-1581.
    106. Condit R, Hubbel S. Abundance and DNA sequence of two-base repeat regions in tropical tree genomes. Genome, 1991, 33:66-71.
    107. Das M K, Griffey C A. Heritability and number of genes governing adult-plant resistance to powdery mildew in Houser and Redcoat winter wheats. Phytopath, 1994a, 84:406-409.
    108. Das M K, Griffey C A.Diallel analysis of adult-plant resistance to powdery mildew in wheat. Crop Sci, 1994b, 34:948-952.
    109. Das M K, Griffey C A. Gene action for adult-plant resistance to powdery mildew in wheat. Genome, 1995, 38:277-282.
    110. Devos K M, Atkinson M D, Chinoy C N, Liu C, Gale M D. RFLP-based genetic map of the homoeologous group-3 chromosomes of wheat and rye. Theor Appl Genet, 1992, 83:931-939.
    111. Devos K M, Millan T, Gale M D. Comparative RFLP maps of homeologous group-2 chromosomes of wheat, rye, and barley. Theor Appl Genet, 1993,
    
    5:784-792.
    112. Devos K M, Bryan G J, Cillins A J, Stephenson P, Gale M D. Application of two microsatellite sequences in wheat stroage proteins as molecular markers. Theor Appl Genet, 1995, 90:247-252.
    113. Dhaliwal H S, Harjit-Singh, William M. 2002. Transfer of rust resistance from gegilops ovata into bread wheat ( Triticum aestivum L.) and molecular characterization of resistant derivatives. Euphytica, 126:153-159.
    114. Dograr N, Akin-Yalin S, Akkaya M S. Discriminating durum wheat cultivars using highly polymorphic simple sequence repeat DNA markers. Plant Breeding, 2000, 119:360-362.
    115. Donini P, Koebner R M D, Ceoloni C. Cytogenetic and molecular mapping of the wheat-Aegilops longissima chromation breakpoints in powdery mildew-resistant introgression lines. Theor Appl Genet, 1995, 91:738-743.
    116. Donini P, Stephenson P, Bryan G J, Koebner R M D. The potential of microsatellites for high throughput genetic diversity assessment in wheat and barley. Genetic Resources and Crop Evolution, 1998, 45:415-421.
    117. Driscoll C J, Sears E R. Mapping of a wheat-rye translocation. Genetics, 1965, 51:439-443.
    118. Dubcovsky J, Lijavetzky D, Appendino L, Tranquilli G. Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor Appl Genet, 1998, 97:968-975.
    119. Dweikat I, MackKenzie S, Levy M, Ohm O. Pedigree assessment using RAPD-DGGE in cereal crop species. Theor Appl Genet, 1993, 83:497-505.
    120. Dyck P L, Kerber E R. Inheritance in hexaploid wheat of adult-plant leaf rust resisatnce derived from Aegilops squarrosa. Can J Genet Cytol, 1970, 12:175-180.
    121. Dyck P L. Transfer of a gene for stem rust resistance friom Triticum araraticum to hexaploid wheat. Genome, 1992, 35:788-792.
    122. Edwards A, Civitello A, Hammond H A, Caskey C T. DNA typing and genetic mapping with trimeric and tertrameric tandem repeats. Am J Hum Genet, 1991, 49:746-756.
    123. Eujayl I, Sorrells M E, Baum M, Wolters P, Powell W. Isolation of Est-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet, 2002, 104:399-407.
    124. Everts K L, Leath S. Effect of early season powdery mildew on development, survival, and yield contribution of tillers of winter wheat. Phytopathology, 1992, 82:1273-1278.
    125. Fahima T, Chague V, Sun CT, Korol Y, Ronin A, Rder M, Grama A, Nevo E. Identification and potential use of PCR markers flanking the Triticum dicoccoides-derived stripe rust resistance gene Yri5 in wheat. 5th Int Congr Plant Mol Biol, Singapore, 1997, p249.
    126. Fahima T, Rder M S, Grama A, Nevo E. Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theor Appl Genet, 1998, 96:187-195.
    
    
    127. Faris J D, Haen K M, Gill B S. Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics, 2000, 154:823-835.
    128. Fedak G. Molecular aids for intregration of alien chromatin through wide crosses. Genome, 1999, 42:584-591.
    129. Flavell A J, Knox M R, Pearce S R, Noel Ellis T H. Retrotransposon-based insert polymorphisms (RBIP) for high throughput markers analysis. The Plant Journal, 1998, 16:643-650.
    130. Flor H H. Host-parasite interaction in flax rust: Its genetic and other implications. Phytopathol, 1955, 45:680-685
    131. Friebe B, Tuleen N, Jiang J, Gill B S. Standard karyotype of Triticum longissimum and its cytogenetic relationship with T. aestivum. Genome, 1993, 36:731-742.
    132. Friebe B, Heun M, Tuleen N, Zeller F J, Gill B S. Cytogenetically monitored transfer of powdery mildew resistance from rye to into wheat. Crop Sci, 1994, 34: 621-625.
    133. Friebe B, Jiang J, Raupp W J, Mclntosh R A, Gill B S. 1996. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica, 91:59-87.
    134. Gale M D, Miller T E. The introduction of alien genetic variation into wheat. In: Lupton F G H. (eds). Wheat breeding: its scientific basis. 1987, p173-210. Champman and Hall, UK.
    135. Gale M D, Devos K M. Comparative genetics in the grasses. Proc Natl Acad Sci USA, 1998, 95:1971-1974.
    136. Germano J, Klein A S. Species-specific nuclear and chloroplast single nucleotide polymorphisms to distinguish Picea glauca, P mariana and P rubens. Theor Appl Genet, 1999, 99:37-49.
    137. Gill B S, Sharma H C, Raupp W J. Evalution of Aegilops species for resistance to wheat powdery, wheat leaf rust, Hessian fly, and greenbug. Plant Disease, 1985, 69:314-316.
    138. Gill K S, Gill B S, Endo T R, Taylor T. Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics, 1996, 144:1883-1891.
    139. Griffey C A, Das M K. Inheritance of adult-plant resistance to powdery mildew in Knox 62 and Massey winter wheats. Crop Science, 1994,34:641-646.
    140. Gupta S, Gupta A K, Saini R G. Transfer of leaf rust resistance from durum wheats CPAN 6051 and CPAN 6073 to Triticum aestivum. Wheat Information Service, 1991, 73:8-10.
    141. Gupta M, Chyi J, Romero-Severson J, Owen J L. Amplification of DNA markers from evolutionary diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet, 1994, 89:998-1006.
    142. Gupta P K, Varshney R K, Sharma P C, Ramesh B. Molecular markers and their applications in wheat breeding. Plant Breeding, 1999, 118:369-390.
    143. Gupta P K, Balyan H S, Edwards K J, Isaac P, Korzun V, R6der M, Gautier M F, Joudrier P, Schlatter A R, Dubcovsky J, De la Pena R C, Khairallah M, Penner G,
    
    Hayden M J, Sharp P, Keller B, Wang R C C, Hardouin J P, Jack P, Leroy P. Genetic mapping of 66 new microsatellite (SSR) in bread wheat. Theor Appl Genet, 2002, 105:413-422.
    144. Gustafson G, Shaner G. Influence of plant age on expression of slowing mildewing resistance in wheat. Phytopathology, 1982, 72:746-749.
    145. Guyomarc'h H, Sourdille P, Charmet G, Edwards K J, Bernard M. Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to D-genome of bread wheat. Theor Appl Genet, 2002, 104:1164-1172.
    146. Hakki E E, Savaskan C, Akkaya M S. Genotyping of Anatolian doubled-haploid durum lines with SSR markers. Euphytica, 2001, 122:257-262.
    147. Hammer K, Filatenko A A, Korzun V. Microsatellite markers-a new tool for distinguishing diploid wheat species. Genetic Resources & Crop Evolution, 2000, 47: 497-505.
    148. Hammond-Kosack K E, Jones J D G. Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48:575-607.
    149. Hare R A, Mclntosh R A. Genetic and cytogenetic studies of durable adult plant resistance in "Hope" and related cultivars to wheat rusts. Z Pflanzenuchtg, 1979, 83:350-367.
    150. Harjit-Singh, Prasad M, Varshney R K, Roy J K, Balyan H S, Dhaliwal H S, Gupta P K. STMS markers for grain protein content and their validation using near-isogenic lines in bread wheat. Plant Breeding, 2001, 120:273-278.
    151. Hartl L, Weiss H, Zeller F J, Jahoor A. Use of RFLP markers for the identification of allels of the Pm3 locus conferring powdery mildew resistance in wheat. Theor Appl Genet, 1993, 86:959-963.
    152. Hartl L, Weiss H, Stephan U, Zeller F J, Jahoor A. Molecular identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). Theor Appl Genet, 1995, 90:601-606.
    153. Hartl L, Mohler V, Zeller F J, Hsam S L K, Schweizer G. Identification of AFLP markers closely linked to the powdery mildew resistance gene Pmlc and Pm4a in common wheat (Triticum aestivum L.). Genome, 1999, 42:322-329.
    154. Hautea R, Coffman W, Sorrels M, Bergstrom G. Inheritance of parital resistance to powdery mildew in spring wheat. Theor Appl Genet, 1987, 73:609-615.
    155. He S, Ohm H, Mackenzie M. Detection of DNA sequence polymorphisms among wheat varities. Theor Appl Genet, 1992, 84:573-578.
    156. Heame C M, Ghosh S, Todd J A. Microsatellites for linkage analysis of genetic traits. Trends Genet, 1992, 8:288-294.
    157. Heun M. Virulence frequencies influenced by host resistance in the host-pathogen system wheat powdery mildew. J Phytopathol, 1987, 118:363-366.
    158. Hsam S L K, Zeller F J. Evidence of allelism between genes Pm8 and Pm17 and chromosomal location of powdery mildew and leaf rust resistance genes in the common wheat cultivar 'Amigo'. Plant Breeding, 1997, 116:119-122.
    159. Hsam S L K, Huang X Q, Ernst F, Hartl L, Zeller F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.
    
    em Thell.). 5. Alleles at the Pml locus. Theor Appl Genet, 1998, 96:1129-1134.
    160. Hsam S L K, Mohler V, Hartl L, Wenzel G; Zeller F J. Mapping of powdery mildew and leaf rust resistance genes on the wheat-rye translocated chromosome TlBL.1RS using molecular and biochemical markers. Plant Breeding, 2000, 119:87-89.
    161. Hsam S L K, Huang X Q, Zeller F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.). 6. Alleles at the Pm5 locus. Theor Appl Genet, 2001, 102:127-133.
    162. Hu X Y, Ohm H W, Dweikat I. Identification of RAPD markers linked to the gene Pm1 for resistance to powdery mildew in wheat. Theor Appl Genet, 1997, 94:832-840.
    163. Huang X Q, Hsam S L K, Zeller F J. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L. em. Thell.): Ⅸ. Cultivars, land races and breeding lines grown in China. Plant Breeding, 1997a, 116:233-238.
    164. Huang X Q, Hsam S L K, Zeller F. Chromosomal location of genes for resitance to powdery mildew in common wheat ( Triticum aestivum L.em. Thell.) 4. Gene Pm24 in Chinese landrace Chiyacao. Theor Appl Genet, 1997b, 95:950-953.
    165. Huang X Q, Hsam S L K, Zeller F J, Wenzel G; Mohler V. Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet, 2000a, 101:407-414.
    166. Huang X Q, Hsam S L K, Zeller F J. Chromosomal location of powdery mildew resistance genes in Chinese wheat (Triticum aestivum L. em. Thell.) landraces Xiaobaidong and Fuzhuang 30. J Genet Breed, 2000b, 54:311-317.
    167. Huang X Q, Hsam S L K, Zeller F J. Chromosomal location of genes for resistance to powdery mildew in Chinese wheat lines Jieyan 94-1-1 and Siyan 94-1-2. Hereditas, 2002, 136:212-218.
    168. Huang X Q, Wang L X, Xu M X, R6der M S. Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L). Theor Appl Genet, 2003, 106:858-865.
    169. Jfirve K, Peusha H O, Tsymblova J, Tamm S, Devos K M, Enno T M. Chromosomal location of a Triticum timopheevii-derived powdery mildew resistance gene transferred to common wheat. Genome, 2000, 43:377-381.
    170. Jia J, Devos K M, Chao S, Miller T E, Reader S M, Gale M D. RFLP-based maps of the homoeologous group 6 chromosomes maps of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferrd from Aegilops speltoides to wheat. Theor Appl Genet, 1996, 92:559-565.
    171. Jiang J, Friebe B, Gill B S. Recent advances in alien gene transfer in wheat. Euphytica, 1994, 73:199-212.
    172. Jing R, Chang X, Hu R, Broggio M, Jla J Z. ASSR analysis of wheat pedigrees with drought tolerance. In: Plant and animal genome Ⅷ. Int Conf on the Status of Plant and Animal Genome Res, San Diego, USA. Scherage, New York, 2000, p104.
    173. Jorgensen J H, Jensen C J. 1972. Genes for resistance to wheat powdery mildew in derivatives of Triticum timopheevii and T. carthlicum. Euphytica 21:121-128.
    
    
    174. Jorgensen J H, Jensen C J. 1973. Gene for resistance to powdery mildew in wheat. Euphytica, 1973, 22:423-425.
    175. Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet, 1999, 98:704-711.
    176. Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulmanet A H. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamic in response to sharp microclimate divergence. Proc Natl Acad Sci USA, 2000, 97:6603-6607.
    177. Kerber E R. Resistance to leaf rust in hexaploid wheat: Lr32, a third gene derived from Aegilops tauschii. Crop Sci, 1987, 27:204-206.
    178. Kerber E R, DyCk P L. Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides × Triticum monococcum. Genome, 1990, 33:530-537.
    179. Keller M, Keller B, Schachermayr G, Winzeler M, Schmid J E, Stamp P, Messmer M M. Quantitative trait loci for resistance against powdery mildew in a segregating wheat × spelt population. Theor Appl Genet, 1999, 98:903-912.
    180. Kerber E R. Suppression of rust resistance in amphiploid of Triticum. Proc 6th Int Wheat Genet. Symp, 1983, 813-817.
    181. Kerber E R. Resistance to leaf rust in hexaploid wheat: Lr32 a third gene from Triticum tauschii. Crop Science, 1987, 27:204-206.
    182. Kontt D R. Translocations involving Triticum chromosomes and Agropyron chromosomes carrying rust resistance. Can J Genet Cytol, 1968, 10:695-696.
    183. Knott D R, Dvorak J. Alien germplasm as a source of resistance to disease. Ann. Rev. Phytopathol, 1976, 14:211-235.
    184. Knott D R, Dvorak J, Nanda J S. The transfer to wheat and homology of an Agropyron elongatum chromosome carrying a resistance gene to stem rust. Can J Genet Cytol, 1977, 19:75-79.
    185. Konieczny A, Ausubel F M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markes. Plant Journal, 1993, 4:403-410.
    186. Korzun V, Brner A, Worland A J, Law C N, Rder M S. Application of microsatellite markers to distinguish intervarietal chromosome substitution lines of wheat (Triticum aestivum L.). Euphytica, 1997, 95:149-155.
    187. Korzun V, Rder M S, Worland A J, Brner A. Intrachromosomal mapping of genes for dwarfing (Rht12) and vernalization response (Vrnl) in wheat by RFLP and microsatellite markers. Plant Breeding, 1997, 116:227-232.
    188. Korzun V, Rder M S, Ganal M W, Wofiand A J, Law C N. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part Ⅰ. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat(Triticum aestivum L.). Theor Appl Genet, 1998, 96:1104-1109.
    189. Korzun V, Rder M S, Wendehake K, Pasqualone A, Lotti C, Ganal M W, Blanco A. Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat. Theor Appl Genet, 1999, 98:1202-1207.
    
    
    190. Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12:172-175.
    191. Kumar A. et al. The Tyl-copia group of retrotransposons in plants: genomic organization, evolution, and use as molecular markers. Genetica, 1997, 100: 205-217.
    192. Kumar A, Hirochika H. Applications of retrotransposons as genetic tools in plant biology. Trends in Plant Science, 2001, 6:127-134.
    193. Lagercrantz U, Ellegren H, Andersson L. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res, 1993, 21:1111-1115.
    194. Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic maps of experimental and natural populations. Genomics, 1987, 1:174-181.
    195. Law C N, Wolfe M S. Location of genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat. Can J Genet Cytol, 1966, 8:462-470.
    196. Lebsock K L, Briggle L E. Gene Pm5 for resistance to Erysiphe graminis f. sp. tritici in Hope wheat. Crop Sci, 1974, 14:561-563.
    197. Lelley T, Stachel M, Grausgruber H, Vollmann J. Analysis of relationhip between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome, 2000, 43:661-668.
    198. Li G; Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 130:455-461.
    199. Liang H, Zheng J, Jia, S G, Wang D W, OUYang J W, Li J Y, Li L C, Tian W Z, Jia X, Duan X Y, Sheng B Q, Hain R. A transgenic wheat with a stilbene synthase gene resistant to powdery mildew obtained by biolistic method. Chinese Science Bulletin, 2000, 45:634-638.
    200. Litt M, Luty J A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet, 1989, 44:397.
    201. Liu J, Liu D, Tao W, Li W, Wang S, Chen P, Cheng S, Gao D. Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant breeding, 2000, 119:21-24.
    202. Liu S, Griffey C A, Saghai Maroof M A. Preliminary report on molecular marker analysis of adult plant resistance to powdery mildew in winter wheat Massey. In: Proc 9th Internat Wheat Genet Symp (Slinkard A E ed). University Extension Press, University Saskatchewan, Saskatoon, Canada. 1998, 3:132-134.
    203. Liu X M, Smith C M, Gill B S, Tolmay V. Microsatellite markers linked to six Russian wheat aphid resistance genes in wheat. Theor Appl Genet, 2001, 102:504-510.
    204. Liu X M, Smith C M, Gill B S. Identification of microsatellite markers linked to Russian wheat aphid resistance genes Dh4 and Dh6. Theor Appl Genet, 2002,
    
    104:1042-1048.
    205. Liu, Z W, Biyashev R M, Saghai-Maroof M A. Development of simple sequence reprat DNA markers and their integration into a barley linkage map. Theor Appl Genet, 1996, 93:869-876.
    206. Liu Z, Sun Q, Ni Z, Yang T. Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breeding, 1999, 118:215-219.
    207. Liu Z Y, Sun Q X, Ni Z F, Nevo E, Yang T M. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica, 2002, 123:21-29.
    208. Lowry J R, Sammons D J, Baenziger P S, Moseman J G. Identification and Characterization od the gene conditioning powdery mildew resistance in 'Amigo'wheat. Crop Sci, 1984, 24:129-132.
    209. Luo M, Kong X Y, Jiang T, Jia C, Zhou R H, Jia J Z. Analysis of resistance to powdery mildew in wheat based on expressed sequence tags (EST) technique. Acta Botannica Sinica, 2002, 44:567-572.
    210. Lutz J E, Limpert P B, Zeller F J. Identification of powery mildew resistance genes in common wheat (Triticum aestivum L.) Ⅰ. czechoslovakian cultivars. Plant Breeding, 1992, 108:33-39.
    211. Lutz J Hsam S L K, Limpert E, et al. Chromosome location of powdery mildew resistance genes in Triticum aestivum L. 2. Pm2 and Pm19 from Aegilops squarrosa L. Heredity, 1995, 74:152-156.
    212. Ma J X, Zhou R H, Dong Y S, Wang L F, Wang X M, Jia J Z. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica, 2001, 120:219-226.
    213. Ma Z Q, Sorrells M E, Tanksley S D. RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3 and Pm4 in wheat. Genome, 1994, 37:871-875.
    214. Ma Z Q, Rder M S, Sorrells M E. Frequencies and sequence characteristics of di-, tri, and tetra-nucleotide microsatellites in wheat. Genome, 1996, 39:123-130.
    215. Marino C L, Nelson J C, Lu Y H, Sorrells M E, Leroy P, Tuleen N A, Lopes C R, Hart G. Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell.) Genome, 1996, 39:359-366.
    216. Manifesto M M, Schlatter A R, Hopp H E, Suarez E Y, Dubcovsdy J. Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Science, 2001, 41:682-690.
    217. Manninen, O., Kalendar, R., Robinson, J., and Schulman, A.H. Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Theor Appl Genet, 2000, 264:325-334.
    218. May C E, Appels R. The molecular genetics of wheat: toward an understanding of 16 billion base pairs DNA. In Wheat and wheat improvement Edited by E.G. Heyne. Agronomy Monograph No. 13 (2nd ed.), 1987, pp 165-198.
    219. McCouch S R, Chen X, Panaud S, Temnykh S, Xu Y, Cho Y G, Huang N, Ishii T, Blair M. Microsatellite marker development, mapping and application in rice genetics and breeding. Plant Mol Biol, 1997, 35:89-99.
    
    
    220. McIntosh R A, Ling N H, Baker E P. 1967. Genetic and cytogenetic studies of stem rust, leaf rust and powdery mildew resistance in Hope and related wheat Cultivars. Aust J Biol Sci, 20:1181-1192.
    221. McIntosh R A, Dyck P L, Green G J. Inheritance of leaf rust and stem rust resistance in wheat cultivars Agent and Agatha. Aust J Agric Res, 1977, 28:37-45.
    222. McIntosh R A, Miller T E, Chapman V. Cytogenetical studies in wheat Ⅻ. Lr28 fot resisatnce to Puccinia recondite and Sr34 for resistance to P. graminis tritci. Z Pflanzenzuchtg, 1982, 89:295-306.
    223. McIntosh R A. Genetic and Cytogenetic studies involving Lrl8 resistance to Puccinia recondite. In: Sakamoto S (Ed). Proc 6th Int Wheat Genet Symp, 1983, pp777-783. Kyoto, Japan.
    224. McIntosh R A, Devos K M, Gale M D, Dubcovsky J, Rogers W J. 2003. Catalogue of gene symnols for wheat: 2003 Supplement.
    225. Mettin D, Bluthner W D, Schlegel G. Additional evidence of spontaneous 1B/1R1 substitutions and translocation. In: Sears E R, Sears L M S (eds). Proc 4th Int Wheat Genet Syrup. 1973, pp179-184. Univ of Missouri, Columbia, USA.
    226. Meyer, W., Michell, T. G., Freedman, E.Z., and Vilgalys, R., 1993. Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans. J. Clin. Biol., 31: 2274-2280.
    227. Michelmore R M, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88:9828-9832.
    228. Mingeot D, Chantret N, Baret P V, Dekeyser A, Boukhatem N, Sourdille P, Doussinault G, Jacquemin M. Mapping QTL involved in adult plant resistance to powdery mildew in the winter wheat line RE714 in two susceptible genetic backgrounds. Plant Breeding, 2002, 121:133-140.
    229. Milla M A R, Gustafson J P. Genetic and physical characterization of chromosome 4DL in wheat. Genome, 2001, 44:883-892.
    230. Miller T E, Reader S M, Ainsworth C C, Summers R W. The introduction of a major gene for resistance to powdery mildew of wheat, Erysiphe graminis f. sp. tritici from Aegilops speltoides into wheat, T. aestivum. In: Jorna M L, Slootmaker L A J (Eds). Cereal breeding related to integrated cereal production: Proc of the EUCARPIA Conf, 1987, p. 179-183. Wageningen, The Netherland.
    231. Mishra A N, Pandey H N, Kaushal K, Varma P K, Thakur R S. New germplasm of durum wheat with stem rust resistance. Wheat Information Service, 2001,93:35-37.
    232. Mogrante M, Olivieri A M. PCR-amplified microsatellites as markers in plant genetics. Plant J, 1993, 3:175-182.
    233. Mohler V, Jahoor A. Allele-specific amplification of polymorphic sites for the detection of powdery milldew resistance loci in wheat. Theor Appl Genet, 1996, 93:1078-1082.
    234. Mohler V, Hsam S L K, Zeller F J, Wenzel G. An STS marker distinguishing the
    
    rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat. Plant Breeding, 2001, 120:448-450.
    235. Moore G, Devos K M, Wang Z, Gale M D. Cereal genome evolution - grasses, line up and form a circle. Current Biology, 1995, 5:737-739.
    236. Mullis K B, Faloona F. Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. Meth Enzymol, 1987,155: 335-350.
    237. Nachit M M, Elouafi L, Pagnotta M A, El Saleh A, Iacono E, Labhilili M, Asbati A, Azrak M, Hazzam H, Benscher D, Khairallah M, Ribaut J M, Tanzarella O A, Proceddu E, Sorrells M E. Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var. durum). Theor Appl Genet, 2001, 102:177-186.
    238. Nass H, Pedersen W, MacKenzie D, Nelson R. The residual effects of some 'defeated' powdery mildew resistance genes in isolines of chancellor winter wheat. Phytopathol, 1981, 71:1315-1318.
    239. Nelson J C, Sorrells M E, Van Deynze A E, Lu Y H, Atkinson M, Bernard M, Leroy P, Faris J D, Anderson J A. Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics, 1995a, 141:721-731.
    240. Nelson J C, Van Deynze A E, Autrique E, Sorrells M E, Lu Y H, Merlino M, Atkinson M, Leroy P. Molecular mapping of wheat. Homoeologous group 2. Genome, 1995b, 38:517-524.
    241. Nelson J C, Van Deynze A E, Autrique E, Sorrells M E, Lu Y H, Negre S, Bernard M, Leroy P. Molecular mapping of wheat. Homoeologous group 3. Genome, 1995c, 38:525-533.
    242. Nelson J C, Autrique J E, Fuentes-D☆ivila G, Sorrells M E. Chromosomal location of genes for resistance to Karnal bunt in wheat. Crop Sci, 1998, 38:231-236.
    243. Olson, M., Hood, L., Cantor, C., and Bostein, D. A common language for physical mapping of the human genome. Science, 1989, 245:1434-1435.
    244. Paull, J.G., Chalmers, K.J., Karakousis, A., Kretschmer, J.M., Manning, S., and Langridge, P. Genetic diversity in Australian wheat varifies and breeding material based on RFLP data. Theor Appl Genet, 1998, 96:435-446.
    245. Paran I, Michlmore, R.W. Development of reliable PCR-based marker linked to downy mildew resistance genes in lettuce. Theor Appl Genet, 1993, 85:985-993
    246. Peil A Korzun V, Schubert V, Schumann E, Weber W E, Rder M S. The application of wheat microsatellites to identify disomic Triticum aestivum-Aegilops markgrafii addition lines. Theor Appl Genet, 1998, 96:138-146.
    247. Peng J H, Fahima T, Rder M S, Li Y C, Dahan A, Grama A, Ronin Y I, Korol A B, Nevo E. Microsatellite tagging of the stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theor Appl Genet, 1999, 98:862-872.
    248. Peng J H, Fahima T, Roder M S, Li Y C, Grama A, Nevo E. Microsatellite high-density mapping of the stripe rust resistance gene YrH52 region on chromosome 1B and evaluation of its marker-assisted selection in the F-2
    
    generation in wild emmer wheat. New Phytologist, 2000, 146:141-154.
    249. Penner G A, Clarke J, Bezte L J, Leisle D. Identification of RAPD markers linked to a gene governing cadmium uptake in durum wheat. Genome, 1995, 38:543-547.
    250. Pestsova E, Ganal M W, Rder M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 2000, 43:698-697.
    251. Pestsova E, Salina E, Brner A, Korzun V, Maystrenko O I, Rder M S. Microsatellites confirm the authenticity of inter-varietal chromosome substitution lines of wheat (Triticum aestivum L.). Theor Appl Genet, 2000, 101:95-99.
    252. Petrova N, Hsam S L K, Spetsov P, Zeller F J. Identification of podery mildew and leaf rust resistance genes in common wheat (Triticum aestivum L. em. Thell.) cultivars grown in Bulgaria and Russia. Plant Genetic Resources Newsletter,2000,122: 21-27.
    253. Peusha H, Hsam S L K, Zeller F J. Chromosomal location of powdery mildew resistance genes in common wheat (Triticum aestivum L. em Thell.). 3. Gene Pm22 in cultivar Virest. Euphytica, 1996, 91:149-152.
    254. Peusha H, Enno T, Priilinn O. Chromosomal location of powdery mildew resistance genes and cytogenetic analysis of meiosis in common wheat cultivar Meri. Hereditas, 2000, 132:29-34.
    255. Plaschke J, Ganal M W, Rder M S. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet, 1995, 91:1001-1007.
    256. Plaschke J, Brner A, Wendebake K, Canal M W, Rder M S. The use of wheat aneuploids for the chromosomal assignment of microsatellite loci. Euphytica, 1996, 89:33-40.
    257. Prasad M, Varshney R K, Kumar A, Balyan H S, Sharma P C., Edwards, K J, H-Singh, Dhaliwal H S, Roy J K, Gupta P K. A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theor Appl Genet, 1999, 99:341-345.
    258. Prasad M, Varshney R K, Roy J K, Balyan H S, Gupta P K. The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet, 2000, 100:584-592.
    259. Procunier J D, Gibert J, Aung T, Gray M, Prashar S. Microsatellite identification of specific D chromosomes for fusarium head blight resistance in hexaphoid wheat. In: Proc 9th Internat Wheat Genet Symp (Slinkard AE ed). University Extension Press, University Saskatchewan, Saskatoon, Canada. 1998, 3:143-144.
    260. Provan J, et al. Copia-SSR: a simple marker technique which can be used on total genomic DNA. Genome, 1999, 42: 363-366.
    261. Punjia Z K. Genetic engineering of plants to enhance resistance to fungal pathogens-a review of progress and future prospects. Can J Plant Pathol, 2001, 23:216-235.
    262. Qi L, Cao M, Chen P, Li W, Liu D. Identification, mapping, and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome, 1996, 39:191-197.
    
    
    263. Rao M V P. The transfer of alien genes for stem rust resistance to durum wheat. In: Ramanujam S (Ed). Proc 5th Int Wheat Genet Symp, 1978, p.338-341. New Delhi, India.
    264. Raupp W J, Singh S, Brown-Guedira G L, Gill B S. Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat. Theor Appl Genet, 2001, 102:347-352.
    265. Reader S M, Miller T E. The introduction into bread wheat of a major gene for resisatnce to powdery mildew from wild emmer wheat. Euphytica, 1991, 53:57-60.
    266. Riley R, Chapman V, Johnson R. Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature, 1968, 217:383-384.
    267. Robe P, Doussinault G. Genetic analysis of powdery mildew resistance of a winter-wheat line, RE714, and identification of a new specific-resistance gene. Plant Breeding, 1995, 114:387-391.
    268. Roberts J, Caldwell R. General resistance (slow mildewing) to Erysiphe graminis f. sp. tritici 'Knox' wheat. Phytopathology, 1970, 60:1310.
    269. Roelfs A P. Foliar fungal diseases of wheat in the People's Republic of China. Plant Dis Rep, 1977, 61:836-841.
    270. Rder M S, Plaschke J, Knig S U, Bner A, Sorrells M E, Tanksley S D, Ganal M W. Abundance, variability, and chromosomal location of microsatellites in wheat. Mol Gen Genet, 1995, 246:327-333.
    271. Rder M S, Korzun V, Gill B S, Canal M W. The physical mapping of microsatellite markers in wheat. Genome, 1998a, 41:278-283.
    272. Rder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998b, 149:2007-2023.
    273. Rong J K, Millet E, Manisterski J, Feldman M. A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica, 2000, 115:121-126.
    274. Rowland G G, Kerber E R. Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol, 1974, 16:137-144.
    275. Roy J K, Prasad M, Varshney R K, Balyan H S, Blake T K, Dhaliwal H S, Singh H, Edwards K J, Gupta P K. Identification of a microsatellite on chromosome 6B and a STS on 7D of bread wheat showing association with preharvest sprouting tolerance. Theor Appl Genet, 1999, 99:336-340.
    276. Roy J K, Balyan H S, Prasad M, Gupta P K. Use of SAMPL for a study of DNA polymorphism, genetic diversity and possible gene tagging in bread wheat. Theor Appl Genet, 2002, 100:465-472.
    277. Royer M H, Nelson R R, MacKenzie D R, Diehle D A. Partial resistance of near-isogenic wheat lines compatible with Erysiphe graminis f. sp. tritici. Phytopathology, 1984, 74:1001-1006.
    278. Saari E E, Wilcoxson R D. Plant disease situation of high-yielding dwarf wheats in Asia and Africa. Ann Rev Phytopath, 1974, 12:49-68.
    
    
    279. Salina E, Bmer A, Leonova I, Korzun V, Laikova L, Maystrenko O, Rder M S. Microsatellite mapping of the induced sphaerococcoid mutation genes in Triticum aestivum. Theor Appl Genet, 2000, 100:686-689.
    280. Schulze-Lefert P, Vogel J. Closing the ranks to attack by powdery mildew. Trends in Plant Science, 2000, 5:343-348.
    281. Schweizer P, Christoffel A, Dudler R. Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance. The Plant Journal, 1999, 20:541-552.
    282. Schweizer P, Pokorny J, Abderhalden O, Dudler R. A transient assay system for the functional assessment of defense-related genes in wheat. Molecular Plant-Microbe Interactions, 1999, 12:647-654.
    283. Seah S, Sivasithamparam K, Karakousis A, Lagudah E S. Cloning and characterization of a family of disease resistance gene analogs from wheat and barley. Theor Appl Genet, 1998, 97:937-945.
    284. Seah S, Spielmeyer W, Jahier J, Sivasithamparam K, Lagudah E S. Resistance gene analogs within an introgressed chromosomal segment derived from Triticum ventricosum that confers resistance to nematode and rust pathogens in wheat. Molecular Plant-Microbe Interactions, 2000, 13:334-341.
    285. Seah S, Bariana H, Jahier J, Sivasithamparam K. The introgressed segment carrying rust resisatnce genes Yrl7, Lr37 and Sr38 in wheat can be assayed by a cloned disease resistance gene-like sequence. Theor Appl Genet, 2001, 102:600-605.
    286. Sears E R. The transfer of leaf rust resistance from Aegilops umbellulate to wheat. Brookhaven Symp Biol, 1956, 9:1-21.
    287. Sears E R. Agropyron-wheat transfers induced by homoeologous pairing. In: Sears E R, Sears L M S (eds). Proc 4th Int Wheat Genet Symp. 1973, p191-199. Univ of Missouri, Columbia, USA.
    288. Sebesta E E, Young H C, Wood E A. Wheat streak mosaic virus resistance. Ann Wheat Newslet, 1972, 18:136.
    289. Senft P, Wricke G. An extended genetic map of rye (Secale cereale L.). Plant Breeding, 1996, 115:508-510.
    290. Senior M L, Heun M. 1993. Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome, 36:884-889.
    291. Seyfarth R, Feuillet C, Keller B. Development and characterization of molecular markers for the adult leaf rust resistance genes Lr13 and Lr35 in wheat. In: Proc 9th Internat Wheat Genet Syrup (Slinkard A E ed). University Extension Press, University Saskatchewan, Saskatoon, Canada. 1998, 3:154-155.
    292. Sharma D, Knott D R. The transfer of leaf ust resistance from Agropyron to Triticum by irradiation. Can J Genet Cytol, 1966, 8:137-163.
    293. Shan X, Blake T K, Talbert L E. Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor Appl Genet, 1999, 98:1072-1078.
    294. Shaner G, Finney R. Inheritance of slow-mildewing resistance in wheat. Proc Am
    
    Phytopathol Soc, 1975, 2:49.
    295. Sharifiou M R, Sharp P J. A polymorphic microsatellite in the 3'end of 'waxy'genes of wheat, Triticum aestivum. Plant Breeding, 1999, 118:275-277.
    296. Sharon D, Cregan P B, Mhameed S, Kusharska M, Hillel J, Lahav E, Epplen C, Lvai U. An integrated genetic linkage map of Avocado. Theor Appl Genet, 1997, 95:911-921.
    297. Shi A N, Leath S, Murphy J P. A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology, 1998, 88:144-147.
    298. Shi Z X, Chen X M, Line R F, Leung H, Wellings C R. Development of resistance gene analog polymorphism markers for the Yr9 gene resistance to wheat stripe rust. Genome, 2001, 44:509-516.
    299. Singh D P, Sharmal A K, Grewal A B. 2001. Loose smut resistance lines in wheat and triticale with combined resistance to Karnal bunt, rusts, powdery mildew and leaf blight. Wheat Information Service, 92:27-29.
    300. Singrün C H, Hsam S L K, Hartl L, Zeller F J, Mohler V. 2003. Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aestivum L. em Thell.). Theor Appl Genet, 2003, 106:1420-1424.
    301. Smith E L, Schlehuber A M, Young Jr H C, Edwards L H. Registration of Agent wheat. Crop Sci, 1968, 8:511-512.
    302. Snape J W, Semikhodskii A, Sarma R, Korzun V, Fish L, Quarrie S A, Gill B S, Sasaki T, Galiba G; Sutka J. Mapping vernalization loci in wheat and comparative mapping with other cereals. In: Proc 9th Internat Wheat Genet Symp (Slinkard AE ed). University Extension Press, University Saskatchewan, Saskatoon, Canada. 1998, 3:156-1558.
    303. Song Q J, Fickus E W, Cregan P B. Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet, 2002, 104:286-293.
    304. Sourdille P, Robe P, Tixier M H, Doussinault CT, Pavoine M T, Bernard M. Location of Pm3g, a powdery mildew resistance allele in wheat, by using a monosomic analysis and by identifying associated molecular markers. Euphytica, 1999, 110:193-198.
    305. Sourdille P, Tavaud M, Charmet G, Bernard M. Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes. Theor Appl Genet, 2001, 103:346-352.
    306. Stache M, Lelley T, Grausgruber H, Vollmann J. Application of microsatellites in wheat (Triticum aesttivum L.) for studying genetic differentiation caused by selection for adaptation and use. Theor Appl Genet, 2000, 100:242-248.
    307. Stephenson P, Bryan G, Kirby J, Ccollins A, Devos K, Busso C, Gale M. Fifty new microsatellite loci for the wheat genetic map. Theor Appl Genet, 1998, 97:946-949.
    308. Sun G L, Salomon B, Bothmer R V. Analysis of tetraploid Elymus species using wheat microsatellite markers and RAPD markers. Genome, 1997, 40:806-814.
    309. Talbert L E, Blake N K, Chee P W, Blake T K, Magyar G M. Evaluation of
    
    sequence-tagged-site-facilitated PCR products as molecular markers in wheat. Theor Appl Genet, 1994, 87: 789-794.
    310. Tao W, Liu D, Liu J, Feng Y, Chen P. Genetic mapping of the powdery mildew resistance gene Pm6 in wheat by RFLP analysis. Theor Appl Genet, 2000, 100:564-568.
    311. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl Acids Res, 1989, 17: 6463-6471.
    312. Taramino G, Tingey S. Simple sequence repeats for germplasm analysis and mapping in maize. Genome, 1996, 39:277-287.
    313. The T T. Chromosome location of genes conditioning stem rust resistance transferred from diploid to hexaploid wheat. Nature New Biol, 1973, 241-256.
    314. The T T, Mclntosh R A, Bennett F G A. Cytogenetical studies in wheat. Ⅸ. Monosomic analyses, telocentric mapping and linkage relationsgips of genes Sr21, Pm4, and Mle. Aust J Biol Sci, 1979, 32:115-125.
    315. Tixier M H, Sourdille P, R6der M, Leroy P, Bernard M. Detection of wheat microsatellites using a non radioactive silver-nitrate staining method. J. Genet. & Breed. 1997, 51:175-177.
    316. Tompkins D K, Wright A T, Fowler D B. Foliar disease development in no-till wheat: influence of agronomic practices on powdery mildew development. Can J Plant Sci, 1992, 72:965-972.
    317. Tosa Y, Tsujimoto H, Ogura H. A gene involved in the resistance of wheat to wheatgrass powdery mildew fungus. Genome, 1987, 29:850-852.
    318. Tosa Y, Tokunaga H, Ogura H. Identification of a gene for resistance to wheatgrass powdery mildew fungus in the common wheat cultivar Chinese Spring. Genome, 1988, 30:612-614.
    319. Tosa Y, Sakai K. The genetics of resistance of hexaploid wheat to the wheatgrass powdery mildew fungus. Genome, 1990, 33:225-230.
    320. Vaccino P, Accerbi M, Corbellini M. Cultivar identification in T. aestivum using highly polymorphic RFLP probes. Theor Appl Genet, 1993, 86:833-836.
    321. Van Deynze AE, Dubcovsky J, Gill K S, Nelson J C Sorrells, M E Dvorak J, Gill B S, Lagudah E S, McCouch S R, Appels R. Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome, 1995, 38: 45-59.
    322. Varshney R K, Kumar A, Balyan H S, Roy J K, Prasad M, Gupta P K. Characterization of microsatellites and development of chromosome specific STMS markers in bread wheat. Plant Molecular Biology Reporter, 2000, 18:5-16.
    323. Vos P, Hogers R, Bleeker M, Reijans M, van der Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: A new techniques for DNA fingerprinting. Nucleic Acids Res, 1995, 21:4407-4414.
    324. Wang, D G, Fan J B, Siao C, Bemo A, Young P, Sapolsky R, Ghandour G; Perkins N, Winchester E, Mittmann M, Morris M S, Shen N, Kilbum D, Rioux J, Nusbaum C, Rozen S, Hudson T J, Lipshutz R, Chee M, Lander E S.Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science, 1998, 280:1077-1082.
    
    
    325. Wang L, Ma J, Zhou R, Wang X, Jia J. Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, P.I.178383 (Triticum aestivum L.). Euphyitica, 2002, 124:71-73.
    326. Wang X Y, Qi Z J, Ma Z Q, Chen P D, Liu D J. Identification of RAPD markers tightly linked to wheat powdery mildew resistance gene Pm6. Acta Genetica Sinica, 2000, 27:1072-1079.
    327. Weber J L, May P E. Abundant class of human DNA polymorphisms which can be typed using the plymerase chain reaction. Am J Hum Genet, 1989, 44:388-396.
    328. Weissenbach J. The human genome project: from mapping to sequencing. Clin Chem Lab Med, 1998, 36:511-514.
    329. Wells D G, Kota R S, Sandhu H S, Gardner W A S, Finney K F. Registration of one disomic substitution line and five translocation lines of winter wheat germ plasm resistant to the wheat streak mosaic virus. Crop Sci, 1982:1277-1278.
    330. Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res, 1990, 18:7213-7218.
    331. Weng Y, Lazar M D. Amplified fragment length polymorphism and simple sequence repeat-based molecular tagging and mapping of greenbug resisatnce gene Gb3 in wheat. Plant Breeding, 2002, 121:218-
    332. Wienhues A. Translocation between wheat chromosomes and an Agropyron chromosome conditioning rust resistance. In: Sears E R, Sears L M S (eds). Proc 4th Int Wheat Genet Symp. 1973, p201-207. Univ of Missouri, Columbia, USA.
    333. Wiese M V. Compendium of wheat diseases. The American Phytoathological Society.
    334. Williams J G K, Kubelik A R K, Livak J L, Rafalski J A, Tingey S V. DNA polymorphisms amplified by random primers are useful as genetic markers. Nucl Acids Res, 1990, 18:6531-6535.
    335. Williamson V M, Ho J H, Wu F F, et al. A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato. Theor Appl Genet, 1994, 87:757-763.
    336. Witsenboer H, Vogel J, Michelmore R W. Identification, genetic locatization and allelic diversity of selectively amplified microsatellite polymorphic loci (SAMPL) in lettuce and wild relatives (Lactuca spp.). Genome, 1998, 40:923-936.
    337. Wolfe M S. Physiologic specialization of Erysiphe gramimis f. sp. tritici in United Kingdom,1964-5. Transactions of the British Mycological Society, 1967, 50:631-640.
    338. Wolfe M S. Trying to understand and control powdery mildew. Plant Pathol, 1984, 33:451-466.
    339. Wu K S,Tanksley S D. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet, 1993, 241:225-235.
    340. Xia X C, Hsam S L K, Stephan U, Yang T M, Zeller F J. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.).Ⅵ. Wheat cultivars grown in China. Plant Breeding, 1995, 114:174-175.
    341. Xiang Q J, Duan X Y, Sheng B Q, Zhou Y L. Identification of wheat powdery mildew resistance in several Chinese landraces. Cereal Rusts and Powdery Mildews Bulletins, 1995, 23:14-17.
    
    
    342. Xie D, Devos K M, Moore G, Gale M D. RFLP-based genetic maps of the homoeologous group 5 chromosomes of bread wheat (Triticum aestivum L.). Theor Appl Genet, 1993, 87:70-74.
    343. Yan G P, Chen X M, Line R F, Wellings C R. Resistance gene-analog polymorphism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust. Theor Appl Genet, 2003, 106:636-643.
    344. Yang Z J, Ren Z L. Chromosome location of a new gene for resistance to powdery mildew in wheat (Triticum aestivum L.). Manuscript. 1996.
    345. Young, N.D. A cautiously optimistic vision or marker-assisted breeding. Molecular Breeding, 1999, 5:505-510.
    346. Yu D Z, Yang X J, Yang L J, Jeger M J, Brown J K M. Assessment of partial resistance to powdery mildew in Chinese wheat varieties. Plant Breeding, 2001, 120:279-284.
    347. Zeller F J. 1B/IR wheat-rye chromosome substitutions and translocation. In: Sears E R, Sears L M S (eds). Proc 4th Int Wheat Genet Symp. 1973, p209-221. Univ of Missouri, Columbia, USA.
    348. Zeller F J, Lutz J, Stephan U. Chromosome location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.). I. Mlk and further alleles at the Pm3 locus. Euphytica, 1993, 68:223-229.
    349. Zeller F J, Stephan U, Lutz J. Present status of wheat powdery mildew resistance genetics. Proc 8th Inter Wheat Genet Symp (Li ZS and Xin ZY eds), Beijing, China. 1993, pp929-931.
    350. Zeller F J, Hsam S L K. Progress in breeding for resistance to powdery mildew in common wheat (Triticum aestivum L.). In: Slink A E (Ed.) Proc 9th International Wheat Genetics Symp. 1998, pp 178-180, University Extension Press, University of Saskatchewan, Saskatoon, Canada.
    351. Zeller, F J, Petrova N, Spetsov P, et al. Identification of powdery mildew and leaf rust resistance genes in common wheat (Triticum aestivum L. em. Thell.) cultivars grown in Bulgaria and Russia. Plant Genetic Resources Newsletter, 2001, 122:32-35.
    352. Zeller F J, Kong L, Hartl L, Mohler V, Hsam S L K. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticurn aestivum L. em Thell.) 7. Gene Pm29 in line Pova. Euphytica, 2002, 123:187-194.
    353. Zietkiewicz E, Rajalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 1994, 20:176-183.
    354. Zhang H, Jia J, Gale M D, Devos K M. Relationships between the chromosomes of Aegilops umbellulata and wheat. Theoretical and Applied Genetics, 1998, 96:69-75.
    355. Zhang H, Reader S M, Liu X, Jia J Z, Gale M D, Devos K M. Comparative genetic analysis of the Aegilops longissima and Ae. sharonensis genomes with common wheat. Theor Appl Genet, 2001, 103:518-525.
    356. Zhu Y Y, Chen H R, Fan J H. Genetic diversity and disease control in rice. Nature, 2000, 406:718-722.